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Enfin, je termine avec le plus important, la famille. Je voudrais remercier
mes parents pour m’avoir toujours soutenue d’une manière ou d’une autre, dans
mes choix, mes études, tant au point de vue logistique qu’affectif. Merci Adrien
pour ta présence, tes attentions et tes encouragements. Enfin, présent depuis le
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Preamble

In the current context of models improvement for better climate studies and
predictions, simulating small scale physical processes remain a challenge. In
this respect, and for reasons explained in this thesis, subgrid-scale parameteri-
zations are adopted whenever such processes cannot be explicitly represented.
However, parameterizations are by nature, approximations of reality and some-
times come along with concomitant shortcomings. Often, this kind of issues are
raised when parameterizations are used in conditions that are close to validity
limits of hypotheses they are based on. In order to prevent those parameter-
izations from shifting to unphysical behaviours, what is hereafter referred as
“numerical artefacts”are used. In models based on the finite element method,
these artefacts are distinctive due to the specificity of the formalism itself. In
this thesis, we aim at identifying the best compromise between these numerical
workarounds and the preservation of physics, through the study of subgrid-scale
parameterizations in two different models based on the finite element method.
These models are successively used in configurations of increasing complex-
ity, in order to ultimately understand the impacts of parameterizations on the
models physics accuracy and their skills with respect to observations.

Three different models are used throughout this thesis. In the first part
treating of the parameterization of mesoscale eddies, the Second-generation
Louvain-la-Neuve Ice-ocean Model1 (SLIM; White et al., 2008a; Blaise et al.,
2010; Kärnä et al., 2012) is considered. With its discretization based on the
discontinuous Galerkin finite element method (dgFEM), chapter 2 tackles some
technical issues relative to the penalty terms that are required to stabilize the
numerical scheme. Chapter 3 presents some toy oceanic applications with SLIM
to highlight the impacts of this parameterization, but these simulations remain
idealized since the development of SLIM in order to reach a global version has
been stopped. Indeed, the applications within this framework are now oriented
towards the land-sea continuum. SLIM is then not ready to simulate more real-
istic global applications, in particular because of the limited available computa-
tional time. Indeed, the usual period in realistic applications in order to study
the effects of the mesoscale eddies is over 1000 years after a stabilization period
of 10.000 years. The first two chapters are then more theoretical. In the second
part of this thesis, the parameterization of some sea-ice subgrid-scale processes
are already included in the Louvain-la-Neuve sea-Ice Model (LIM3; Vancop-
penolle et al., 2009b). Initially, it is embedded in the ocean modelling system
NEMO (Madec and team, 2008) which is discretized on a structured grid. In
chapter 4, some key components of LIM3 have been separated from NEMO and
coupled to the Finite Element Sea-ice Ocean Model (FESOM; Danilov et al.,

1http//www.climate.be/slim/
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2004; Wang et al., 2008; Timmermann et al., 2009) using unstructured triangu-
lar surface meshes, in order to take advantages from each model (unstructured
mesh, sophisticated representation of sea ice physics). From this perspective,
chapter 5 shows some more complex results of FESOM-LIM3 simulations to
present the main features of this new coupled model.
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Introduction

The spatial resolution of the numerical ocean models is established according
to what they intend to represent: estuaries, coastal seas or large-scale flows.
For any chosen resolution, there are always subgrid-scale processes that cannot
be explicitly resolved. From there, the first direct solution to this issue is to
increase the resolution of the mesh, but such an improvement on the whole
studied domain often requires too large a computational cost. An intermediary
step is to use an unstructured mesh instead of the usual structured grid since
local refinement is easily possible in the areas of interests. Yet another problem
is that, sometimes, independently from resolution, the physics of the process
to be represented are not well known. A way to sidestep those problems is
to make use of relatively simple, subgrid-scale parameterizations in order to
approximate processes that are too complex or local to be explicitly resolved
(Holland, 1989). The inclusion of these subgrid-scale processes in finite element
ocean-sea ice models is investigated through this thesis.

In the global ocean, the most energetic motions occur at the mesoscale.
Taking place on spatial scales ranging from 75 to 200km, the mesoscale eddies
result from barotropic and baroclinic instabilities, which occur in most places
of the World Ocean. They stir and mix salinity and temperature, as well as
other tracers, and, by doing so, influence the density field and thus the general
ocean circulation (Rhines, 2009). Parameterizing their effects on the tracer
fields significantly provides simulations closer to reality than without them.

3



4 Introduction

Figure 1.1: Visualization of the ocean velocity at 75m depth highlighting the struc-
ture of the most important currents in the North Atlantic simulated by the high-
resolution eddy resolving ocean model MPIOM TP6M with a horizontal grid spacing
of 10km (source: http://www.dkrz.de/Klimaforschung-en/konsortial-en/storm-en).

For instance, some improvements are noticed in the global temperature and
salinity distributions, the heat fluxes and the location of deep water formation
(Danabasoglu et al., 1994; Danabasoglu and McWilliams, 1995). Although they
have been studied for half a century, ocean eddies are still difficult to under-
stand and interpreting their associated impacts remains complex. Iselin (1939)
and Montgomery (1940) suggested that tracers are mainly mixed by eddies
along the isopycnals, i.e. the surfaces of constant density. These surfaces are
not horizontal in most of oceanic regions. Isopycnal mixing is much stronger,
whereas diapycnal mixing, which happens accross these surfaces, is much slower
(McDougall and Church, 1986). Historically, a scalar diffusion was traditionally
used for simplicity but in addition with a vertical diffusivity which is smaller by
several orders of magnitude than the horizontal one. In order to model the ef-
fects of this anisotropic turbulence and transport along and accross isopycnals,
Redi (1982) considered a new isopycnal mixing tensor where the main axis of
diffusivity have been rotated from the standard cartesian coordinates towards
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any direction where there is a density gradient. The first attempts of their
representations were not convincing (Cox, 1987; Hirst and Cai, 1994) since it
proved necessary to add a background horizontal diffusion to prevent numerical
instability. Changing the traditional horizontal/vertical grid to isopycnal coor-
dinates did not solve the problem (McDougall, 1987). Moreover, the main issue
remained that the effects of unresolved mesoscale eddies were not adequately
simulated. In order to incorporate the baroclinic effects of mesoscale eddies,
and thus to reduce the available potential energy without resolving the eddies
in the model, Gent and McWilliams (1990) suggested to add an extra velocity
(GM) which conserves all tracer moments between the isopycnals. This GM
parameterization which is very popular today, is implemented in the majority
of the OGCMs and brings the following major improvement: the non-divergent
GM velocity relaxes the density slopes and thus releases potential energy.

Sea ice, which refers to any form of frozen seawater, covers, on average,
about 7% of the oceans. It modifies the heat, mas and momentum exchanges
between atmosphere and ocean. Due to its low thermal conductivity (Pringle
et al., 2007), sea ice insulates the ocean from the atmosphere. In order to
describe the state of the sea ice cover, which is very sensitive to the climate
changes, the sea ice extent, which is defined as the sum of cell areas with ice
concentration above 15%, is used. Indeed, the maximum sea ice extent in the

Figure 1.2: Illustrations of the respective monthly averages of sea ice extent in March
2013 (left) and September 2013 (right), where the pink line represents the monthly
mean ice extent during the period 1981−2010. (source: nsidc.org/data/seaice index)
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Northern Hemisphere reaches about 15× 106 km2 in March and its minimum
drops to around 4.5×106 km2 in September. In the Antarctic, the extent varies
between 3 × 106km2 in February and 18 × 106km2 in September. Due to its
high reflectance in the visible spectrum and its low thermal conductivity, the
sea ice cover limits heat, momentum and water mass exchanges between the at-
mospheric boundary layer and the upper ocean. Furthermore, the salt rejected
during sea ice formation significantly influences the high-latitude oceanic con-
vection and hence the global ocean circulation (Aagaard and Carmack, 1989).
The acceleration of the recent decline of the Arctic sea ice cover is partly linked
to the ice-albedo feedback which is, in part, responsible for the high sea ice sen-
sitivity to climate change (Stroeve et al., 2012). Indeed, a positive imbalance
in the surface energy budget leads to a lower sea ice coverage, subsequently
followed by a higher solar absorption in the upper ocean, which further inten-
sifies the sea ice melting. Therefore, sea ice can act as positive feedback for
the climate warming. To get a better understanding of the climate system as
well as better projections, general circulation models (GCMs) and their sea ice
component need to be improved (IPCC, 2013).

Sea ice undergoes also very small-scale processes that affect its large-scale
properties. As illustrated in Figure 1.3, sea ice can be studied at many different
scales because of its spatial heterogeneity. This heterogeneity is mainly due to

Figure 1.3: Illustration of sea ice spanning several characteristic scales (taken from
Thomas and Dieckmann (2003)). From the left to the right: satellite image of the
Antarctic sea ice extent in September, pack ice field, pancake ice, sea ice floe colored
by diatoms, brine channels and a diatom chain in a brine pocket.

processes linked to ice deformation in response to wind forcing and oceanic



1.1. Improved resolution with the finite element method 7

surface currents that set it in motion, to the presence of snow or the sea ice
dynamic. Moreover, the interactions between processes occurring at different
scales are very strong. The large-scale oceanic circulation undeniably affects
the boundary conditions for small-scale sea ice processes, but these small-scale
processes also modify this large-scale ocean circulation through numerous in-
teractive processes. For example, brine released from sea ice affects the deep
convection, and thus the thermohaline circulation (e.g., Vihma et al., 2014).
Through these studies, it is incontestable that small-scale physical processes
play an important role, especially at the interfaces and within the boundary
layers.

As for the ocean, all the mechanisms associated with sea ice evolution can-
not be exhaustively resolved in climate models. Small-scale processes occurring
at scales smaller than the model grid sizes are represented thanks to parame-
terizations, as functions of the state variables that are resolved by the models
(such as the sea ice concentration or thickness). This is, for instance, the
case of the sea ice growth and melt, brine or the ridging/rafting mechanisms
(Holland et al., 2006). Besides, many processes dependent on ice or snow thick-
nesses cannot be explicitly represented (Schramm et al., 1997), so that their
parameterizations remain essential. However, these parameterizations are by
definition based on approximations of the real processes and are used either
because these processes are too complex or local to be represented explicitly in
models or simply because they are not well understood. In addition, parameter-
izations require observational data to be calibrated properly. Even with these
difficulties, subgrid-scale parameterizations remain important in large-scale sea
ice models in order to improve their results. For instance, some sophisticated
large-scale sea ice models use subgrid-scale parameterizations to improve their
representation of the ice thickness, enthalpy and salt distributions.

Before including some subgrid-scale parameterizations in a model, a first
improvement that concerns both the ocean and sea ice, can be made with
respect to the mesh. Instead of the usual structured grid which is often quite
coarse in order to save computational time, an unstructured mesh can be used.
A better representation of the coastlines with some local refinements already
allow to improve the realism of results or to study some processes in particular
areas, such as the Canadian Arctic Archipelago.

1.1 Improved resolution with the finite element method

Traditionally, geophysical models have been based on structured grids and fi-
nite difference schemes because of the ease of implementation (Griffies et al.,
2000). For instance, LIM3 used in this study, is based on this formalism. As
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Figure 1.4: Illustration of the structured grid used by NEMO [source: http :
//www.nemo− ocean.eu].

illustrated in Figure 1.4, the grid is regular and the cells are oriented with
respect to the latitude and longitude coordinates. Although the implemented
algorithms are very fast with this kind of discretization, these meshes suffer
from a lack of flexibility. A way to skirt this issue is to adopt the alternative
unstructured mesh, as shown in Figure 1.5. SLIM in which the mesoscale ed-

Figure 1.5: Illustration of the unstructured mesh used by SLIM.

dies will be parameterized in this thesis, is based on this kind of mesh. Its
flexibility is a real advantage since the mesh can follow the coastlines and the
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resolution can be improved in a particular area in order to capture its specific
geometry (Legrand et al., 2000).

For this reason, unstructured meshes become to be used in ocean modelling
with the finite element method (FEM; e.g., Piggott et al., 2007; White et al.,
2008b; Danilov et al., 2004) or with the finite volume method (FVM, e.g. FV-
COM, SUNTANS, D-flow FM; Lai et al., 2010; Chen et al., 2003; Kernkamp
et al., 2011), especially thanks to their ability to locally increase the resolution,
as shown in Figure 1.6. This feature is particularly important for capturing the
ocean bathymetry (Gorman et al., 2006) and boundaries, defined by the coasts
or the islands. In the case of multiscale problems, the mesh can be refined

Figure 1.6: Example of unstructured mesh refined along the coastlines and in the
Canadian Arctic Archipelago (SLIM’s mesh).

wherever and whenever necessary, for example when eddies appear (Bernard
et al., 2007). Unstructured meshes also allow to avoid the North Pole singu-
larity.

Two other advantages of the FEM are sometimes a more convenient conser-
vation of the energy and the straightforward treatment of the weak boundary
conditions. However, this method remain more complex with technicalities
than the finite difference method. Both the finite difference method and the
FEM compute approximations of the solution at some particular points of the
domain, called nodes. The main difference between those two methods lies in
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the choice of the discretization. Indeed, the differential operators are directly
discretized by the finite difference method, whereas with the FEM, they are
applied on the discretized fields.

Sea ice modelling with the FEM is not new. Indeed, Mukherji (1973) took
advantages of it in order to simulate the crack propagation within the ice pack.
Then, Sodhi and Hibler (1980) used the method proposed by Becker (1976)
to compute the ice drift in the complex area of Strait of Belle Isle. At the
origin, the majority of modelling studies were idealized test cases, as the study
of ice motion in the Beaufort Sea by Thomson (1988), the use of different sea
ice rheologies (Schulkes et al., 1998) or the investigation of a Lagrangian sea
ice description (Wang and Ikeda, 2004). Complexity and thus realism were
progressively brought to these models in order to improve the sea ice repre-
sentation, with regional sea ice modelling developed around Greenland (Kliem,
2001) or in the Arctic Ocean (Yakovlev, 2003; van Scheltinga et al., 2010). In
particular, Lietaer et al. (2008) investigated the effects of resolving the Cana-
dian Arctic Archipelago (CAA) in a finite element sea ice model. Even if there
is no ocean dynamics or oceanic feedbacks in this work, the sea ice results close
to the straits are influenced by the the fact that the CAA is closed or open,
and the ice exchanges through this area are non-negligible (the sea ice volume
in the CAA represents 10% of the total sea ice volume of the model). FESOM
proves to have advantages in long-term simulations with respect to the mesh
refinement in different studies (Sidorenko et al., 2011; Wang et al., 2012; Ju-
ricke et al., 2012; Wekerle et al., 2013). For instance, the latter study examines
the characteristics of the individual CAA channels with a mesh resolution of
5km in this area. The variability of the freshwater transport through the CAA
is shown to be mainly regulated by the variability of ocean volume transport,
as suggested by observations (Peterson et al., 2012).

Even if unstructured meshes lead to some improvements in ocean and sea
ice simulations (Lietaer et al., 2008; Wang et al., 2012; Wekerle et al., 2013),
parameterizations of subgrid-scale processes remain necessary in most of the
GCMs. Indeed, even an eddy-resolving ocean model with a horizontal mesh
resolution of around 1/12̊ , which allows to resolve the largest baroclinic eddies
but in only some parts of the ocean, requires such parameterizations and as
a result, these processes increase the computational time (Masumoto et al.,
2004).
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1.2 Improvement of the Gent-McWilliams velocity

As shown in Figure 1.7, the impacts of the mesoscale eddies can be parame-
terized thanks to two distinct processes: the isopycnal diffusion and the GM
velocity. Indeed, the main diffusion relative to these eddies mainly occurs along
the surfaces of constant density. In the formulation of the diffusivity tensor,
the smaller diffusion (diapycnal) which takes place across these surfaces, is
also taken into account but has a much smaller magnitude since it is linked to
molecular turbulence. Besides, the GM velocity, which is computed thanks to
the density gradient, tends to relax density slopes.

����

�
��*

Iso
pycnal diffusion

�
��

�
��

GM

GM

y

z
6-

Figure 1.7: Schematic illustration of isopycnals (black lines) where the main effects
of the parameterization of the mesoscale eddies are represented in blue: the isopycnal
diffusion mainly diffuse the tracers along these same surfaces whereas the GM velocity
principally tends to slump the isopycnals.

Most current numerical ocean models (e.g., NCAR Climate System Model,
HOPE, ECHAM; Gent et al., 1998; Marsland et al., 2003; Jungclaus et al.,
2006) use the parameterization of mesoscale eddies. From the density gradient,
the eddy-induced transport streamfunction ψ, which is on the basis of the GM
scheme, is computed:

ψ = AI
∇hρ
∂zρ

× êz, (1.1)

where AI is the eddy diffusivity, ρ the seawater density and êz the vertical unit
vector. The associated velocity:

uGM = ∇× ψ (1.2)

is computed and used to advect the tracers in addition to the Eulerian velocity.
In practice, the streamfunction computation is difficult in realistic simulations,
especially because of its decrease to zero at the top and bottom boundaries
and because of the vertical stratification. Indeed, near the top and bottom
boundaries, the neutral slope, that is used in the streamfunction computation,
can become infinite. In order to handle this issue, the typical methods are
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to progressively cancel the streamfunction at the boundaries or to impose an
arbitrary limit on the neutral slope. However, these methods are not based on
physical processes and the results are closely connected to numerical details.
In addition, these tapering functions run counter to the evolution of mesoscale
eddies towards larger vertical scales.

In order to overcome this issue, Ferrari et al. (2010) suggest to solve a one-
dimensional boundary-value problem where the eddy-induced streamfunction1

Ỹ is the solution of: (
c2
d2

dz2 −N
2
b

)
Ỹ = g

ρ0
∇hρ (1.3)

Ỹ (η) = Ỹ (−H) = [0, 0],

where Nb =
√
− g
ρ0

∂ρ
∂z is the Brunt-Väisälä frequency, c = NbH

π
is a depth

independent speed relative to the Eady problem (Eady, 1949), H is the depth,
ρ0 is the constant reference density, g is the gravitational acceleration and η
the ocean surface elevation. The approximation [Ỹ , 0] is then close to ψ except
near the surface and the bottom since the transport vanishes there by defini-
tion. Applied on each water column, the new parameterized transport satisfies,
without any additional tapering or matching conditions, two key properties:
homogeneous Dirichlet boundary conditions at the ocean surface and bottom,
and presence of slow baroclinic modes in this vertical structure that are consis-
tent with the phenomenology of the geostrophic turbulence. Moreover, some
important attributes of the scheme should be mentioned: the parameterized
eddy transport is interpolated through regions of weak stratification without
any ceiling on the neutral slope, and the parameterization provides a non-local
sink of potential energy, whereas it was local for the scheme of Gent and Mc-
Williams (1990). This one-dimensional boundary value formulation is already
used in the popular Modular Ocean Model (MOM, Dunne et al., 2012), and its
coupled versions, e.g., the Australian Community Climate and Earth System
Simulator (ACCESS, Bi et al., 2013) or the ICTP-MOM ocean–sea-ice model
(Farneti, 2012).

Such improvements in the representation of physical processes through the
subgrid-scale parameterizations are also possible in sea ice models. For in-
stance, the ice thickness distribution enables the representation of several ice
categories within a single grid cell. Its parameterization in sea ice models influ-
ences the variability in both the ocean and sea ice. For example, in the ocean,
the thermohaline circulation can be modified due to the inclusion of the ice
thickness distribution (Bitz et al., 2001).

1The tilde refers to a two-dimensional vector, whereas the underline refers to a three-
dimensional vector.
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1.3 Subgrid-scale processes in sea ice models

Present-day sea ice models provide realistic estimates in terms of mean state
and variability. The first detailed thermodynamic model was presented by
Maykut and Understeiner (1971), in which the exchange of mass and the storage
of heat in the ice are treated. Nowadays, most sea ice models are coupled to
ocean models or to climate models in order to investigate its interactions with
ocean and atmosphere. Typically, sea ice thermodynamics is treated using
the Semtner (1976) 0− or 3−layer formalism or the more sophisticated model
of Bitz and Lipscomb (1999). Soon, the large-scale dynamical processes were
taken into account in models (Coon et al., 1974; Hibler, 1979). In this purpose,
the internal behaviour of the sea ice has been studied. In Hibler (1979), the sea
ice is assumed to be a non-linear viscous-plastic (VP) medium whose resistance
to deformation depends on its instantaneous states of motion and on several sea
ice variables. For the sake of computational efficiency, the elastic-viscous-plastic
(EVP) formulation of Hunke and Dukowicz (1997) is often chosen to describe
the sea ice rheology within the dynamical component. Due to its horizontal
heterogeneity, the sea ice extent varies quite a lot over an ice floe, with typical
scale ranges from 1m to 100km. As illustrated in Figure 1.8, one way to account
for this feature is to introduce a subgrid-scale distribution of ice thickness. For

A1

A2

Open water

Figure 1.8: Illustration of the representation of the ice thickness distribution in a
grid cell for two sea ice categories/concentrations and open water.

the sake of simplicity, only two different states of sea ice are considered with an
open water area, in this example. Indeed, each category has a mean thickness
(H1,H2) and an associated relative coverage of the grid cell (A1, A2). Thanks
to this ice thickness distribution (ITD) (Thorndike et al., 1975), the ice pack
is described in terms of relative coverage of different thicknesses, which is very
interesting since many sea ice properties are strongly dependent on the ice
thickness (rate of growth, surface temperature, turbulent and radiative heat
exchanges with atmosphere, salt content and potential energy). This model
consists in describing the large-scale consequences of the small-scale processes
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involved in the ice thickness evolution. The thickness distribution g(h) can be
defined as follows: ∫ h2

h1

g(h)dh = A(h1, h2)
R

, (1.4)

where R is the ice pack area of the region considered and A(h1, h2) is the area
within R covered by ice of thickness h in the range h1 ≤ h ≤ h2. Integrated on
a defined domain [0, hmax], one has:∫ hmax

0
g(h)dh = 1, (1.5)

and, outside these boundaries, g(h) vanishes. Two types of phenomena alter
the ice thickness, and thus g(h): the thermodynamic and mechanical processes.
In taking into account both their influences, the governing equation for the
thickness distribution can be written as:

∂g

∂t
= −∇ · (v g)− ∂

∂h
(f g) + Ψ, (1.6)

where f [m/s] is the growth rate function and v g is the flux of thickness dis-
tribution and the effects of the mechanical ridging and opening processes are
represented in the redistribution function Ψ. On the one hand, the transfer
between the categories due to thermodynamics comes from the growth and
melt, and the distribution will tend naturally towards an uniform thickness.
In order to parameterize the thermodynamic thickening of ice, f is built and
its magnitude is determined by the balance of the atmospheric and oceanic
heat fluxes at the bottom and top of the ice, its thermal history, its thickness,
the snow cover and the distribution of brine inclusions within the ice. But
the ice thickness also influences the rate of heat input to the atmosphere and
ocean. For instance, Badgley (1966) reports that “the turbulent heat input
to the atmosphere over a refreezing lead is more than 2 orders of magnitude
larger than that over typical 3-m ice. Thus if leads account for 1% or more
of the ice pack, their effects can begin to dominate the large-scale turbulent
heat exchange and alter boundary layer stability”. On the other hand, the dy-
namic processes result from the nonuniform motions of the ice that create leads
and pressure ridges. In state of divergence, new areas of open water appear,
whereas the convergence tends to close open water areas, and sometimes, the
thin ice is rearranged to build a ridge. Besides, the shear occurs through slip
along some cracks and can cause leads and pressure ridges. Thick and thin ice
covers do not vary in the same way in the same area. Indeed, thin ice offers
little resistance to compression whereas thick ice, for example over 1m, is very
strong. As the ice moves, g(h) must also vary in function of the advection
of the areas of the different thicknesses into the region R. In the latter, the
rearrangement of ice in R is expressed as sources and sinks of the ice area of
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Figure 1.9: Illustrations of pressure ridges (left,[http://www.arctic.noaa.gov/ice-
rubble-pressure.html]) and leads (right, [Courtesy S. L. Farrell]).

each category. Of course, it depends on h, on the strain rate and g. In state of
pure divergence, area of open water can appear, this assumed area is exported
from R. In case of pure convergence, there is a flux of ice into R so that Ψ
must mimic the rearrangement of the ice already present in R to take up less
place. The thin ice is then taken from a range of ice thicknesses, not especially
the thinnest, and pressure ridges are created in increasing the area covered
by thick ice and decreasing the area covered by thin ice. Once the thickness
distribution has been applied, this new configuration on the grid cell is used
to conservatively remap all the other global sea ice variables, such as the heat
content or temperature, in the same way than the thickness.

The parameterization of the ITD is already included in the sea ice model
LIM3 (Vancoppenolle et al., 2009b), where 5 categories are considered to de-
scribe the ice thickness. LIM3 also takes into account the halodynamics through
empirical parameterizations for gravity drainage and percolation of brine (Van-
coppenolle et al., 2005), so that each ice thickness category is divided into 5
layers for sea ice halo-thermodynamics. The evolution of the salinity profile is
computed from basal ice formation, snow ice formation, gravity drainage and
flushing and is given for thermodynamic computations. The sea ice dynamics is
solved by using the EVP rheology of Hunke and Dukowicz (2001) in the C-grid
formulation of Bouillon et al. (2009). This configuration already provides a sea
ice model with a sophisticated representation of the sea ice physics but new
parameterizations could still be added. Some other parameterizations relative
to thermodynamic processes could be included, for instance, a surface albedo
which evolves according to meltpond coverage or the penetration of shortwave
radiation into snow (Notz, 2012). Besides, some additional parameterizations
about subgrid-scale dynamic processes could also be included, for instance the
bottom and surface roughness related to the ice-thickness distribution. The
question is what it the best balance between the parameterizations and the
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improvements of the results. The question remains whether these new param-
eterizations always bring better skills with respect to observations or not.

1.4 Objectives of the thesis

The use of parameterizations of subgrid-scale processes is widespread in GCMs,
both in their oceanic and sea ice components. Their inclusion in finite element
sea ice-ocean models is not straightforward and, hence, is investigated through-
out this thesis. A pertinent choice must be made among all the physical pro-
cesses that can potentially be parameterized and among the various available
methods. A newly parameterized process within a model must not be too com-
putationally expensive and provide concrete improvements of the model skills.
As discussed previously, such parameterizations have been shown to bring sig-
nificant improvements in the capabilities of ocean models (e.g. sharper main
thermocline; Danabasoglu and McWilliams, 1995) but produce unwanted model
behaviours in particular cases (e.g., dissipation, diffusion fluxes in the wrong
directions or infinite values; Griffies, 2004). So as to prevent this, numerical
artefacts are used, for instance the tapering functions or matching conditions
(Gent et al., 1995; Redi, 1982).

How to reduce the use of numerical artefacts associated with
those parameterizations to the benefit of their physics?

Chapters 2 and 3 present the parameterization of mesoscale eddies, which
are usually treated as two distinct processes: the isopycnal diffusion and the
GM velocity, that are computed as suggested by Redi (1982) and Gent and
McWilliams (1990), respectively. Their inclusion influences the ocean results
obtained by means of SLIM and these effects are highlighted through these
chapters.

First, the mixing of tracers by mesoscale eddies mainly occurs along the
isopycnals, but another diffusion, called diapycnal, occurs orthogonally to these
surfaces with a weaker magnitude. This situation leads to a strong anisotropy
in the diffusivity tensor. Since SLIM is discretized with a discontinuous Galer-
kin finite element method, the interior penalty terms are introduced to yield
a compact scheme. In particular, the penalty factor which penalizes the jump
of tracer over the edges of the elements, is required to stabilize the discontin-
uous Galerkin finite element method. However, its estimation is not an easy
task because it influences the results. If the penalty factor is too small, the
numerical scheme becomes unstable. But, if it is too large, too much numerical
diffusion is introduced, which damages the approximate solution. In Chapter 2,
the oriented penalty factor, defined by rotating the system to align it with the
principal axes of the diffusivity tensor, is assessed through a comparison with
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another penalty factor (the eigenvalue penalty factor, inspired by the work of
Rivière (2008)). Next, our study highlights the difference of order in the value
of each penalty factor. In a simple test case, the evolution of a tracer concen-
tration, placed in a density field where the isopycnals are plane and equally
spaced, is investigated. Even if the eigenvalue penalty factor yields a smoothed
concentration field, the values of the oriented penalty factor are smaller with
larger jumps between the elements in the numerical solution. This difference
in the fields shows that too much numerical diffusion is induced with the eigen-
value penalty factor. In addition, our study over the numerical errors indicates
that the oriented penalty factor, which stabilizes the numerical system suffi-
ciently, induces less errors.

Larger values of the penalty factor can also affect the efficiency of the numer-
ical scheme through an ill-conditioned system. With standard penalty factors,
the model inability to solve the linear system with strong anisotropies empha-
sizes the need for a well-conditioned system. Using the condition number, the
accuracy of the system can be measured: when the condition number is close
to 1, the system allows to get an accurate solution. The oriented penalty fac-
tor gives the best condition number whatever the order. Besides, it allows to
reduce the computational effort contrary to the eigenvalue penalty factor.

Another characteristic of the isopycnal diffusion could lead to numerical er-
rors in the approximated solution: the main directions of the isopycnal and
diapycnal diffusions are not aligned with the mesh axes. Despite the fact
that the slope of the isopycnal surface does not exceed 0.01, a small angle
of 1̊ leads to differences in the spatial convergence. With a coarse test mesh
(10km), the oriented penalty factor yields the best spatial convergence. The
oriented penalty factor was thus selected for further applications. In Chapter
3, the tracer concentration, initialized as a Gaussian, really tends to follow the
isopycnals in a progressively inclining density field. The choice of the oriented
penalty factor do not seem to affect the solution or produce some unwanted
behaviours. Last but not least, numerical errors may appear in the wrong
direction of diffusivity flux. When only the isopycnal diffusion is considered,
i.e., no diapycnal diffusion is assumed, the tracer concentration should only
be diffused in the isopycnal direction. In practice, a spurious flux appears in
the diapycnal direction. As its variance grows linearly with time, it can be
defined as a spurious diffusivity in the diapycnal direction (Karger, 1992), and
this spurious diffusivity appears to be weaker than the real diapycnal diffusiv-
ity. These investigations allow to show that the physical processes behind the
parameterization associated to the isopycnal diffusion are preserved.

As already mentioned, the one-dimensional boundary value problem sug-
gested by Ferrari et al. (2010) allows to avoid the use of additional tapering
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functions in order to naturally ensure impermeable boundaries in the computa-
tion of the GM velocity. In Chapter 3, an idealized channel simulation reveals
the expected effects on the temperature field when the GM velocity is param-
eterized in SLIM. Without this parameterization, the isotherms are getting
extremely steep under the action of wind because the transient motions are
not sufficient to smooth the density slopes. When the GM parameterization is
taken into account, this undesirable feature is not noticed anymore: the avail-
able potential energy is released in such a way that the isotherms are slumped.
Moreover, the stratification close to the ocean surface is greatly influenced by
this mesoscale parameterization. While minimizing the use of numerical arti-
fices, the expected oceanic behaviours such as the slumped isopycnals, seem to
be well estimated in SLIM applications.

Several sea ice models (e.g., Salas-Mélia et al., 2005; Hunke et al., 2013;
Vancoppenolle et al., 2009b) based on the structured grids already use some
parameterizations to describe subgrid-scale processes, such as the ice thickness
distribution or the halodynamics, but these parameterizations were, until now,
never included in a model discretized on unstructured meshes. This second
objective of this thesis concerns the new sea ice-ocean coupled model FESOM-
LIM3.

What are the interest and potential applications of having
a state-of-the-art representation of the sea ice physics on an
unstructured mesh?

In Chapter 4, key components of LIM3 are coupled to the global ice-ocean
model FESOM in order to gather the advantages of each model. With the
unstructured mesh used in FESOM, the coastlines are well represented and
places of particular interest can be locally refined. While the sea ice thermo-
dynamics in FESOM remains relatively simple, LIM3 offers the possibility of
representing the ice thickness distribution and includes a state-of-the-art rep-
resentation of the sea ice halo-thermodynamics. Some technical adaptations
have been realized in order to perform realistic simulations of sea ice state over
the 1979− 2007 period.

In Chapter 5, the simulated general sea ice physical state variables are
studied: the ice areal coverage, thickness and volume, as well as the ice veloc-
ity, in both Hemispheres. Thanks to this coupled model, some regions which
were, until now, often unresolved or represented with a coarse resolution, can
be studied in more details. In the previous works, LIM3 was used with at
best, a structured grid of 1̊ of horizontal resolution so that only two channels
were represented in the Canadian Arctic Archipelago. Thanks to the unstruc-
tured mesh, all its narrows straits are reproduced. The simulated mean ice
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concentration is evaluated against the satellite observations in terms of spatial
and seasonal variability. While FESOM overestimated the ice concentration
throughout the year which leaded to almost no variation in ice concentration
in the Canadian Arctic Archipelago, FESOM-LIM3 performs better or presents
specific patterns, such polynyas in the Amundsen Gulf and Smith Sound, as
well as the open area water in the Foxe Basin. Through the main gates of the
Arctic basin, the simulated solid freshwater fluxes are in very good agreement
with the various observations. Contrary to expectations, the net export in the
Bering Strait is slightly negative which means that the solid freshwater tends
to go out of the Arctic basin. This feature was already observed in other GCMs
(MRI-A, MRI-F, FSU-HYCOM) but no explanation was so far provided. A
possible solution could be to decrease the atmosphere-ice drag slightly. As the
ice thickness distribution tends to give thinner ice in the marginal areas, the
ice is easier exported through the gate. Finally, the seasonal solid freshwater
flux in the Fram Strait is especially well represented by FESOM-LIM3 with a
continuous ice export all over the year in the range of the observations. As for
the Southern Hemisphere, the ice drafts in the Weddell sea are also underes-
timated in comparison to the ULS observations, which again could be due to
the too small lead closing parameter for this area. Despite that, the freezing
and melting timing phases in the simulated time series remain realistic.

The improvements brought by the multi-category formalism to sea ice mod-
els running on structured grids can therefore be expected on unstructured
meshes, but it is not trivial. Including a more sophisticated representation of
sea ice physics and having a finer mesh resolution at high-latitudes should lead
to some improvements in the simulations, provided that parameters in this new
coupled model are properly calibrated. In order to achieve such calibrations,
further test experiments are required.
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Strongly anisotropic diffusion operator

In the framework of SLIM, the isopycnal diffusion is discretized with the dis-
continuous Galerkin finite element method (dgFEM). Contrary to the continu-
ous method, where the solution is continuous on all the discretized space, the
dgFEM gives a solution which is approximated on
each element separately so that some discontinuities
(called jumps) appear at the element boundaries, as
shown on the right hand-side picture. With this dis-
cretization, the diffusion requires penalty terms in
order to stabilize the numerical scheme. With the
particularly strong anisotropy in the isopycnal diffu-
sivity tensor, the penalty factor is not well-adapted
since it has not been built in order to follow the
isopycnals. Initially dependent on a scalar diffusivity, it tends to induce diapy-
cnal diffusion and thus deteriorates the solution. The major challenge is then
to define this penalty factor in a different way to deal with the isopycnal dif-
fusion correctly. The penalty factor choice is important since a larger value
damages the solution accuracy and a smaller one leads to instabilities within
the numerical scheme.

This Chapter is based on the following paper, published on 20 June 2014:
A. Pestiaux, S.A. Melchior, J.F. Remacle, T. Kärnä, T. Fichefet and J. Lam-
brechts. Discontinuous Galerkin finite element discretization of a strongly anisotropic
diffusion operator. Inter. J. Num. Meth. Fluids, 75 : 365− 384, 2014.
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Abstract

The discretization of a diffusion equation with a strong anisotropy by a dis-
continuous Galerkin finite element method is investigated. This diffusion term
is implemented in the tracer equation of an ocean model thanks to a sym-
metric tensor which is composed of diapycnal and isopycnal diffusions. The
strong anisotropy comes from the difference of magnitude order between both
diffusions. As the ocean model uses interior penalty terms to ensure numer-
ical stability, a new penalty factor is required in order to correctly deal with
the anisotropy of this diffusion. Inspired by the literature, two new penalty
factors have been established from the coercivity property. One of them takes
into account the diffusion in the direction normal to the interface between the
elements. After comparison, the oriented penalty facotr appears to be the best
since the spurious numerical diffusion is weaker than with the penalty factor
proposed in the literature. It is computed with a transformed coordinate system
in which the diffusivity tensor is diagonal, using its eigenvalue decomposition.
Furthermore, the numerical scheme associated with the oriented penalty factor
is validated with the Method of Manufactured Solutions. It is finally applied to
simulate the evolution of temperature and salinity due to turbulent processes
in an idealized Arctic Ocean.

2.1 Introduction

In ocean general circulation models, all physical processes cannot be resolved
explicitly due to insufficient spatial resolution. Hence, appropriate parameter-
izations are required in order to account for those processes. Iselin (1939) and
Montgomery (1940) suggested that the mixing of tracers by mesoscale eddies
in the stratified ocean mainly occurs along the surfaces of constant density, i.e.,
the isopycnals. It appears that some smaller processes also mixed the tracers
but orthogonally to the isopycnals, so that these surfaces are called diapycnals.
Even with its small magnitude, the diapycnal diffusion should also be taken
into account in the parameterization of the mesoscale eddies. This situation
creates a strong anisotropy in the diffusion tensor. In order to model the effects
of this anisotropic turbulence and transport along and accross isopycnals, Redi
(1982) considered a new isopycnal mixing tensor where the main axes of diffu-
sivity have been rotated from the standard cartesian coordinates towards any
direction where there is a density gradient. The isopycnal diffusivity operator
is then built as a non-linear function of the active tracer concentrations since
the diffusion operator depends on the density which, in turn, is a function of
salinity and temperature (Gent and McWilliams, 1990). This operator differs
fundamentally from isotropic and homogeneous diffusion since the tensor is not
diagonal or constant. But, as in most ocean general circulation models used in
climate studies, the main directions of the diffusion are not aligned with the
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mesh and this can create numerical errors.

In the present work, only the tracer equation from a ocean model is con-
sidered. Even if many processes can influence the evolution of oceanic tracers,
such as the advection or the vertical mixing, we focus only on the isopycnal
diffusion, which is discretized with a Discontinuous Galerkin Finite Element
Method (DGFEM) since it is developed in the framework of an unstructured
grid oceanic model, the Second-generation Louvain-la-Neuve Ice-ocean Model
(SLIM1, Blaise et al., 2010; Kärnä et al., 2012; White et al., 2008a). Even
if advection is not present in this study, this is an important ocean process
that cannot be forgotten for a realistic oceanic simulation. When the advec-
tion term is present, DGFEM is better adapted than the continuous Galerkin
(CG) method since the numerical dissipation is lower than in CG for an equiv-
alent mesh and the dispersion is optimal (Ainsworth, 2004). For the last thirty
years, DGFEM has been used to solve partial differential equations in engi-
neering applications, but the anisotropy of these models was much less than
in the ocean (Lesaint and Raviart, 1974; Reed and Hill, 1973). In a natural
way, the numerical fluxes and the slope limiters were introduced (Cockburn
et al., 2000). The DGFEM allows to approximate the solution on each element
separately and some discontinuities, called jumps, can appear at the interface
of the elements (Douglas, 1982). For these many reasons, SLIM has been de-
veloped with DGFEM and, as this oceanic model is employed and improved,
the DGFEM is used instead of the CG. In the framework of SLIM, interior
penalty terms are introduced to yield a compact scheme. Especially, the es-
timation of the penalty factor is required to stabilize the finite element method.

In the ocean, the anisotropy is quantified thanks to a factor ε, named
anisotropy factor. Its high magnitude, which comes from the ratio between
the maximum and minimum eigenvalue of the diffusivity tensor, λM and λm,
respectively, is not usual in standard engineering analysis, such as in the com-
posite materials or in petroleum geology (Hohn, 159, 1999). The derivation
of the penalty factor is not an easy task since it influences the results. If it
is too small, the numerical scheme becomes unstable. But, if it is too large,
too much numerical diffusion is introduced and this reduces the quality of the
approximate solution. Houston et al. (2002) analyzed the discretization of the
advection-diffusion equation with a discontinuous Galerkin method when the
diffusivity is heterogeneous and less anisotropic than in the ocean. As the local
and small diffusivity in some parts of the domain can influence the internal lay-
ers if there is advection, Gastaldi and Quarteroni (1990), Croisille et al. (2005)
and Pietro et al. (2008) investigated the regions where the diffusion vanishes
and reappears further. The discontinuity-penalization parameter does not take

1http : //www.climate.be/slim/
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into account the direction and is thus not appropriate when the diffusivity is
anisotropic.

In her book, Rivière (2008) has proposed a DGFEM interior penalty method
that is able to deal with moderate anisotropic diffusion. In practical case, the
mesh is usually aligned with the direction of anisotropy. Consider the Laplace
problem

∂2C

∂x2 + ∂2C

∂y2 = 0 (2.1)

on a uniform mesh made of squares where C is a tracer (see Figure 2.1). Con-
sider a change in coordinate y′ 7→ hy which leads to

∂2C

∂x2 + h2 ∂
2C

∂y′2
= 0 (2.2)

An anisotropy of h2 can exactly be balanced using a mesh that is stretched
by a factor h in the direction of anisotropy. One design goal of our approach
would be that a numerical solution obtained for the equation (2.1) on a uni-
form mesh would be strictly the same as the numerical solution obtained for
the equation (2.2) on a mesh that is stretched by a factor h in the y direction.
Rivière’s approach deals separately with the anisotropy of the diffusion ten-
sor and with the anisotropy of the mesh. With the kind of anisotropy that is
present in ocean modeling, penalty factors computed with Rivière’s approach
are very high. The corresponding linear systems are so ill-conditioned that
they cannot be inverted. Actually, the Rivière penalty factor demonstrates its
effectiveness when the anisotropy is small and local. In this paper, we want to
have a method as accurate as the Rivière method but practicable for complex
simulations. We therefore suggest an improvement to this penalty factor in

ly = 1

lx = 1

ly = h

lx = 1

Figure 2.1: Illustration of two meshes with their respective side lengths lx and ly.

order to reduce it while preserving the numerical stability. It will be referred
to as the eigenvalue penalty factor.

Ern et al. (2008) suggested another penalty factor. He applied a weighted
average method to the diffusivity tensor in the direction normal to the interface
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between the elements. The use of this factor without the average method is
quite intuitive. There is, to the best of our knowledge, no formal demonstration
of the use of the penalty factor suggested by Ern. In this paper, we will
first prove that this penalty factor without the weighted average, which is
called here the oriented penalty factor, is sufficient to ensure the coercivity
even for strong anisotropic diffusions. The coercivity ensures that the solution
is well-posed, i.e., the uniqueness and continuity properties are satisfied. The
latter is defined by rotating the system to align it with the principal axes of
the diffusivity tensor. Afterwards, the more appropriate penalty factor for a
strong anisotropic diffusion will be determined between the eigenvalue penalty
factor and the oriented penalty factor. That will allow to have, not only the
numerical scheme stabilization, but also less numerical diffusion and thus a
better approximation of the solution. If a simple example is taken where the
anisotropic diffusion is defined as

κ =
(

1 0
0 α

)
,

where α is assumed to be smaller than 1, a first approximation of each penalty
term can be theoretically computed (Table 2.1). As expected, the Rivière

Rivière Eigenvalue Oriented
x α−1 α−1 1
y α−1 α α

Table 2.1: Comparison of an approximation of the penalty term for the Rivière, the
eigenvalue and the oriented methods.

penalty factor remains large whatever the direction. The eigenvalue penalty
factor is a little better, whereas the oriented penalty factor which changes with
the main axes diffusion seems the best.

The paper is organized as follows. The diffusion tensor is defined in Section
2. The DGFEM is applied to the diffusion equation in Section 3. Section 4
presents both penalty factors discussed here, and compares them. The Method
of Manufactured Solutions is applied in Section 5. A physical application is
suggested in Section 6. Finally, concluding remarks close the paper in Section
7.

2.2 Diffusion equation
In the framework of SLIM, the unstructured meshes are composed of several
layers of triangular prisms. As the elements are triangular at the surface, the
coastlines can be represented with high geometrical flexibility. Additionally,
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the mesh is structured along the vertical direction, which preserves the natural
stratification of the ocean. Each tracer concentration field C(X, t), typically
the temperature T or the salinity S, satisfies the following diffusion equation:

∂C

∂t
= ∇ · (κ · ∇C), (2.3)

where κ is the diffusivity tensor. This symmetric tensor is computed from the
density ρ, which is itself a function of T and S through the equation of state.
The density is a three-dimensional function implying that the dimension d = 3
and X = (x, y, z). Initial conditions C(X, 0) are supposed to be given and no
normal flux of both temperature and salinity is allowed on the boundary ∂Ω
of the domain Ω ⊂ Rd. The normal n is defined everywhere on the boundary
of the elements. From the density ρ, the slope2 s̃ is obtained as:

s̃ = [sx, sy] = − ∇hρ
∂ρ/∂z

, (2.4)

where ∇h = (∂x, ∂y). Let us now define ν = −∇ρ and create the diapycnal
unit vector:

ν̂ = ν

‖ν‖
= [sx, sy,−1]√

s2
x + s2

y + 1
,

where ‖ · ‖ is the Euclidean norm. The s̃ and ν vectors are important since
the anisotropic diffusion in the ocean is oriented along and across the density
slope. The diffusivity tensor κ, which is made up of isopycnal and diapycnal
parts, can then be expressed as:

κ = AI(δ − ν̂ ν̂) +AD ν̂ ν̂,

where δ is the Kronecker delta and AI and AD are the non negative isopycnal
and diapycnal diffusivity coefficients, respectively Griffies et al. (1998). Using
the local density slope s̃, Redi (1982) showed that the tensor κ in the (x, y, z)
reference frame can be written as3:

κ = AI

1 + ‖s̃‖2

1 + s2
y + εs2

x (ε− 1)sxsy (1− ε)sx
(ε− 1)sxsy 1 + s2

x + εs2
y (1− ε)sy

(1− ε)sx (1− ε)sy ε+ ‖s̃‖2

 , (2.5)

2The tilde refers to a two-dimensional vector, whereas the underline refers to a three-
dimensional vector.

3The equality between κ and its components should not be written because the former
is a tensor, i.e., a mathematical object that does not depend on any basis, while the latter is
the matrix obtained by expressing the former in a particular basis. The formal link between
the tensor and its components κij is simply κ = κijeiej where Einstein convention is used
and ei is the basis vector in direction i = {1, 2, 3}. This kind of equality is however used in
this chapter for the sake of easier reading.
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where ε = AD

AI
is the ratio of the diapycnal diffusivity to the isopycnal diffu-

sivity.

2.3 DGFEM formulation

In this study, the elements Ωe are prisms with vertical faces (Wang et al., 2008)
and PDG1 shape functions, i.e. polynomials of degree p = 1, are chosen in each
element (implying that the number of nodes in the element is N = 6). Note
that the index e refers to a specific element, whereas the index k refers to an
interface between two elements. The usual Galerkin finite element formulation
of the tracer equation is:

∫
Ω

(
∂C

∂t
−∇ ·

(
κ · ∇C

))
τ dΩ = 0

⇔
∫
Ω

∂C

∂t
τ dΩ =

∫
Ω

∇τ · κ · ∇C dΩ −
∫
∂Ω

n · κ · ∇C τ dΓ,

where τ is the shape function. The integral over the whole domain Ω is de-
composed into the sum of integrals over each element Ωe and each interface
γk = Ωe ∩ Ωe′ . The set of all element interfaces is noted Γ =

⋃
k γk. The

interface term is computed over each face:

∑
e

∫
Ωe

∂C

∂t
τ dΩ =

∑
e

∫
Ωe

∇τ · κ · ∇C dΩ −
∑
k

∫
γk

n · κ · ∇C τ dΓ. (2.6)

Instead of incorporating boundary conditions in the space, Dirichlet boundary
conditions are directly weakly imposed through the penalty factor (Arnold
et al., 2000). In DGFEM, the weak formulation consists in finding C such as
a(C, τ) = b(τ), where a is a bilinear form and b is a linear form. The right-hand
side term of equation (2.6) is indeed the bilinear form (Rivière, 2008), which is
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defined as:

a(C, τ) =
∑
e

∫
Ωe

∇τ · κ · ∇C dΩ

−
∑
k

∫
γk

(
[[τ ]] · {κ · ∇C}+ [[C]] · {κ · ∇τ}

)
(2.7)

+
∑
k

∫
γk

µ[[C]] · [[τ ]] dΓ

=
∑
e

∫
Ωe

∇τ · κ · ∇C dΩ −
∑
k

∫
γk

[[τ ]] · {κ · ∇C} dΓ︸ ︷︷ ︸
¬

−
∑
k

∫
γk

[[C]] · {κ · ∇τ} dΓ︸ ︷︷ ︸


+
∑
k

∫
γk

µ[[C]] · [[τ ]] dΓ︸ ︷︷ ︸
®

, (2.8)

where µ is the penalty factor and [[.]] is the jump vector at the interface such

that [[C]] = n
C+ − C−

2 , with C+ and C− being the tracer on the left- and
right-hand sides, respectively (Cockburn et al., 2000). The term ¬ comes from
the divergence theorem and the integration by parts. The interior penalty (IP)
terms, i.e., the symmetric interior penalty term  and the penalty term ®,
stabilize the diffusion in the DGFEM. The value of µ must be chosen carefully.
On the one hand, if µ is not large enough, the bilinear form is not coercive
and the approximate solution is not stable. In this case, numerical artifacts,
such as spurious oscillations, that deteriorate the quality of the solution appear.
On the other hand, if µ is too large, the solution exhibits too much numerical
diffusion and modifies the effective value of the diffusivity tensor. Moreover,
the numerical schemes will not be efficient. For instance, a large value of µ can
have a detrimental effect on the conditioning of the matrix that represents the
bilinear form (Shahbazi, 2004).

2.4 Interior penalty factor

The factor µ penalizes the jump of the concentration tracer C over the edge
of an element. For scalar diffusivity, Shahbazi (2004) derives a penalty factor
which is a function of the dimension d, the degree of the polynomial shape
function Dp, the area of the interface A and the volume of the element V :

µ = (Dp + 1)(Dp + d)
d

n0

2
A

V
κ, (2.9)

where n0 is the number of neighbors of the element, i.e., n0 = 5 for prisms,
and κ is a scalar diffusivity. As the diffusion is represented by an anisotropic
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diffusivity tensor, this usual penalty factor cannot be used directly.

In the next sections, two different ways of computing the penalty factor
that take into account the anisotropic diffusivity are discussed. Firstly, Rivière
(2008) only uses the lower and upper bounds of the eigenvalues of the tensor.
As this suggested penalty factor is too large, a new penalty factor inspired from
Rivière (2008) has been developed and called eigenvalue penalty factor. In this
new configuration, the previous maximum eigenvalue used in the penalty fac-
tor suggested by Rivière (2008) is replaced in order to reduce the numerical
diffusion, which leads thus to a better performance. But the tries with the
eigenvalue penalty factor were not convincing. Secondly, the proof of the ori-
ented penalty factor, which is a function of n · κ · n, is introduced. This factor
is defined by rotating the system to align it with the principal axes of the dif-
fusivity tensor and a value is suggested when strong anisotropy exists in the
diffusivity tensor.

2.4.1 Eigenvalue penalty factor
In the case of a small anisotropic diffusivity, Rivière (2008) suggested to replace
the penalty factor (2.9) by the penalty factor µ defined with the eigenvalues of
the diffusivity tensor:

µ = (Dp + 1)(Dp + d)
d

n0

2
A

V

λ2
M

λm
, (2.10)

where λm and λM are the minimum and maximum eigenvalues of the diffusivity
tensor, respectively. Even though the anisotropy in the new diffusivity tensor
is considered, this penalty factor returns excessive values whenever λ2

M

λm
is large.

It is possible to find sharper bounds for µ when anisotropy is very large.
The penalty factor must be chosen so that the bilinear form a(C, τ) is coercive,
i.e., there exists a positive constant c1 such that:

c1‖C‖2S ≤ a (C,C)

≤
∑
e

∫
Ωe

∇C · κ · ∇C dΩ − 2
∑
k

∫
γk

{n · κ · ∇C}[[C]] dΓ

+
∑
k

∫
γk

µ[[C]]2 dΓ, (2.11)

where τ has been replaced by C in equation (3.7) and the norm assiocated to
the Broken Sobolev space is ‖C‖2S =

∑
e

∫
Ωe
‖∇C‖2 dΩ +

∑
k

∫
γk

[[C]]2 dΓ. As
the aim is to ensure the coercivity, a (C,C) must be limited by something that
is smaller. Using the arithmetic-geometric mean inequality −2αβ ≥ −ε−1

Y β2 −
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α2εY with the strictly positive scalar εY , the equation becomes:

a (C,C) ≥
∑
e

∫
Ωe

∇C · κ · ∇C dΩ − 1
εY

∑
k

∫
γk

{n · κ · ∇C}2 dΓ

+
∑
k

∫
γk

(µ− εY )[[C]]2dΓ, (2.12)

where α has been replaced by [[C]] and β by {n · κ · ∇C}. Using the geometric
law (m+ + m−)2 ≤ 2(m+)2 + 2(m−)2 , the second term can be bounded as
follows:∑
k

∫
γk

{n · κ · ∇C}2 dΓ ≤ 1
2
∑
k

∫
γk

((
n ·
(
κ · ∇C

)−)2
+
(
n ·
(
κ · ∇C

)+)2
)
dΓ,

where the signs (·)+ and (·)− refer respectively to the values of the variable on
the left- and right-hand sides of the interface. In order to bound the diffusivity
tensor, κ is considered constant on each element so that:

∑
k

∫
γk

{n · κ · ∇C}2 dΓ ≤ 1
2
∑
k

(
||n · κ−||2

∫
γk

||∇C−||2dΓ (2.13)

+ ||n · κ+||2
∫
γk

||∇C+||2dΓ
)
.

The trace inequality (Warburton and Hesthaven, 2003):

∀γk ∈ Ωe
∫
γk

P 2dΓ ≤
∫
Ωe

cs
Ak
Ve
P 2dΩ, (2.14)

where cs = (Op + 1)(Op + d)
d

and Op is the number of degrees of freedom of
the polynomial P , is now used. Since Op is related to the gradient of the

tracer concentration, it is equal to Dp− 1 and thus cs = Dp(Dp − 1 + d)
d

. The
inequality (2.13) can then be written as:

∑
k

∫
γk

{n · κ · ∇C}2 dΓ ≤ cs
2
∑
e

(∑
k∈e

Ak
Ve
||n · κ||2

)∫
Ωe

||∇C||2 dΩ.(2.15)

Moreover, the first part of the inequality (2.11) can be bounded as follows:∫
Ωe

∇C · κ · ∇C dΩ ≥
∫
Ωe

λm||∇C||2 dΩ. (2.16)
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Using the inequalities (2.15) and (2.16), the bilinear form can be written as:

a (C,C) ≥
∑
e

(
λm −

cs
2εY Ve

∑
k∈e

Ak||n · κ||2
)∫

Ωe

||∇C||2 dΩ

+
∑
k

(µ− εY )
∫
γk

[[C]]2dΓ. (2.17)

In order to ensure the coercivity a(C,C) > c1||C||2S , two conditions are re-
quired: 

µ− εY = c1 > 0,
λm −

cs
2εY Ve

∑
k∈e

Ak||n · κ||2 ≥ 0.

These conditions are satisfied if µ is chosen such as:

µ > εY ≥
cs

2λmVe

∑
k∈e

Ak||n · κ||2.

In order to correctly understand the meaning of this new penalty factor, an
idealized case is considered. On the one hand, the mesh is supposed to be
aligned with the axes and the horizontal faces are larger than the vertical ones.
On the other hand, the vertical diffusivity is chosen smaller than the horizontal
one so that Ak||n · κ||2 is constant. Ideally, the same penalty factor must be
used on both kinds of face. For the horizontal faces, the minimum eigenvalue
λm is introduced:

µH = cs
2λmVe

n0AHλ
2
m

= cs
2Ve

n0AHλm. (2.18)

This expression reveals that this penalty factor will introduce less numerical

diffusion since the ratio λ2
M

λm
disappears. Thus, it will be well adapted to the

anisotropic situations. Besides, for the vertical faces, the penalty factor is:

µV = cs
2λmVe

n0AV λ
2
M ,

which exactly corresponds to the penalty factor suggested by Rivière (see equa-
tion (2.10)). In this last case, the factor will still return excessive values, which
will lead to too much numerical diffusion.

2.4.2 Oriented penalty factor
As the factor µ penalizes the jump of the concentration tracer C over the
edge of an element, a natural approach to estimate the penalty factor for an
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anisotropic diffusivity tensor is to consider its normal component on both sides
of the interface of the elements Ern et al. (2008). In order to build such a
penalizing term, the coordinate system is aligned with the principal axes of the
diffusivity tensor and Ω is expressed in another reference frame Ω′. So that
the coercivity criterion is satisfied, equation (2.12) is also used:

a (C,C) ≥
∑
e

∫
Ωe

∇C · κ · ∇C dΩ − 1
εY

∑
k

∫
γk

{n · κ · ∇C}2 dΓ

+
∑
k

∫
γk

(µ− εY )[[C]]2dΓ.

With the geometric law 2(m+)2 + 2(m−)2 ≥ (m+ + m−)2, the integral in the
second term of the right-hand side can be bounded as:

−
∫
γk

{n · κ · ∇C}2 dΓ ≥ −
∫
γk

{(
n · κ · ∇C

)2}
dΓ,

and the inequality becomes:

a (C,C) ≥
∑
e

∫
Ωe

∇C · κ · ∇C dΩ − 1
εY

∑
k

∫
γk

{(
n · κ · ∇C

)2}
dΓ

+
∑
k

∫
γk

(µ− εY )[[C]]2dΓ. (2.19)

Since the diffusivity tensor in the first term in the right-hand side is symmetric
positive definite, it can be diagonalized:∫

Ωe

∇C · κ · ∇CdΩ =
∫
Ωe

∇C · U · λ1/2 · λ1/2 · U · ∇C dΩ, (2.20)

where the unit tensor U describes the rotation that aligns the reference frame
with the eigenvectors and λ is the diagonal tensor scaled by the corresponding
eigenvalues λi (i = 1, 2, 3). The other terms of the equation can be transformed
accordingly: 

∇′C = ∇C · U · λ1/2,

n′ =
λ1/2·U ·n
||λ1/2·U ·n|| ,

J ′ =
√
λ1 λ2 λ3.

Note that the symbol ′ indicates that the variable is expressed in the modified
coordinate system. With this frame change, the equation (2.20) can thus be
expressed as: ∫

Ωe

∇C · κ · ∇C dΩ = J ′
∫
Ω′e

∇′C · ∇′C dΩ′.
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Using the trace inequality (2.14) in the reference frame Ω′, this equation can
be bounded as:∑

e

∫
Ωe

∇C · κ · ∇C dΩ ≥
∑
k

J ′ V ′e
cs A′k

∫
γ′

k

(∇′C · n′)2 dΓ′, (2.21)

where V ′e is the element volume and A′k is the face surface in the reference
frame Ω′. Some terms can be expressed in the initial coordinate system:

V ′eJ
′ = Ve,

1
Ak

∫
γk

· dΓ = 1
A′kS

′S
′
∫
γ′

k

· dΓ′ with S′ = dΓ
dΓ′ ,

so that the inequality (2.21) becomes:

∑
e

∫
Ωe

∇C · κ · ∇C dΩ ≥
∑
k

Ve
cs Ak

∫
γk

(∇′C · n′)2 dΓ.

Eventually, the squared term can be rotated in the usual reference frame Ω so
that:

(∇′C · n′)2 =
(
∇C · U · λ1/2 ·

U · λ1/2 · n
||λ1/2 · U · n||

)2

=
(
∇C · κ · n

)2
||λ1/2 · U · n||2

=
(
∇C · κ · n

)2(
n · κ · n

) .

With this formulation, the bilinear form is bounded as follows:

a (C,C) ≥
∑
k

∫
γk

2
n0csAk

{
Ve

(
∇C · κ · n

)2(
n · κ · n

) }
dΓ

− 1
εY

∑
k

∫
γk

{(
∇C · κ · n

)2 }
dΓ +

∑
k

(µ− εY )
∫
γk

[[C]]2dΓ

≥
∑
k

∫
γk

{( 2Ve
n0csAk

1(
n · κ · n

) − 1
εY

) (
∇C · κ · n

)2}
dΓ

+
∑
k

(µ− εY )
∫
γk

[[C]]2dΓ.
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In order to ensure the coercivity a(C,C) > c1||C||2S , two conditions are re-
quired: 

µ− εY = c1 > 0,
2Ve

n0csAk

1(
n · κ · n

) − 1
εY
≥ 0.

These conditions are satisfied if µ is chosen such as:

µ > εY >
Akcsn0

2Ve
n · κ · n,

and this corresponds to the oriented penalty factor. In the same way as for the
eigenvalue factor, both kinds of face and then diffusion are studied. For the
large horizontal surfaces of the element, and thus smaller diffusion, the penalty
factor can be written as:

µH = csn0

2
AH
Ve

λm,

which matches the eigenvalue factor for the same case (equation (2.18)). For
the vertical faces, the oriented factor becomes:

µV = csn0

2
AV
Ve

λM .

In this case, the ratio λ2
M

λm
also disappears. The oriented penalty factor seems

the most appropriate since it will introduce less numerical diffusion. It will
now be compared numerically with the eigenvalue penalty factor.

2.4.3 Eigenvalue penalty factor vs oriented penalty factor
In this section, both penalty factors are compared in an oceanic simulation
using SLIM and an unstructured mesh. The aim of this experimentation is on
the one hand, to illustrate the effects of the penalty factors on the numerical
solution and on the other hand, to intuitively understand their differences. A
square mesh of 100km side is considered with 50 vertical layers on a total depth
of 200m. To compare the simulations with an analytic solution (Spivakovskaya
et al., 2007), the isopycnals are supposed to have uniform slopes and to be
equally spaced. Hence, the diapycnal vector ν is constant. Then, the isopycnal
tensor is constant and an analytic solution of this boundary value problem can
be found:

Ch(X, t) =
exp

(
−
X · κ−1 ·X

4t

)
(4πt) 3

2

√
det
(
κ
) ∀t > 0,
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where AI = 1000 [m2/s] in the tensor κ of equation (3.4). The analytic concen-
tration field at t = 1 day is used as initial condition C(X, 0) to replace the delta
Dirac function since this function cannot be computed numerically. The tracer
only undergoes isopycnal diffusion and a DIRK (Diagonally Implicit Runge-
Kutta) semi implicit time integration is chosen (Ascher et al., 1997). With the

x
z
6-

Figure 2.2: Vertical cross-section of a gaussian tracer field Cr(X, t = 20∆t) with
a time step ∆t of 1000 seconds when the eigenvalue (left-handside) and oriented
(right-handside) penalty factors are used.

eigenvalue penalty factor, the result appears smoothed on the left-handside of
the Figure 2.2, which is a vertical cross-section of the tracer field after 20∆t
of 1000 seconds, and no strong jump is observed. But even with the new for-
mulation of the penalty factor of Rivière µ ∼

∑
k∈e

Ak||n · κ||2, the eigenvalue

penalty factor is still too large and induces too much numerical diffusion. In-
deed, with the anisotropy of both mesh and diffusivity, it varies in the range
of
[
2 · 104, 1010]m/s. In the case of the oriented penalty factor, the value of

the oriented penalty factor is much smaller than previously, i.e. in the range of[
2 · 10−3, 103]m/s. Nevertheless, the numerical solution on the right-handside

of the Figure 2.2 reveals large jumps. Even though the numerical solution ob-
tained with the eigenvalue penalty factor looks smoother, the numerical error
resulting from this approach is larger than the error made using the oriented
penalty factor. Indeed, too much numerical diffusion in this scheme should be
induced and that could distort the solution. When both figures are compared
at the same time step, Co(X, t) has been less diffused since it has larger values
than Cr(X, t). In order to choose the better penalty factor, the L2 error, which
is defined as ‖Ch − C‖2L2

=
∫

Ω
(Ch(X, t1) − C(X, t1))2dΩ where t1 refers to

the time evolution, is computed for each penalty factor. Figure 2.3 shows that
the L2 error of the oriented penalty is lower than the error of the eigenvalue
penalty factor. That means that the oriented factor, which stabilizes enough
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the numerical scheme, does not induce too much diffusion, contrary to the
eigenvalue penalty factor. This leads us to choose the oriented penalty fac-
tor and to pursue the numerical analysis with this one. In large-scale oceanic

Eigenvalue

Oriented

Figure 2.3: Study of the L2 error when the eigenvalue and oriented penalty factors
are used.

models, the minimum-maximum principle is often violated (Cox, 1987; Harvey,
1995). Hence, the tracer concentrations can be negative, which leads to a local
undershooting of this tracer. This situation produces unphysical water masses
that can be transported and diffused in the world ocean. The monoticity could
be discussed as in Mathieu and Deleersnijder (1998) where under/over-shoots
are highlighted. But, as the diffusion is strongly anisotropic, only one property
on the coercivity and the moniticity can be satisfied. Considering that the
observed undershoots in the oceanic simulations are quite small, i.e. around
10−9[K], the coercivity property is selected.

2.5 Comparison with the method of manufactured
solutions

In order to know if the oriented penalty factor is well suited numerically, the
spatial convergence is investigated. Specifically, the Method of Manufactured
Solutions (MMS) allows to verify the code accuracy. A source term is added
to the equation such that the analytic solution is known but non-trivial. Here,
a simple anisotropic bidimensional diffusion equation is considered:

F (C) = γ
∂2C

∂x2 + α
∂2C

∂y2 = 0, (2.22)
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where the constant diffusion α = 10−3m2/s and γ = 1m2/s so that the
anisotropy of the diffusion ε = 1000. First, an arbitrary manufactured solution
is chosen as:

CM (X) =
exp

(
−β
τ

[
x2

γ
+ y2

α

])
4πτ√αγ ,

where the constant β = 10−8 and the fictional time τ = 5 seconds. Then, we
add F (CM ) = S as a source term of Eq. (2.22) and CM as boundary condition:

F (C) = S X ∈ Ω,
C = CM X ∈ ∂Ω.

By construction, the analytic solution of this problem is C = CM . The error of
the numerical solution is an indicator of the quality of the numerical method
and allows to estimate the performance of the penalty factors. The domain
geometry is a square of 100km side. Several meshes generated with the GMSH
software (Geuzaine and Remacle, 2009; Lambrechts et al., 2008) are considered
to study the spatial convergence. They are composed of quadrilateral elements
with side lengths lx and ly linked by this relation: ly =

√
γ/αlx, so that in the

space x′ = x, y′ =
√
γ/αy, the diffusivity tensor, the solution and the mesh

are isotropic. Next, the domain is rotated in order to slightly misalign the ele-
ments and the main diffusion axes which stay along the coordinate axes. The
rotation angle ω is taken as 0̊ , 0.5̊ and 1̊ since the oceanic density slope does
not exceed 0.01.

In a first phase, the spatial convergence is computed with the norm of the
L2 error defined as:

‖Ch − CM‖2L2
=
∫

Ω
(Ch(X)− CM (X))2dΩ.

The following penalty factors are studied:

• Rivière : µR = cs max
(∑

k∈eAk

2Ve

)
λ2
M

λm
,

• eigenvalue : µE = cs max
(∑

k∈eAk||n · κ||2

2Ve

)
1
λm

,

• oriented : µO = cs
n0Ak

2 min(Ve)
n · κ · n.
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Figure 2.4: Comparison of the norms of the L2 error when the eigenvalue, oriented
and Rivière penalty factors are used for the method of manufactured solutions at the
order p = 1 and for two rotation angles ω = 0− 1̊ . In both cases, the minimum norm
of the L2 error shows that the oriented penalty factor is more appropriate, especially
at coarse resolution.

and their spatial convergence is illustrated in Figure 2.4 for the order p = 1
and the rotation angles ω = 0̊ , 1̊ . As expected, the L2 errors are smaller
when there is no misalignement between the diffusion and the mesh. At coarse
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resolutions, the oriented penalty factor has a smaller error than the other fac-
tors, whereas they converge in the same way at the finest resolutions. Besides,
the lines for the Rivière and eigenvalue penalty factors cannot be distinguished.

In Figure 2.5, the spatial convergence is illustrated when there is no rota-
tion angle and the orders 1 to 4 are considered. The lines for the Rivière and
eigenvalue penalty factors still cannot be distinguished. At coarse resolution,
the error when the oriented penalty factor is used is smaller for the odd orders,
whereas it is comparable to the other penalty factor for the even orders. But
at fine resolution, the error for the oriented penalty factor is lower. In all cases,
there is no major difference in the errors obtained by the different penalty fac-
tors.

However, the main reason for this investigation was not the accuracy of the
solution but the fact that the linear system arising from the Rivière approach
is not able to solve the problem. Indeed, with the Rivière penalty factor, the
system often crashed at the first time step. In reality, we expect to have a
well-conditioned system when the penalty factor is small. For a linear system
Ax = B, the condition number defined as η = ||A|| · ||A−1|| allows to give a
measure of the accuracy of the system. If the matrix is symmetric, η = σM

σm
,

where σm and σM are the minimum and maximum eigenvalues of the system
matrix A, respectively. Indeed, the convergence of the iterative methods de-
pends on the cluster of the eigenvalues of the system. The more η is closed to
1, the more the system is well-conditioned and thus easy and faster to solve.
Moreover, the square-root of η gives the number of iterations required to solve
the system.

The three penalty factors have been studied at the order p = 1 and for the
rotation angles ω = 0̊ , 0.5̊ , 1̊ . Table 2.2 gives the eigenvalues of the system
matrix and the condition number η for each case. When the Rivière penalty
factor is used, σm cannot be found because the system cannot converge. In
order to point out this state, the symbol † has been used and σm has been re-
placed by the value computed with the oriented method since it does not vary
with the method or the rotation angle. But it decreases with the resolution.
Moreover, σM is independent of the mesh resolution, and for the Rivière and
eigenvalue penalty factors, it is also independent of the rotation angles. For
the oriented penalty factor, σM increases quadratically with the angle rotations.

For the orders 1 to 4 and the rotation angles ω = 0̊ , 1̊ , Table 2.3 gives
the eigenvalues of the system matrix and the condition number η, when the
oriented penalty factor is used. As previously, σM increases with the rotation
angle, whereas σm remains the same. With the resolution, σM does not change
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Table 2.2: Study of the condition number η at the order 1 for each penalty factor
(O: oriented, R: Rivière and E: eigenvalue penalty factor) and three rotation angles
(ω = 0̊ , 0.5̊ , 1̊ ). The symbol † indicates when the value cannot be found because the
system cannot converge. In this case, σm has been replaced by the value computed
with the oriented method in order to compute η.



2.5. Comparison with the method of manufactured solutions 41

p
=

1
p

=
2

p
=

3
p

=
4

l x
[m

]
ω

=
0̊

ω
=

1̊
ω

=
0̊

ω
=

1̊
ω

=
0̊

ω
=

1̊
ω

=
0̊

ω
=

1̊
σ
m

0.
00

41
0.

00
41

0.
00

20
0.

00
19

0.
00

12
0.

00
11

0.
00

07
4

0.
00

07
4

25
00

0
σ
M

0.
19

0.
22

0.
24

0.
30

0.
61

0.
72

1.
5

1.
7

η
44

53
12

0
16

0
54

0
64

0
20

00
20

00
σ
m

0.
00

02
9

0.
00

02
9

0.
00

01
3

0.
00

01
3

7.
4e

-5
7.

4e
-5

4.
7e

-5
4.

7e
-5

62
50

σ
M

0.
19

0.
23

0.
24

0.
30

0.
62

0.
73

1.
5

1.
7

η
65

0
77

0
18

00
23

00
84

00
99

00
3.

2e
4

3.
7e

4

Table 2.3: Study of the condition number η for the order p = 1, 2, 3, 4 and the
rotation angles ω = 0̊ , 1̊ when the oriented penalty factor is used.
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Figure 2.5: Comparison of the norms of the L2 error when the eigenvalue, oriented
and Rivière penalty factors are used for the method of manufactured solutions without
any rotation and for four orders (p = 1, 2, 3, 4). At the even orders, the oriented
penalty factor converges faster.

but σm decreases. In regard to the order, σM increases with the order and σm
decreases in such a way that η becomes larger. This is consistent since there
are more nodes in an element but the stabilization remains the same. Actually,
the same properties than previously can be observed for the other methods.
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Besides, the following relations can be established for each method and for
each order:

• p = 1 : σRM ≈ 30σEM ≈ 30 ∗ 250000σOM ,

• p = 2 : σRM ≈ 30σEM ≈ 30 ∗ 15000 σOM ,

• p = 3 : σRM ≈ 30σEM ≈ 30 ∗ 5000 σOM ,

• p = 4 : σRM ≈ 30σEM ≈ 30 ∗ 5 σOM ,

where the superior index gives the method used. The relationship between the
σM from the Rivière and eigenvalue methods remains the same regardless of
the order but it becomes closer from σM computed with the oriented method
when the order increases.

In the aim of a complete numerical analysis, larger rotation angles were
taken into account in order to simulate larger anisotropies. In Figure 2.6,
the spatial convergence at the order 1 is illustrated for the rotation angles
ω = 10̊ − 20̊ . For each case, the lines for the Rivière and eigenvalue penalty
factors cannot be distinguished, as previously. Unlike the small rotation angles,
the difference between the norms of the L2 error for he Rivière and eigenvalue
penalty factors and for the oriented penalty factor is much larger when coarse
meshes are used. Indeed, the three lines match further and further when the
rotation angle increases. For the oriented penalty factor, the convergence order
is reached quite fastly for ω = 10 .̊ For ω = 20 ,̊ the asymptotic regime is also
achieved but with finest meshes. For larger angles, the convergence will cer-
tainly be reached but the meshes need to be finer and the asymptotic regime
is not really feasible for these cases. However, these large rotation angles re-
quire finest meshes which is not practicable for efficient simulations since such
resolution take too much computational time.

To conclude, the oriented method has a better spatial convergence at coarse
resolutions, which is the case for the oceanic meshes and is not worse than the
other methods for the finest resolutions. But in terms of efficiency, it gives the
better condition number whatever the order. The oriented penalty factor allows
to have a well-conditioned system that can be solved rapidly. Its eigenvalues for
the system matrix can always be found for all the orders, which is not the case
with the Rivière and the eigenvalue methods. The oriented penalty factor is
thus the most appropriate to solve problems with strong anisotropic diffusion.
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Figure 2.6: Comparison of the norms of the L2 error when the eigenvalue, the
oriented and the Rivière penalty factors are used for the method of manufactured
solutions at the order 1 and for larger rotation angles: ω = 10̊ (top) and ω = 20̊
(bottom).

2.6 Physical application

To complete this study, a more realistic simulation is achieved on an idealized
Arctic Ocean. This area is well adapted to investigate the strongly anisotropic
diffusion since the density field undergoes high variations. Even if this diffu-
sion is non-constant in the time and in the space and thus that, no convergence
study will be possible, this application allows to highlight the importance, on
the one hand, of a well-conditioned system and on the other hand, of less nu-
merical diffusion that could distort the solutions. The isopycnal diffusion mixed
the tracers along the isopycnals due to the presence of the mesoscale eddies.
Mesoscale eddies, which have length scale from 75 to 200 km, are found almost
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everywhere in the ocean. Their kinetic energy is much larger than that of the
time-average circulation. They are formed as a result of instabilities and are
highly influenced by the rotation of the Earth; they stir and mix the salt and
other tracers, transport quantities and influence the density field and the gen-
eral ocean circulation (Rhines, 2009).

Iselin (1939) and Montgomery (1940) suggested that the mixing of tracers
by mesoscale eddies in the stratified ocean mainly occurs along the surfaces of
constant density, i.e., the isopycnals. It appears that some smaller processes
also mixed the tracers but orthogonally to the isopycnals, so that these surfaces
are called diapycnals. Even with its small magnitude, the diapycnal diffusion
should also be taken into account in the parameterization of the mesoscale ed-
dies. This situation creates a strong anisotropy in the diffusion tensor. In order
to model the effects of this anisotropic turbulence and transport along and ac-
cross isopycnals, Redi (1982) considered a new isopycnal mixing tensor where
the main axis of diffusivity have been rotated from the standard cartesian coor-
dinates towards any direction where there is a density gradient. The isopycnal
diffusivity operator is then built as a non-linear function of the active tracer
concentrations since the diffusion operator depends on the density which, in
turn, is a function of salinity and temperature (Gent and McWilliams, 1990).
McDougall (1987) emphasizes that the neutral directions are relevant for the
diffusive fluxes of the tracers (Figure 2.7) . Gent and McWilliams (1990) sug-

PP
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���

Figure 2.7: Both pictures represent a vertical cross-section of a density field where
each color is associated to one density value. The isopycnal direction corresponds to
the direction of isopycnals. Hence, an isopycnal diffusivity occurs along the surfaces
of constant density (left), whereas the diapycnal one takes place orthogonally to these
surfaces (right).

gested that the effects of mesoscale eddies can be taken into account by means
of a special closure in ocean models. These eddies are likely generated by
baroclinic instability of the mean flow, getting their energy from the enormous
potential energy reservoir linked to horizontal density contrasts (Gill et al.,
1974). The available potential energy is then reduced by the parameterization,
as if it was transformed into kinetic energy. But, eddy kinetic energy is not
resolved by models that need this closure. This extra non-divergential velocity,
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called the Gent-McWilliams velocity, yields some improvements in climate sim-
ulations since it relaxes the density slopes and thus releases potential energy
(Griffies, 1998).

To observe the effects of the Gent-McWilliams velocity and isopycnal dif-
fusion on a closed domain, a cylindrical geometry modelling the upper central
Arctic Ocean, with a 200m depth and a radius of 10̊ of latitude, is meshed with
30 layers of prismatic elements whose horizontal characteristic length is about
105m. The temperature and salinity are initialized on this mesh using the PHC
data (Polar science center Hydrographic Climatology Steele et al. (2001a)). In
order to remove the effects of compressibility of the ocean water, the consid-
ered parcel of water is raised adiabatically from its depth to the sea surface
(p = 0) before computing the density, which in this case is called potential
density. The latter is obtained from the Jackett and McDougall (McDougall
et al., 2006) equation of state:

ρ(S, ϑ, p) = P1(S, ϑ, p)
P2(S, ϑ, p) ,

where ϑ is the potential temperature and P1, P2 are both polynomial functions
of 12 and 13 terms, respectively. Since the potential density field is used in a
realistic application, some static instabilities can appear during the simulation.
Hence, when a parcel of water with a potential density ρ1 is below another par-
cel of potential density ρ2 such that ρ1 < ρ2, the column of water is unstable.
In nature, convective processes quickly re-establish the static stability of the
column. Since these processes are not included into the ocean model because
of the hydrostratic assumption, a convective adjustment scheme is added to
counteract these undesirable effects (Marotzke, 1991). Various techniques can
be used such as a non-penetrative convective adjustment, a turbulent closure
scheme or an enhanced vertical diffusion. In this work, the latter is used in
the tracer equation. It consists in enlarging the vertical diffusivity coefficient
to 1 [m2/s] when the stratification is unstable, i.e., when the Brunt-Väısälä
frequency N2

b is negative (Madec and team, 2008).

The tracer equation with both advection and diffusion terms is now consid-
ered:

∂C

∂t
+∇ · (ued C) = ∂

∂z

(
νv
∂C

∂z

)
+∇ ·

(
κs · ∇C

)
,

where ued is the Gent-McWilliams velocity, νv the scalar vertical diffusion coef-
ficient that can be enhanced by the convective adjustment and κs the isopycnal
diffusivity tensor. The vertical diffusivity decreases with depth from 10−3m2/s
to 10−5m2/s over the upper 200m. In Figure 2.8, the initial states are in the
left column, while the states after 520 days are in the right column. Note
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(a0) (a1)

(b0) (b1)

(c0) (c1)

Figure 2.8: (a0) Initial condition of the tracer S [psu]; (b0) initial condition of the
tracer T [̊ C]; (c0) potential density computed with the equation of state ρ = ρ(S, T, p)
[kg/m3]; (a1) tracer S after 520 days [psu]; (b1) tracer T after 520 days [̊ C]; (c1)
potential density after 520 days [kg/m3].

that the range of each tracer at the initial time differs from the range at the
final time. As the density field is created from temperature and salinity, it is
influenced by them during the tracers evolution. But, as the domain is situ-
ated in the Arctic, and thus in a cold area, the density is more influenced by
salinity than by temperature. Both temperature and salinity are diffused in
order to align themselves along the isopycnals. But as the temperature has
an initial field much more different than the salinity, it evolves faster. In-
deed, the relative difference between the initial and the final maximum values
is around 1.06[c̊ ] for temperature, whereas it is around 0.09[psu] for salinity.
As expected, each tracer tends toward its mean value in the time. In fact,
their minimum and maximum values increase and decrease respectively, which
means that the minimum-maximum principle is kept.
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The Gent-McWilliams velocity obtained at the end of the simulation is
shown in Figure 2.9. Even if its maximum value is quite small, this velocity
really has an impact on the global oceanic circulation but in the long run.
As expected, the velocity field never crosses the boundaries of the domain

0

2e-6

(a) (b)

Figure 2.9: Gent-McWilliams velocity [m/s] after 520 days at the surface (a) and
its norm on the whole domain (b).

(Fig.2.9.(a)) since it is a divergence-free velocity. A small closed circulation
is thus created and can be easily observed. On the front of the middle of
the domain in Figure 2.9.(b), the velocity is larger than in other places. This
situation points out that the spatial variation of the density is strong at this
place (see Figure 2.8). Furthermore, this velocity tends to reduce the slope of
the density field (Fig.2.8.(c1)) where the isopycnals have been flattened and
smoothened. Finally, all these features show that both isopycnal diffusion and
Gent-McWilliams velocity significantly influence the large-scale transport of
the oceanic tracers, as discussed by Cox (1987); Gent and McWilliams (1990);
Gent et al. (1995). We conclude thus that the discretization of this strong
anisotropy isopycnal diffusion with DGFEM is ready for further more complex
simulations within the framework of SLIM.

2.7 Concluding remarks

In this chapter, the discretization of a diffusion equation with a strong anisotropy
by a discontinuous Galerkin finite element method is investigated. The stan-
dard discontinuous Galerkin discretization required a special attention to the
penalty factor in order to deal correctly with the jumps between the elements
and ensure the numerical stability.

Two penalty factors have been proposed and compared. On the one hand,
the penalty factor suggested by Rivière is a function of the anisotropy factor and
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can sometimes be very large. In this case, the numerical solution is too much
diffused and thus more approximate. This penalty factor was then improved
and renamed eigenvalue penalty factor. On the other hand, in order to take
into account the diffusion in the direction normal to the interface between the
elements, the oriented penalty factor is defined by rotating the system to align
it with the principal axes of the diffusivity tensor. When strong anisotropy
exists in the diffusivity tensor, we suggest a particular value.

The comparison between both factors shows that the oriented factor pro-
vides less numerical diffusion than the eigenvalue factor and still stabilizes
enough the numerical scheme. Moreover, the method of manufactured solu-
tions revealed that the oriented penalty factor has a better spatial convergence
at coarse resolutions, which is the case for the oceanic meshes. But, in terms
of efficiency, it gives the best condition number whatever the order, and thus
allows to have a well-conditioned system that can be solved rapidly. Finally,
this factor is used in a physical application (an idealized Arctic Ocean) where
the density field can undergo large variations. Hence, the main features of
the isopycnal diffusion as well as that of the Gent-McWilliams velocity are ob-
served: the tracers tend to follow the isopycnals and the slopes of the density
field are progressively reduced.

To the best of our knowledge, it is the first time that a strong anisotropic
diffusion is discretized with the DGFEM. The numerical simulations carried
out show that the choice of the oriented penalty factor is well-adapted to this
anisotropy and the conclusions from the physical application goes on the same
track. Next work will be devoted to the inclusion of the isopycnal diffusion in
the complete three-dimensional oceanic model SLIM where all the governing
equations are considered. In this study, the impacts of the mesoscale eddies will
be analyzed on the long run. Such a study will allow a better understanding
of these complex and still not well-known processes.
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Gent-McWilliams velocity and

isopycnal diffusion

This Chapter is based on the following paper, submitted on 23 March 2015:
A. Pestiaux, S.A. Melchior, P. Delandmeter, T. Fichefet and E. Deleersnijder.
Gent-McWilliams velocity and isopycnal diffusion in a discontinuous Galerkin
finite element ocean model. Ocean Dyn..

Abstract

Isopycnal diffusion has formerly been investigated in a discontinuous Galerkin
finite element ocean model through idealized numerical experiments. Here,
the Gent-McWilliams velocity and the isopycnal diffusion are evaluated within
the framework of a proper ocean model study. Due to the discontinous dis-
cretization, special care is required to deal correctly with the penalty terms
and their physical developments. The mass fluxes due to unresolved processes
are represented by means of a diffusivity tensor. The Gent-McWilliams ve-
locity computed from the antisymmetric part of this tensor is included in the
advective term of the tracer equation. In order to ensure a vanishing trans-
port on all the domain boundaries, a one-dimensional boundary-value problem

51
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is taken and is seen to be well suited to our model thanks to the application
to an idealized channel. On the other hand, the symmetric part of the dif-
fusivity tensor, which represents the diapycnal and isopycnal diffusions, has a
strong anisotropy that is due to the discrepancy between the order of magni-
tude of the associated diffusivities and the related length scales. To stabilize
the dgFEM numerical scheme, the oriented penalty term investigated in the
previous study is selected. To highlight this methodology in the framework of
the ocean model, the evolution of a tracer concentration distribution initialized
as a Gaussian is studied in a inclining density field. Next, the spurious flux in
the diapycnal direction appears to be negligible as compared with the existing
diapycnal diffusivity.

3.1 Introduction

Mesoscale oceanic eddies, which have a length scale ranging from 10 to 200 km,
have a kinetic energy which is much larger than that of the general circulation.
The transfer of energy to the mesoscale eddies from the general circulation
is largely a consequence of barotropic and baroclinic instabilities, which take
place in most of the World Ocean. They are highly influenced by the rotation of
the Earth. They stir and mix salinity and temperature as well as other tracers
and, by doing so, influence the density field. They play a role in the general
ocean circulation by transporting mass, heat and momentum (Rhines, 2009).

Due to insufficient spatial resolution, the above mentioned eddies cannot be
resolved explicitly in oceanic general circulation models used in climate stud-
ies. Therefore, parameterizing their effects is necessary even though this can be
computationally expensive. Indeed, parameterizing mesoscale processes signif-
icantly improves the accuracy of simulations, e.g., the global temperature and
salinity distributions, the heat fluxes and the locations of deep water formation
(Danabasoglu et al., 1994; Danabasoglu and McWilliams, 1995).

Over half a century ago, Iselin (1939) and Montgomery (1940) suggested
that the mixing of tracers by mesoscale eddies in the stratified ocean occurs
along isopycnals, i.e. surfaces of constant density. In order to model the effects
of this anisotropic turbulence and transport along and accross isopycnals, Redi
(1982) considered a new isopycnal mixing tensor where the main axis of diffu-
sivity have been rotated from the standard cartesian coordinates towards any
direction where there is a density gradient. The isopycnal diffusivity operator
is then built as a non-linear function of the active tracer concentrations since
the diffusion operator depends on the density which, in turn, is a function of
salinity and temperature (Gent and McWilliams, 1990). In addition to isopyc-
nal diffusion, physical diapycnal diffusion occurs in the direction orthogonal to
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the isopycnals, and since the isopycnals are gently sloping, this situation leads
to anisotropy because of the much weaker magnitude of the diapycnal diffusion.
The isopycnal-diapycnal diffusion operator, initially used by Redi, differs thus
fundamentally from isotropic and homogeneous diffusion since the associated
diffusivity tensor is neither diagonal nor constant. McDougall (1987) empha-
sizes that the isoneutral directions, i.e. along the surfaces of constant potential
density1 σr at a particular depth r, are crucial for the diffusive fluxes of the
tracers.

Gent and McWilliams (1990) suggested that the effects of mesoscale eddies
can be taken into account by means of a special closure in ocean models. These
eddies are likely generated by baroclinic instability of the mean flow, getting
their energy from the enormous potential energy reservoir linked to horizontal
density contrasts (Gill et al., 1974). The available potential energy is then
reduced by the parameterization, as if it was transformed into kinetic energy.
But, eddy kinetic energy is not resolved by models that need this closure. This
extra velocity leads to some improvements in the climate simulations since it
relaxes the density slopes and thus releases potential energy Griffies (1998).

The aim of this study is to include the Gent-McWilliams velocity and
isopycnal diffusion in the Second-generation Louvain-la-Neuve Ice-ocean Model
(SLIM2, White et al., 2008a; Blaise et al., 2010; Kärnä et al., 2012) , which is
a discontinuous Galerkin (DG) finite element ocean model. The finite element
method presents some advantages: it is highly parallelizable and allows for lo-
cal refinement using adaptive meshes; the complex geometries and boundary
conditions are treated in a simpler manner, so that the coastlines or particular
areas of interest are preserved. Even if the mesh is unstructured in the hor-
izontal direction with several layers of triangular prisms, it is also structured
along the vertical and this property allows to preserve the natural stratification
of the ocean. This difference between both directions is well adapted to the
oceanic circulation. In addition, the Discontinuous Galerkin Finite Element
Method (DGFEM) theoretically enables arbitrarily high order-of-accuracy so-
lutions, which are represented in each element independently of the solutions
in other cells, with inter-elements communications only through the interfaces
of adjacent cells. This feature permits the formulation of very compact nu-
merical schemes. A large number of favorable numerical properties make this
method extremely flexible in terms of element variety or adaptive techniques.
Moreover, DGFEM is better adapted for the advection than the Continuous
Galerkin (CG) finite element method, since the numerical fluxes and the slope
limiters can be incorporated easily. The approximate solution also contains

1The potential density is the density that a parcel of water would have if it were raised
adiabatically to the surface without change in salinity.

2http//www.climate.be/slim/
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less numerical dissipation for an equivalent mesh and an optimal dispersion
(Ainsworth, 2004). As a large-scale oceanic model, SLIM requires a mesoscale
eddy parameterization in order to capture the effects of eddies on the resolved
flow, while special attention must be drawn to its DGFEM discretization since
interior penalty terms are introduced to yield a compact scheme. Especially,
the estimation of the penalty factor is required to stabilize the finite element
method (Oden and Kim, 1982). In Wang et al. (2008), the Gent-McWilliams
velocity and isopycnal diffusion terms are already discretized with the CG me-
thod, where their implementation is straightforward since there is no penalty
term. Indeed, the treatment of the penalty terms in DG remains one of the
main difficulties in the improvement of physical processes. In the present work,
the Gent-McWilliams velocity and isopycnal diffusion terms are discretized
with DGFEM in the framework of SLIM. In the first study (Pestiaux et al.,
2014), the strong anisotropic diffusivity tensor associated to the isopycnal dif-
fusion was investigated and validated with some numerical test cases. In this
work, emphasis is put on the oceanic analyses of the isopycnal diffusion and
the Gent-McWilliams velocity. On the one hand, conservation and consistency
properties are seen to be satisfied for both terms. On the other hand, they are
validated with a realistic oceanic application after the study of the spurious
mixing related to isopycnal diffusion discretization.

The paper is organized as follows. The Gent-McWilliams velocity and the
isopycnal diffusion are introduced in Section 2. Their discontinuous finite ele-
ment discretization is described in Section 3. Section 4 investigates the vanish-
ing of the isoneutral flux when the equation of state is linear. Some analytical
and numerical results are presented. Finally, concluding remarks close the
paper in Section 5.

3.2 Equations of the tracer model

The impact of mesoscale eddies is usually parameterized in the equations gov-
erning the evolution of the scalar quantities, which, for the sake of simplicity,
will be often referred to as tracers hereinafter. As a tracer is any fluid prop-
erty used to track flow, there are three general types of ocean tracers: the
tracers representing the concentration of material constituents such as salin-
ity or passive tracers, the tracers representing the thermodynamic properties
such as temperature, and the tracers embodying dynamical properties such as
potential vorticity3. In SLIM, each tracer concentration field C(x, t), typically
the temperature T or the salinity S, satisfies the following advection-diffusion

3The potential vorticity is a quantity which is proportional to the dot product of vorticity
and stratification that, following a parcel of water, can only be changed by diabatic or
frictional processes.
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equation:

∂C

∂t
+∇ · (u C) = ∇ · (κ · ∇C), (3.1)

where u is the velocity resolved by the model and the tensor κ parameterizes
two effects: stirring and mixing, associated to its antisymmetric and symmetric
parts, respectively: κ = κS + κA. The choice to split κ makes sense due to
the special treatement of the strong anisotropy relative to symmetric part in
the framework of the dgFEM. Even if each part represents different physical
processes, both are computed from the density ρ, which is itself a function of
T and S through the equation of state. The symmetric part, which matches
up to diffusivity, mixes the tracer concentration along the isopycnal and diapy-
cnal directions, whereas the antisymmetric part stirs the tracer concentration
without mixing and flattens the isopycnals. Since the antisymmetric tensor κA
has nul eigenvalues, it cannot be treated alone and as it is because it could
lead to an ill-conditioned system. Both parts are detailed in the following sec-
tions. Initial conditions C(x, 0) are supposed to be given and no normal flux
of both temperature and salinity is allowed on the boundary ∂Ω of the domain
Ω ⊂ <d, where d = 3 implying that x = (x, y, z). In this vector, x and y are
the horizontal coordinates whereas the vertical one z increases upwards. The
unit normal n is defined everywhere on the boundary.

3.2.1 Gent-McWilliams velocity
In this section, the antisymmetric part of the mesoscale tensor κ is seen to
be associated with an additional advective term. This transformation is based
on the following assumption: the advection of the density field by the extra
velocity leads to the reduction of the density slope4 s̃ which is obtained from
the density ρ as:

s̃ = [sx, sy] = − ∇hρ
∂ρ/∂z

, (3.2)

and to the reduction of the available potential energy. Griffies et al. (1998)
considered the skew flux which is defined to be perpendicular to the tracer
gradient, i.e., F s = −ψ × ∇C, where ψ is the streamfunction vector. They
proposed to decompose F s into two parts:

F s = (∇× ψ) C −∇×
(
C ψ

)
.

Since the divergence of a curl is always zero, the divergences of the advective
flux (∇×ψ) C and of the skew flux are identical. Hence, the latter is simply the

4The tilde refers to a two-dimensional vector, whereas the underline refers to a three-
dimensional vector.
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product of the tracer concentration with the additional divergence-free Gent-
McWilliams velocity uGM = ∇×ψ (Gent and McWilliams, 1990). In Gent et al.
(1995), the streamfunction is computed as ψ = −AI [sx, sy, 0] × êz, where AI
is the isopycnal diffusivity parameter. As a result, we get:

uGM =
[
− ∂

∂z

(
AIsx

)
,− ∂

∂z

(
AIsy

)
,
∂

∂x

(
AIsx

)
+ ∂

∂y

(
AIsy

)]
.

The interchangeability of the algebraic properties of the cross product implies
that:

∇ ·
(
(∇× ψ) C

)
= −∇ ·

(
ψ ×∇C

)
= −∇ · (κA · ∇C),

where the antisymmetric tensor κA in the (x, y, z) reference frame is:

κA = AI

 0 0 −sx
0 0 −sy
sx sy 0


Hence, equation (3.1) can be re-written as follows:

∂C

∂t
+∇ · [(u+ uGM )C] = ∇ ·

(
κS · ∇C

)
.

3.2.2 The issue of boundary conditions
A recurrent problem in the parameterization of the effects of mesoscale eddies
is to impose correct boundary conditions. The normal component of the pa-
rameterized eddy-induced Gent-McWilliams flux must vanish on all boundaries
(Griffies et al., 1998) because the flux cannot cross the domain boundaries. In-
stead of using the slope (3.2), Ferrari et al. (2010) suggested to approximate
the streamfunction by Ỹ , which can be obtained from the following partial
differential equation: (

c2
∂2

∂z2 −N
2
b

)
Ỹ = g

ρ0
∇hρ (3.3)

Ỹ (η) = Ỹ (−H) = [0, 0],

where Nb =
√
− g
ρ0

∂ρ
∂z is the Brunt-Väisälä frequency, c a depth independent

speed, H is the ocean depth, ρ0 the constant reference density, g the gravita-
tional acceleration and η the ocean surface elevation. Let us notice that when
the derivative of the streamfunction is nul in this problem, the traditional pa-
rameterization for Ψ is recovered instead of Ỹ . A detailed analysis from Ferrari
et al. (2010) shows that the most accurate value for this speed is the first baro-
clinic phase speed c = NbH

π
for the Eady problem (Eady, 1949). In the latter,
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the baroclinic instability is analyzed in a flow on a f -plane with uniform zonal
shear between upper and lower bounding surfaces, using the Boussinesq ap-
proximation to the full fluid equations. With this partial derivative equation,
correct behaviors of the eddies seem to be captured (Ferrari et al., 2010). The
approximation [Ỹ , 0] is then close to ψ = −AI [s̃, 0] × êz except near the sur-
face and the bottom since the transport vanishes by construction. With this
method, an approximation of the Gent-McWilliams velocity is found to be:

uGM ≈ ued = [∂zYx, ∂zYy,−∂xYx − ∂yYy].

Note that this allows avoiding to use additional tapering functions (e.g., Griffies
(2004)), which are introduced when the density slope is too strong in order to
reduce it. None strong modification is then directly applied on the density
field. Even small modifications in the choice of their value imply changes in
the overall ocean circulation (Gnanadesikan et al., 2007). Since no additional
tapering function is required, the present scheme enables us to remain the
closest to the theoretical description of this parameterization.

3.2.3 Isopycnal diffusion
Concerning the symmetric part of the mesoscale tensor, let us define ν = −∇ρ
and create the diapycnal unit vector:

ν̂ = ν

‖ν‖
= [sx, sy,−1]√

s2
x + s2

y + 1
.

The ν̂ vector is important since the flux associated with the anisotropic diffusion
in the ocean is oriented along and across the density slope. The symmetric
diffusivity tensor κS , which is made up of isopycnal and diapycnal parts, can
then be expressed as:

κS = AI(δ − ν̂ ν̂) +AD ν̂ ν̂,

where δ is the Kronecker delta and AI and AD are the positive isopycnal and
diapycnal diffusivities, respectively. Using the local density slope s̃, Redi (1982)
showed that the tensor κS in the (x, y, z) reference frame is:

κS = AI

1 + ‖s̃‖2

1 + s2
y + εs2

x (ε− 1)sxsy (1− ε)sx
(ε− 1)sxsy 1 + s2

x + εs2
y (1− ε)sy

(1− ε)sx (1− ε)sy ε+ ‖s̃‖2

 , (3.4)

where ε = AD

AI
is the ratio of the diapycnal diffusivity to the isopycnal diffusiv-

ity. Moreover, ε is supposed to be small since it is a measure of the relatively
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weak vertical cross-isopycnal mixing. In this study, ε = 10−4

1000 = 10−7 is used.
Cox (1987) suggested the following approximation:

κS = AI

 1 0 sx
0 1 sy
sx sy ε+ ‖s̃‖2

 ,

where high order terms for small values of the slope s̃ and ε are neglected. Note
that Cox originally kept the (1, 2) and (2, 1) terms in the tensor. They are equal
to −sxsy but it appears that these terms induce diffusion that could modify
the buoyancy field, whereas the full neutral diffusivity tensor does not affect
the buoyancy field (Griffies, 2004). Indeed, it does not diffuse locally referenced
potential field, but preserving the neutral directions while diffusing the active
tracers is not obvious and not always feasible. This characteristic, investigated
in section 3.4, means that if the density is used as tracer concentration C in
the tracer equation (3.1), the isopycnal diffusion should not modify the density
at all.

3.3 Discontinuous finite element discretization

A discontinuous finite element method is applied to solve the tracer equation.
Finite element methods involve a double discretization. First, the domain Ω is
discretized into a collection of elements:

Ω ≈ Ωh =
⋃
e

Ωe , ∂Ω ≈
⋃
k

∂Ωk,

which constitute a mesh. This first step is referred to as the geometrical dis-
cretization. In our case, the mesh has a specific structure. A two-dimensional
mesh of the surface of the ocean is created and subsequently extruded in the
vertical direction (Figure 3.1).

Then, the continuous function space where the unknown field C is defined
is replaced by a finite dimensional subspace. On each element Ωe, the solution
is approximated by a polynomial expansion:

C(x, t) ≈ Ch(x, t) =
N∑
j=1

Cej (t) τj(x), x ∈ Ωe, ∀e,

where N is the number of nodes in an element, τj is the shape function relative
to node j and Cej (t) is the degree of freedom relative to node j of element Ωe.
The specificity of DGFEM is that the solution is approximated in each element
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-

Figure 3.1: Triangulation of non-overlapping elements at the surface of the domain
(left) and vertical extrusion in order to create prismatic elements (right).

separately: no a priori continuity requirements are needed. The discrete so-
lution may then be discontinuous at inter-element boundaries. In this paper,
elements Ωe are prisms with vertical faces (Wang et al., 2008) and PDG1 shape
functions, i.e. polynomials of degree 1, are chosen in each element (implying
that N = 6).
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Figure 3.2: Notation used to describe the mesh topology: any interior face γk is
common to adjacent prisms Ωe and Ωe′ .

Discontinuous Galerkin methods require to compute consistent numerical fluxes
at element interfaces in order to satisfy numerical stability conditions. For that,
we use the following notation: γk = Ωe ∩Ωe′ (Figure 3.2) for the inter-element
interfaces. The set of all element interfaces is noted Γ =

⋃
k γk.
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To build a polynomial interpolation on these elements which have the same
topology but different geometries, an isomorphism is established with a refer-
ence element Ω̂ (Figure 3.3).
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Figure 3.3: Isomorphism between the actual geometry (left) and the reference ele-
ment (right).

In each element Ωe, a mapping X(χ) provides the real coordinates in terms
of the reference coordinates χ = (ξ, η, ζ) ∈ Ω̂. All the computations are per-
formed in the reference element. At each integration point, the shape function,
the gradients of the shape function and the Jacobian5 are computed. Finally,
a discrete Galerkin formulation is defined to obtain the values of Cj(t), such
as the DGFEM formulation described below. To reduce the degree of differ-
entiability required by the shape functions, an integration by parts is usually
performed.

The advective part of the tracer equation will be considered separately from
the diffusive part since they are treated with different numerical schemes.

3.3.1 DGFEM formulation of the advective part
The evolution of the tracer concentration with only the Gent-McWilliams ve-
locity obeys the equation:

∂C

∂t
+∇ · (ued C) = 0.

The associated weak formulation can be written as follows:∫
Ω

∂C

∂t
τjdΩ +

∫
Ω

∇ · (ued C) τjdΩ = 0 ∀τj , (3.5)

where τj is the test function. In moving from the domain (Ω) to the elements
of the mesh (Ωe, ∂Ωe), the test functions are chosen to be similar to the shape

5The determinant of the Jacobian matrix which is the matrix of all first-order partial
derivatives of a vector-valued function, is called the Jacobian.
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functions τj . The divergence theorem and integration by parts lead to6:∫
Ωe

∂C

∂t
τjdΩ +

∑
k

∫
γk

n · {ued} C τjdΓ−
∫
Ωe

∇τj · (ued C) dΩ = 0 ∀e,

where {·} is the average value at the interface, such that {ued} = u+
ed + u−ed

2
with u−ed and u+

ed being the velocity at both sides of the boundary across the
element. In ocean models, local consistency must be enforced (White et al.,
2008b). This requires that, if there is no source or sink, a constant tracer
concentration is conserved in a closed domain. Expressing the velocity ued as a
function of the discrete field ψh and setting C = 1, the local tracer consistency
criterion becomes (see appendix A1 for more details):

∑
i

[(
ψ−i y − ψ

+
i y

2

)∫
Ωe

(
∂τi
∂x

∂τj
∂z
− ∂τi
∂z

∂τj
∂x

)
dΩ

+
(
ψ−i x − ψ

+
i x

2

)∫
Ωe

(
∂τi
∂z

∂τj
∂y
− ∂τi
∂y

∂τj
∂z

)
dΩ

]
= 0,

(3.6)

where ψ−i y is the y−component of the streamfunction induced by the eddies
ψ at the node i and at the left-hand side of the interface. It appears that,
if ψh is continuous, the tracer equation is consistent. Thanks to the form of
relation (3.6), this property is also satisfied if Ỹ is continuous. Moreover, the
global tracer conservation is obtained (the details are presented in the appendix
A2). Equation (3.3) is solved implicitly using the Newton’s method in order
to ensure impermeable domain boundaries. Otherwise, the solution would be
a less good approximation.

3.3.2 DGFEM formulation of the diffusive part
The usual Galerkin finite element formulation of the tracer equation without
the advection term and the Gent-McWilliams velocity is:∫

Ω

(
∂C

∂t
−∇ ·

(
κS · ∇C

))
τj dΩ = 0

⇔
∫
Ω

∂C

∂t
τj dΩ = −

∫
Ω

∇τj · κS · ∇C dΩ +
∫
∂Ω

n · κS · ∇C τj dΓ.

To obtain the discontinuous Galerkin (DG) formulation, the integral over the
whole domain Ω is decomposed into the sum of integrals over each element and

6The complete formulation (advection and diffusion) of the dgFEM discretization includes
penalty terms, but here they are not present since only the advective part is present and does
not need to be stabilized.
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the interface term is computed over each face:∑
e

∫
Ωe

∂C

∂t
τj dΩ = −

∑
e

∫
Ωe

∇τj · κS · ∇C dΩ +
∑
k

∫
γk

n · κS · ∇C τj dΓ.

In DGFEM, the weak formulation consists in finding C such as a(C, τ) = b(τ),
where a is a bilinear form and b is a linear form. The right-hand side term of
the equation is replaced by the bilinear form (Rivière, 2008), which is defined
as:

a(C, τ) = −
∑
e

∫
Ωe

∇τj · κS · ∇C dΩ

+
∑
k

∫
γk

(
[[τj ]] · {κS · ∇C}+ [[C]] · {κS · ∇τj}+ µ[[C]] · [[τj ]]

)
dΓ

= −
∑
e

∫
Ωe

∇τj · κS · ∇C dΩ +
∑
k

∫
γk

[[τj ]] · {κS · ∇C} dΓ︸ ︷︷ ︸
¬

+
∑
k

∫
γk

[[C]] · {κS · ∇τj} dΓ︸ ︷︷ ︸


+
∑
k

∫
γk

µ[[C]] · [[τj ]] dΓ︸ ︷︷ ︸
®

, (3.7)

where [[.]] is the jump vector at the interface such that [[C]] = n
C+ − C−

2 and
µ is the penalty factor. The term ¬ stems from the divergence theorem and
the integration by parts. The interior penalty (IP) terms, i.e., the symmetric
interior penalty term  and the penalty term ®, stabilize the diffusion in
the discontinuous Galerkin method. Hence, the value of µ must be chosen
carefully. If µ is not large enough, the bilinear form does not satisfy the property
of coercivity which ensures that the problem is well-posed, i.e., uniqueness
and continuity. Hence, the approximate solution is not stable and numerical
artifacts such as spurious oscillations that deteriorate the quality of the solution
appear. But, if µ is too large, too much numerical diffusion is involved, which
leads to a poor approximation of the solution (Shahbazi, 2004). In Pestiaux
et al. (2014), an oriented penalty factor, which only takes into account the
diffusion in the normal direction to the interface, is selected when the diffusivity
tensor is strongly anisotropic. It is defined as follows:

µ = (k + 1)(k + d)
d

Akn0

2Ve
n · κ · n,

where d is the dimension, k the degree of the polynomial shape function, Ak
the area of the interface, Ve the volume of the element and n0 the number of
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neighbors of the element, i.e., n0 = 5 for prisms.

The local tracer consistency and conservation properties are easily obtained
for the diffusion equation. When the tracer concentration is constant in time
and space, its gradient is null and the consistency property is satisfied. In other
cases, the divergence theorem is used for the diffusion term and the Dirichlet
boundary condition is then applied on the interface term. Only the time in-
tegration remains, which means that the tracer concentration is conserved.
Moreover, as this parameterization is added in SLIM, the monotonicity can
be achieved in the advection scheme by means of slope limiters (Kärnä et al.,
2012). This method is a common cure when some nonphysical oscillations
around high gradient discontinuities which sometimes appear are enough se-
vere to cause stability problem.

3.4 Investigation of the vanishing isoneutral flux

The vanishing of the isoneutral flux consists in preserving the density field,
while the temperature and salinity tracer concentrations are diffused by the
isopycnal diffusion. This characteristic is important since this diffusion should
not affect the buoyancy field, and thus it should not diffuse the locally refer-
enced potential density. Even if this feature is easily guaranteed with a contin-
uous discretization when a linear equation of state is used, it is more complex
with DGFEM. As the diffusion equation is linear, solving the isopycnal dif-
fusion for both temperature and salinity tracers and deducing the density as
a diagnostic is exactly equivalent to iterating the isopycnal diffusion on the
density field itself, in both discretizations. For the sake of simplicity, a linear
equation of state is chosen but it is not a realistic choice for all oceanic areas.

The seawater density is a strongly non-linear function of temperature and
salinity. In cold regions, it becomes nearly linear with respect to salinity,
whereas in warm regions it is nearly linear with respect to temperature. There-
fore, it is also useful to study how tracer concentrations behave in these areas.
For this reason, a linear expression of the density is considered:

ρ(T, S) = ρ0 + a(T − T0) + b(S − S0),

where a and b are the thermal expansion and saline contraction coefficients7,
respectively, and T0 and S0 are the constant reference temperature and salinity.
Because of the linearity of the tracer equation (3.1) applied on T and S without
the antisymmetric part of the diffusivity, they can be multiplied by a and b,

7In OGCMs, these coefficients are usually function of the temperature and salinity fields.
Nowadays, this approximation is still a topic of discussion for scientists.
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respectively, and then added to obtain an equation for the evolution of the
density:

a
∂T

∂t
+ b

∂S

∂t
= ∂ρ

∂t
= ∇ · (κS · ∇ρ).

Since there are discontinuities with the DG approximation, the density gradient
can be defined in several ways. On the one hand, κS is computed from the slope
s̃ which is obtained from the gradient of the density using (3.2). In order to
have a good estimate νh of ν = −∇ρ, the discretization of the following weak
formulation, obtained after integration by parts, is used:∫

Ω

ν τ dΩ = −
∫
Ω

∇ρ τ dΩ

= −
∫

Γ
n {ρ} τ dΓ +

∑
e

∫
Ωe

ρ∇τ dΩ ∀τ. (3.8)

It is important to compute the gradient of ρ in this way in order to take into
account the discontinuities at the interfaces. On the other hand, deriving the
finite element approximations of the tracer concentration C is achieved in a
standard way by taking the gradient of the shape functions:

∇Ch =
∑
i

Ci∇τi, (3.9)

where τi is the shape function related to node i. The gradient of the density
can be computed in the same way:

∇ρh = a ∇Th + b ∇Sh. (3.10)

Hence, the equation of evolution can be written as:

∂ρh

∂t
= ∇ · (κS · ∇ρh),

where ρh = ρ(Th, Sh). Looking at the diffusivity flux without diapycnal diffu-
sion (i.e., AD = 0 and AI > 0), it yields:

κS · ∇ρh = AI(δ − ν̂h ν̂h) · ∇ρh,

where ν̂h = νh

‖νh‖ . After distribution, its becomes:

κS · ∇ρh = AI
(
∇ρh − ν̂h (ν̂h · ∇ρh)

)
= 0 if ∇ρh ∝ ν̂h, (3.11)

i.e., the isoneutral flux of density vanishes if the finite element approximations
of the gradient of the density and the diapycnal unit vector are aligned.



3.4. Investigation of the vanishing isoneutral flux 65

In the continuous Galerkin finite element method, the relation (3.11) is sat-
isfied since ν̂h in the isopycnal diffusivity is simply computed by interpolation
of the gradient of the shape function. Moreover, there is no penalty term in
equation (3.7). To illustrate this property, the tracer equation is integrated in

Initial condition After 106 s

x

z

6- x

z

6-

Figure 3.4: Illustration from Comblen (2010) of the vanishing isoneutral fluxes on a
toy problem. Both panels are cross-sections of a domain 1000km× 1000km× 1000m.
The left panel represents the temperature (right) and the salinity (center) that are
used to compute the density (left), all at the initial time. After 106 seconds, these
same fields are showed on the right panel. As expected, the density (left) does not
change even if salinity (center) and temperature (right) exhibit large variations.

time for both temperature and salinity; then, the density is deduced as a diag-
nostic. This scheme is exactly equivalent as computing the isopycnal diffusion
on the density itself since the equation of state is linear. Therefore, tempera-
ture and salinity can be diffused strongly, whereas the density is preserved, as
represented in Figure 3.4.

In the discontinuous Galerkin method, it is not possible to guarantee the
vanishing isoneutral flux of the density even when the equation of state is linear.
In general, the terms  and ® in equation (3.7) do not disappear. Moreover,
∇ρh is not aligned with ν̂h even though their corresponding continuous fields
satisfy ∇ρ = −ν̂‖∇ρ‖ since the relation (3.8) is used instead of interpolation
of the gradient of the shape function. The penalty factor µ in ® could be
imposed to be zero when the diffusivity flux is zero. However, this condition
would imply a non-linear discretization scheme and it would not necessarily
guarantee the stability.

When an advection term is present, the discontinuous Galerkin method is
really advantageous. But, for pure diffusion, the continuous Galerkin method
is a more appropriate choice. When advection is present in CG, a stabilization
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term is also necessary if the Peclet number is larger than one; i.e.,

h‖v‖
k

> 1,

where h is the element length, v is the velocity and k is the constant diffusivity.
In that case, numerical diffusivity is introduced and thus the vanishing property
will also be lost with the continuous discretization. The vanishing isoneutral
flux is thus a difficult feature to obtain. Even a linear equation of state is not
sufficient to satisfy this property, so that an equation of state better adapted
for all oceanic areas appears to remain the best choice to describe the density
field at best. In this approach, the Jackett and McDougall equation of state
(McDougall et al., 2006) is usually employed in SLIM.

3.5 Results

In this section, the GM velocity and the isopycnal diffusion are analyzed in
order to highlight their behaviour in the framework of SLIM. First, the effects of
isopycnal diffusion are analyzed in a progressively inclining density field. Next,
the spurious flux in the diapycnal direction is studied and compared to the
existing diapycnal diffusion. Finally, an application to an idealized channel is
studied when a regular temperature field with a constant stratification is tilted
due to the surface wind forcing. In the two first simulations, only the tracer
equation without the advection term is considered. For the last simulation, all
the governing equations are solved in the cartesian coordinates on an ocean
sector domain.

3.5.1 Illustration of the isopycnal diffusion
First, only the symmetric part of the isopycnal tensor is implemented in the
framework of SLIM. The aim is to see the effect and the rate of tracer diffusion.
As the diffusivity tensor is not aligned with the mesh, it is really important
to know if the tracer concentration tends to follow isopycnals. A cylindrical
geometry with a 200m depth and a radius of 104km is meshed with 30 layers
of prismatic elements whose horizontal characteristic length is about 105m. To
build the tensor κS with ε = 10−7 and AI = 1000 [m2/s], a simple analytical
density is created from the equation:

ρ(x, z) = 1035
(

1− 50 z

l
sin
(

5 (x− l)
2πl

))
[kg/m3],

where l = 106m. This density shape was chosen since its slope increases pro-
gressively. Moreover, the tracer concentration evolution under the isopycnal
diffusivity will be easier to observe.
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A normalized tracer concentration is selected to observe the diffusivity rate.
The initial state of this tracer concentration is chosen as a Gaussian function
which takes advantage of the axial symmetry:

C(x, 0) = e
−
(

(y−0.3l)2+(x−0.55l)2

2.1010 + (z+100)2
200

)
.

In order to emphasize the tilt of the tracer concentration with time, the tracer
fields are put on the density field. The numerical scheme is solved with an
explicit Runge-Kutta scheme of order 3 and a time step of one day. In Figure
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Figure 3.5: (a) Initial distribution of the tracer concentration C(x, t = 0) placed
in the density field ρ(x, z); (b) Evolution of the tracer concentration after 20 days
placed in the same density field.

3.5, the isopycnals are illustrated by the colored lines and the tracer concen-
tration is shown with the full shape on the same domain. In the bottom panel,
it is diffused as well as it tends to follow the isopycnals. On the right hand
side, it goes downwards, while on the left hand side, it goes slightly upwards.
Usually, in ocean models, slope limiters are introduced in order to avoid infinite
slopes in the computation of the diffusivity tensor and thus numerical instabil-
ities. Nevertheless, for this illustration, none was considered. The diapycnal
diffusion will be studied in the next section.

3.5.2 Spurious flux
As the diffusivity tensor is not aligned with the mesh, the diffusivity is more
complex and the numerical errors appear more easily. The main idea is to
only consider isopycnal diffusivity and to study the spurious flux in the diapy-
cnal direction. Already considered by Shah et al. (2011) but with a non-flat
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isopycnal surface, this kind of idealized test case allows to highlight the in-
trinsic properties of the isopycnal diffusion. Let us consider a simple density
field with two planar isopycnals and assume no diapycnal diffusion, i.e., ε = 0.
Initially, a small concentration of tracer (a Gaussian distribution) is placed on
the isopycnal interface (Figure 3.6). If ocean models were perfect, the tracer
concentration would follow the isopycnal direction. In practice, however, the
tracer is diffused also in the diapycnal direction due to spurious numerical flux.
The spurious flux can be measured by computing the tracer variance in the
diapycnal direction.
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Figure 3.6: A tracer concentration initially placed on the isopycnal interface (black
line) is diffused but not only along the isopycnal. The spurious flux is then computed
in following the diapycnal direction (black vector).

The center of gravity of the tracer concentration is defined as:

x̆(t) =
∫

Ω C(x, t) x dΩ∫
Ω C(x, 0) dΩ ,

where C(x, t) is the tracer concentration. The variance can be written as:

σ2 =
∫

Ω C(x, t) ‖x− x̆(t)‖2 dΩ∫
Ω C(x, 0) dΩ .

If the isopycnals have a small slope, the distance ‖x − x̆(t)‖2 can be approx-
imated by ‖zi − zt‖2, where zi and zt are the z coordinate of the isopycnal
and the tracer concentration, respectively. Figure 3.7 shows the result of a
simulation of 90 days with a time step of 10 days. The evolution appears to
be linear which means that the tracer concentration distribution moves away
from the isopycnal. As the variance of the spurious flux grows approximately
with t, this spurious flux can be defined as a spurious diffusivity (Karger, 1992).



3.5. Results 69

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 3.7: Evolution of the tracer variance in the diapycnal direction with time
(∆t = 10 days).

In order to compare this spurious diffusivity in the diapycnal direction, a
diapycnal diffusion where the analytical solution should be a Gaussian distri-
bution is considered. Hence, the variance of this Gaussian distribution should
follow the law 2kt, where k is, in this case, the constant diapycnal diffusivity.
The range of k is then about [10−5, 10−4] m2/s. This law is also applied on the
observed spurious diffusivity. As the computed variance has a slope of around
9 · 10−7 m2/s, it is thus associated to a diffusivity kv. This method allows to
easily compare the spurious diffusivity with the diapycnal one, and it appears
that the spurious diffusivity is weaker than the diapycnal diffusivity since:

kv = 9 · 10−7 m2/s

� k ∈ [10−5, 10−4] m2/s

In this study, the discretization and parameterization are seen to be well suited
to our model since this spurious flux is negligible. The numerical errors asso-
ciated to the isopycnal diffusion should not thus deteriorate the results.



70 Gent-McWilliams velocity and isopycnal diffusion

3.5.3 Application to an idealized channel

Since the oceanic model used in this study (SLIM) is still in development,
long global simulations with high resolution are not currently possible, and
complex tracer concentration fields cannot be simulated in details as they can
be observed in the real ocean. In order to examine the effects of the GM
velocity, a simplified domain is thus chosen. Inspired by laboratory studies
(Marshall et al., 2002; Henning and Vallis, 2004), an idealized configuration is
the channel shown schematically in Figure 3.8. The domain extends from 30˚
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Figure 3.8: A schematic drawing showing the domain used in the idealized simula-
tions. Subject to a periodic boundary condition, this channel is characterized by its
depth H, its width ly and its length lx.

to 45 i̊n latitude (the Coriolis parameter f is taken as 2Ω sin(35̊)) and from 0˚
to 20 i̊n longitude, with 23 vertical layers of increasing thickness up to 1600m.
The mesh, composed of quadrilateral elements, has a horizontal resolution of
1̊ × 1̊. This channel is subject to a periodic boundary condition in the zonal
direction. A constant gradient of temperature defined as T (z) = 26−8 ·10−3 z
and a constant salinity of 30 psu are used for the initialization. The model
forcing consists of a surface wind stress defined as follows: τx =

 0.2 sin
(
π
ly−4y

2ly

)
if y ∈

[
− ly2 ,

ly
2

]
,

0 if y /∈
[
− ly2 ,

ly
2

]
,

τy = 0.

where the meridional length ly = 15.104km. There is no sea surface tempera-
ture restoring.

In this study, SLIM is based on Kärnä et al. (2012). To achieve a realistic
oceanic simulation, the 3D hydrostatic Boussinesq equations are considered.
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With the velocity decomposed as U = (u,w), the horizontal momentum equa-
tion is given by:

∂u

∂t
+∇h · (u u) + ∂(w u)

∂z
+ fêz × u+ 1

ρ0
∇hp = ∇h · (νh∇hu) + ∂

∂z
·
(
νv
∂u

∂z

)
,

where f is the Coriolis factor. The horizontal and vertical viscosities are νh =
3.5 104m2/s and νv = 10−4m2/s, respectively. The hydrostatic assumption
reduces the vertical momentum equation to

∂p

∂z
= −gρ(S, θ, p),

where ϑ is the potential temperature and p the oceanic pressure. The sea-
water density is computed from the Jackett and McDougall equation of state
(McDougall et al., 2006):

ρ(S, ϑ, p) = P12(S, ϑ, p)
P13(S, ϑ, p) ,

where P12 and P13 are polynomial functions of 12 and 13 terms, respectively.
The continuity equation reads

∇h · u+ ∂w

∂z
= 0,

from which the vertical velocity is computed. Finally, the tracer equation with
the advection term is considered:

∂C

∂t
+∇ · ((ued + U) C) = ∂

∂z

(
λv
∂C

∂z

)
,

where ued is the Gent-McWilliams velocity and the vertical diffusion coefficient
λv is computed with the parameterization of Pacanowski and Philander (1981).
This parameterization of vertical mixing is particularly useful when there are
small vertical temperature gradients and large wind-induced shear. Because
of the absence of salinity variation, the isopycnal diffusion has in this case a
null tensor and does not influence the simulation. Since the potential density
is computed from the Jackett and McDougall equation, some static instabili-
ties can appear during the simulation. Hence, when a parcel of water with a
potential density ρ1 is below another parcel of potential density ρ2 such that
ρ1 < ρ2, the water column is unstable. In nature, convective processes quickly
re-establish the static stability of the column. Since these processes are not
included in our ocean model due to the hydrostratic assumption, a convective
adjustment scheme is added to account for this effect (Marotzke, 1991). Various
techniques can be applied such as a non-penetrative convective adjustment, a
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turbulent closure scheme or an enhanced vertical diffusivity. The latter is used
in this study in addition to the Pacanowsky-Philander parameterization. It
consists in enlarging the vertical diffusivity to 1 [m2/s] when the stratification
is unstable. Such instabilities happen when the Brunt-Väısälä frequency N2

b

is negative (Madec and team, 2008). For the time integration, the coupled
2D-3D water equations are considered. The 3D equations advance in time with
the split-explicit scheme from Shchepetkin and McWilliams (2005). In the
predictor stage, the tracer concentration C is updated from the time tn−1/2
to tn+1/2 with the third order Leap-frog-Adams-Moulton (LF-AM3) numerical
algorithm. After, the 2d equations are solved separately from tn to tn+1 with
smaller time steps thanks to a standard third order Adams-Bashforth (AB3)
scheme. Then, the corrector stage gives C at the time tn+1 and is completed
by a semi-implicit evaluation of the vertical diffusion of momentum and the
tracer concentrations.

In order to highlight the positive effects of the GM velocity, two different
simulations are run over 6 years. In the “standard run”, the idealized test case
described above is runned without any eddy parameterization, whereas the GM
velocity is included in the second one and called “GM run”. It is important to
notice that both simulations only differ in the addition of the GM velocity; all
the other parameters and equations are the same in each case. The key idea
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Figure 3.9: A schematic drawing of vertical cross-sections, showing the evolution of
the isotherms (full lines) from the initial time (left) and to the end of the simulation
(right) when the GM velocity is not taken into account. On the right hand-side
pannel, the Ekman pumping (represented by the vectors), which is created under the
action of winds, tends to strongly tilt the slope of the isotherms.

of this test case is that the thermal wind balance with the density gradient
acts to overturn the isopycnals. From a theoretical point of view, the initial
flat temperature field will undergo Ekman pumping and, without the GM pa-
rameterization, the isotherms will become nearly vertical in some places, as
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illustrated in Figure 3.9. Indeed, an oceanic simulation without eddy parame-
terization leads to the formation of vertical isopycnals (Vallis, 2000), and thus
to high instabilities. Without the GM velocity, this field will be almost vertical
at the bottom of the channel because the resolution is too coarse, and this
representation will not be realistic at all. Moreover, they will be compressed at
the surface on the eastern side and at the bottom on the western side of the do-
main. This situation will lead to an accumulation of cold water at the southern
bottom and of warm water at the northern surface. These main characteristics
should be observed in the standard run conducted with SLIM. When the extra
velocity is added, the density slope will tend to become smooth at the bottom,
even with a coarse resolution. This difference of steepness will thus be studied
in this section.

Meridional potential temperature sections from both runs, that are here
equivalent to density sections since the salinity is constant, are shown in Fig-
ure 3.10. Since the mesh resolution is coarse, the simulated temperature fields
are quite uneven because of the DG formulation. Indeed, the large variations of
temperature between two neighbouring elements lead to large jumps between
these two elements, and thus to some scattered fields. A finest mesh resolution
should improve this issue but it should also require a much larger computa-
tional time or a best efficiency of the solver. In order to avoid this issue and
to make the results interpretation easier, both temperature results have been
discretized in continuous fields. In the standard run, the principal character-
istics highlighted through the theoretical illustration are found in Figure 3.10
(left). Indeed, some isotherms at mid-latitudes are getting extremely steep, al-
most vertical, under the action of wind without eddies. Transient motions are
present, but they are by far insufficient to properly smooth the slope. More-
over, there is an accumulation of cold water that remains at the southern bot-
tom. Nevertheless, the accumulation of warmer water at the northern surface
is missing. The convective adjustment as well as the Pacanowsky-Philander
parameterization which have been added in these simulations in order to re-
move static instabilities could be responsible for this difference with the theory.
The main differences between both panels are the cold deep water which slowly
slumps in the GM run, and the isotherm slope which tends to become less steep
than in the standard run.

As expected, this GM velocity have a pronounced effect on the circulation
in the channel. The real oceanic system is of course more complex than the
model presented here. The invariability of salinity and the simplified geome-
try are indeed large simplifications. Nevertheless, eddies greatly influence the
stratification, and the transport too, which are scaled by the relative strength
of wind and diffusion. In addition to the smoother slopes, the other observed
effect is the larger vertical diffusion in the standard run. Since the isotherms
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Figure 3.10: Comparison between the vertical cross sections of temperature discre-
tized in a continuous field for the standard run (left) and for the GM run (right) after
6 years of simulation.

are very steep, they are highly baroclinically unstable. This situation leads to
large spaces between these isotherms. In the GM run, the eddy parameteriza-
tion creates quite uniformly spaced isotherms, presumably a consequence of its
tendency to homogenize isopycnal layers (Henning and Vallis, 2004). In this
way, the temperature decreasing from the surface to the bottom is slower in
this last run. The expected behavior is noticed: the isotherms are slumped
and the available potential energy is released, as minimizing the artifacts of
the penalty term.

3.6 Concluding remarks

In this paper, we present the discretization of the Gent-McWilliams velocity
and the isopycnal diffusion with the discontinuous Galerkin finite element me-
thod. In order to deal with the issues related to the boundary conditions,
the boundary-value problem suggested by Ferrari et al. (2010) for the Gent-
McWilliams velocity is adapted in this discretization and, to ensure imperme-
able boundaries, a Newton solver is used. Thanks to a continuous streamfunc-
tion Ỹ , the computed velocity field is numerically consistent with the tracer
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equation in such a way that the constant tracer concentration is preserved.

In the discussion of the vanishing isoneutral flux, it appears that this flux
of density cannot be guaranteed in the discontinuous Galerkin method. But in
presence of advection, this method remains just as advantageous as the con-
tinuous Galerkin method. In this last case, even the CG method lost this
property. In the analysis of the isopycnal diffusion effects, the tracer concen-
tration tends, as expected, to align itself along the density field. Besides, the
spurious diapycnal mixing remains much smaller than the physical diapycnal
diffusion when a Gaussian distribution is used as tracer concentration field.
Moreover, the numerical error relative to this spurious diapycnal mixing is ac-
cordingly negligible. At the end, the idealized channel simulation revealed that
the GM velocity affects, as expected, the temperature field, which is, in this
case, equivalent to study the density field. Without the GM parameteriza-
tion, the isotherms are getting extremely steep under the action of wind since
the transient motions are by far insufficient to properly smooth their slopes.
When the GM parameterization is taken into account, the available potential
energy is released in such a way that the isotherms are slumped. Moreover,
the stratification at the ocean surface is greatly influenced by this mesoscale
parameterization.

To the best of our knowledge, it is the first time that the Gent-McWilliams
velocity and isopycnal diffusion processes are included in a discontinuous Ga-
lerkin finite element ocean model, thanks to, respectively, the boundary-value
problem suggested by Ferrari and a special treatment of the stabilization of
the numerical scheme with the oriented penalty factor. The first results high-
light the performance of the isopycnal diffusion in simple test cases, and the
idealized channel simulation goes on the same track for the Gent-McWilliams
velocity but for a more complete oceanic simulation where all the governing
equations are considered. Future work could be devoted to an improvement
of the oceanic model in order to save the computational time and to realize
some larger or global simulations. In this way, the impacts of mesoscale eddies
could be analyzed on a longer run and in more complex regions, such as in
the Gulf Stream or in the Southern Ocean. Such studies could allow a better
understanding of these complex and still not well-known processes.
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4
The coupled model FESOM-LIM3

Summary

In this chapter, key components of the sea ice model LIM3 are coupled with
the global ice-ocean model FESOM in order to combine the advantages of each
model. Thanks to the finite element discretization, and thus to unstructured
meshes, FESOM allows to locally increase the mesh resolution and to better
represent the coastlines. LIM3 brings halo-thermodynamics with a subgrid-
scale representation of the ice thickness. First, each model is described and
the coupling strategy is presented. Then, preliminary calibration simulations
are performed and analyzed in order to adjust the albedo parameterization
in FESOM-LIM3 and prepare a model configuration suitable for long-term
simulations.

4.1 Introduction

Sea ice models basically consist of two components: thermodynamic and dy-
namic. Since the heat transfers accross the sea ice occur mostly along the
vertical direction, the evolution of sea ice thickness by thermodynamic growth
or melt can be computed from the atmospheric and oceanic forcings at any
location without any horizontal interaction with neighbouring sea ice. From
this perspective, Maykut and Understeiner (1971) developed the first thermo-

77
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dynamic sea ice model, later simplified by Semtner (1976) by keeping its most
important components. Sea ice models are frequently based on these latter
simple models, called the 0− and 3−layer models. Following their configu-
rations, they allow to simulate the landfast ice evolution (Flato and Brown,
1996) or study the sea ice sensitivity to atmospheric drag coefficients (Lüpkes
et al., 2012). On the other hand, the dynamic processes relate to the ice drift
in response to wind and oceanic currents, the Coriolis force, the force due to
the tilt of ocean surface and the internal sea ice forces. The viscous-plastic
representation suggested by Hibler (1979) knew many successes but it was not
well suited for efficient parallel integrations because it must be solved with
an implicit method (Zhang and Rothrock, 2000). The elastic-viscous-plastic
(EVP) formulation, with an easy parallelization, is the most popular alterna-
tive (Hunke and Dukowicz, 1997) and has been adopted by numerous GCMs
(Randall and Taylor, 2007; Montoya et al., 2005).

The Louvain-la-Neuve sea Ice Model (LIM) is a state-of-the-art three-dimen-
sional global model of sea ice designed for climate studies. Its latest version,
LIM3 (Vancoppenolle et al., 2009b), is fully coupled with the oceanic general
circulation model OPA (Ocean PArallélisé) on the modelling platform NEMO
(Nucleus for European Modelling of the Ocean). Like the majority of sea ice
models, it is based on structured grids and finite difference schemes because
of their ease of implementation and runtime efficiency. However, coastlines are
not well defined and a finest mesh resolution requests a larger computational
time. A way to overcome these issues is to opt for unstructured meshes which
allow local adaptation of the mesh at anytime and the improvement of the
resolution near the coasts (van Scheltinga et al., 2010).

Both finite element and finite volume methods used by a number of new
models (Chen et al., 2003; Ford et al., 2004; Fringer et al., 2006; Kärnä et al.,
2012) gave some promising results in the oceanic simulations. Yet, in 1975,
Fix (1975) highlighted the advantages of such methods in GCMs: easier han-
dling of energy conservation, natural treatment of the boundary conditions and
mesh flexibility. The finite element method is based on a variational formula-
tion which enables to treat the complex boundary conditions as natural or free
boundary conditions. But this method remains computationally expensive and
quite complex. In particular cases, finite element methods have early been sug-
gested for sea ice modelling in order to simulate the cracks propagation in sea
ice (Mukherji, 1973). More idealized investigations were thereafter performed
about sea ice rheology or motion in specific areas (Thomson, 1988; Schulkes
et al., 1998; Kliem, 2001; Wang and Ikeda, 2004). Some regional studies were
then achieved (e.g., Schulkes et al., 1998; Yakovlev, 2003; Wang and Ikeda,
2004; Sulsky et al., 2007; Lietaer et al., 2008; Wekerle et al., 2013). Among
them, Lietaer et al. (2008) was the first to investigate the effects of resolving
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the Canadian Arctic Archipelago on the Arctic ice cover features. Indeed, 10%
of the annual sea ice volume is enclosed in this area and its omission consider-
ably influences the freshwater balance of the Arctic.

The Finite Element Sea ice-Ocean Model (FESOM, Danilov et al., 2004;
Wang et al., 2008; Timmermann et al., 2009) is a sea ice-ocean general circu-
lation model using unstructured triangular surface meshes. (Sidorenko et al.,
2011) showed that FESOM is now ready to be considered as a reliable tool or
studying the large-scale ocean general circulation. Recently, Wekerle et al.
(2013) showed that increasing the mesh resolution in the Canadian Arctic
Archipelago improves the simulation of the freshwater export interannual vari-
ability. In addition, these results indicate that the multi-resolution allows
small-scale processes such as some fluxes to influence the large-scale circu-
lation. While the model produces realistic estimates of the sea ice cover, the
relative simplicity of its sea ice thermodynamic component can be significantly
improved.

In this study, key components of LIM3 are coupled to FESOM in order to
integrate the multi-category representation of the sea ice thickness, the halody-
namics and thermodynamics of sea ice, the mechanical and thermodynamical
redistributions, while keeping the advantages of the finite element discretiza-
tion. For the sake of simplicity, the coupling of all these processes in LIM3 will
hereafter be referred to as the coupling of LIM3 with FESOM.

4.2 Description of the models

In the following subsection, the ocean model as well as the sea ice dynamics
and thermodynamics of FESOM are presented. Then, the sea ice model LIM3
in its initial configuration is introduced with a brief description of the sea ice
thermodynamics, halodynamics, dynamics, Ice Thickness Distribution (ITD),
mechanical and thermodynamical redistributions and the atmospheric fluxes
used.

4.2.1 FESOM

FESOM was the first GCM using unstructured meshes that was developed
for the purpose of climate research. The global version that we use here is
discretized using the finite element method (Danilov et al., 2004; Wang et al.,
2008; Timmermann et al., 2009). The grid is composed of tetrahedral elements,
so that an unstructured mesh of triangles materializes the ocean surface (Figure
4.1). As the model equations are solved with the finite element method, linear
basis functions are utilized for velocity, tracers and sea surface elevation, leading
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Figure 4.1: Illustration of the three-dimensional mesh of FESOM (left) where the
surface mesh is composed of triangular elements and where the resulting prisms are
split into three thetrahedra (right) [figures from S. Harig (AWI)].

to the continuous representation (the so-called P1 − P1 discretization) of the
model variables.

Ocean model

The oceanic component of FESOM is the hydrostatic primitive-equation Finite
Element Ocean Model (FEOM) initially developed by Danilov et al. (2004).
The standard set of hydrostatic primitive equations under the Boussinesq ap-
proximation are solved and the North Pole is placed in Greenland to avoid
the North Pole singularity. Continuous linear representations of temperature,
salinity, horizontal velocities and sea surface elevation are used. The tracer
equation is solved with an explicit flux-corrected-transport scheme (Lohner
et al., 1987). A semi-implicit discretization for the Coriolis term is utilized
for the time-stepping of the momentum equation, an implicit discretization
for the viscosity and surface elevation, and an explicit scheme for momentum
advection and pressure contribution. The solver proceeds in three steps: (i)
a predictor step for the horizontal velocity, (ii) an update of the surface el-
evation, and (iii) a correction for the horizontal velocity. Last, the vertical
velocity is diagnosed. The temperature and salinity time-stepping uses the ex-
plicit second-order Taylor-Galerkin scheme (Wang et al., 2014), and a no-slip
boundary condition is applied along the coasts.

To parameterize the subgrid-scale processes, the Redi diffusion (Redi, 1982)
and the Gent-McWilliams parameterization (Gent and McWilliams, 1990) are
applied with a critical neutral slope of 0.004. The skew and isopycnal diffusiv-
ity are both parameterized as V∆, where V = 0.006 m/s is the bolus velocity
and ∆ is the square root of the surface triangle area. Moreover, the horizontal
biharmonic viscosity is B∆3, with B = 0.027 m/s. The Pacanowski and Phi-
lander (1981) scheme is used for vertical diffusion, with a background diffusion
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of 10−4m2/s for momentum and 10−5m2/s for tracers, with a maximum value
set to 10−2m2/s. In order to avoid unrealistic shallow mixed layers in summer,
an additional vertical diffusivity of 0.01 m2/s is applied over a depth given by
the Monin-Obukhov scheme (Timmermann et al., 2002).

Sea ice

The FESOM sea ice component is a dynamic-thermodynamic sea ice model
in which the thermodynamics follow the work of Parkinson and Washington
(1979) and the dynamics are represented by the EVP rheology from Hunke and
Dukowicz (2001).

Sea ice thermodynamics. The thermodynamics of sea ice in FESOM
are based on models by Semtner (1976) and Parkinson and Washington (1979)
where the surface heat balance equation is separately solved for the ice and the
snow:

(1− α)QSW +QLW − εσT 4
s +Qse +Qla +Qc = 0, (4.1)

where α is the surface albedo, QSW the shortwave solar radiation, QLW the
longwave radiation, ε the surface emissivity (of ice or snow), σ the Stefan-
Boltzmann constant, Ts the surface temperature (of snow or ice), Qse the
sensible turbulent heat flux, Qla the latent turbulent heat flux and Qc the
conductive heat flux accross the slab of ice and snow. The latter is expressed
as:

Qc = ki
Tf − Ts
h̃i

,

where Tf is the seawater freezing point, ki the thermal conductivity of ice and
h̃i the effective thickness. From the 0−layer approach of Semtner (1976), h̃i is
computed by:

h̃i = 1
aTi

(
Mi

ρi
+ Ms

ρs

ki
ks

)
,

where Mi and Ms are the ice and snow masses per unit area, respectively, ρi
and ρs their densities, aTi the total ice concentration and ks the snow conduc-
tivity. In this configuration, if the surface temperature Ts is greater than the
melting point Tm, Ts is set equal to Tm and the extra heat goes to ice/snow
melting. The snow thickness changes with precipitation. The ice growth rate
which depends strongly on the ice thickness, evolves following the seven-level
approximation suggested by Hibler (1979) under assumption of a linear distri-
bution. At the ice base, the balance equation of Lemke (1987) is chosen with
an instant conversion of mixed layer heat to ice thickness change.
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Sea ice dynamics. The sea ice model simulates the sea ice drift veloc-
ity ~uice = (ui, vi) on the same surface mesh as the oceanic one. The two-
dimensional momentum equation can be written as follows:

M(∂t + f~k×)~uice = aTi (~τai + ~τoi) + ~F +M g∇η, (4.2)

where f is the Coriolis factor, τai and τoi are the atmospheric and oceanic
stresses, respectively, ~F the internal force and g the gravity acceleration on
the tilted ocean surface. In this representation, ~k is the unit vector pointing
upwards and η is the surface ocean elevation. The mass M is the combination
of ice and snow contributions M = aTi (ρi hTi + ρs h

T
s ), where hTi and hTs are

the total ice and snow thicknesses, respectively. The divergence of the stress
tensor is used to express the internal force: ~F = ∇ · σ. Sea ice is treated
as a non-linear elastic-viscous-plastic fluid (EVP; Hunke and Dukowicz, 2001)
and the rheology is solved with an internal time step of 60s. The associated
parameters for the EVP formulation are defined as follows: the eccentricity
e = 2, the empirical constant c = 20, the creep limit ∆̃ = 5 10−9s−1 and
P ∗ = 15000N/m2, and explained in more details in the Appendix B.1. In or-
der to conserve tracers and have a low dispersion, an explicit second-order Flux
Corrected Transport (FCT) advection scheme is preferred to the old backward
Euler advection scheme for sea ice transport. In practice, there is a special pa-
rameter to control the monotonicity of the FCT algorithms, and no additional
diffusivity is required to stabilize it.

The continuity equation for the total ice thickness hTi :

∂hTi
∂t

+∇ · (hTi ~uice) = Qh,

is solved with a splitting technique. First, the advection step is realized with
the thermodynamic sources/sinks Qh set to zero. The effects of the thermody-
namics are taken into account to update the ice thickness.

Sea ice-ocean coupling in FESOM. The coupling interface between the
ice and the ocean uses a flux-averaging method. The heat flux between the
ocean and the ice base is described in details in section 4.3.4. Besides, the
salinity flux FS is composed of the part related to the freezing and melting
of ice and snow, FSi , and another one relative to the open ocean FSw which
is computed from the evaporation E and precipitation P according to the air
temperature Ta as follows:

FSw = S∗o

{
P − E if Ta ≥ 0̊ C
(1− aTi )(P − E) if Ta < 0̊ C
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with the constant ocean surface salinity S∗o = 34.7psu. Only the thermody-
namic changes are considered for the salt flux computation:

FSi = (S∗o − STi ) ρi
ρw

∂hTi
∂t

+ S∗o
ρs
ρw

∂hs
∂t

,

where the total sea ice salinity STi is assumed to be 5psu and the snow salinity
is set equal to zero. This total flux is applied to the ocean model and the
vertical mixing contributes to its distribution into the mixed layer.

Surface stresses at the ice-ocean interface and in the open water are, re-
spectively, computed as follows:

~τio = ρwc
d
io|~uice − ~uw|(~uice − ~uw)

~τao = ρac
d
ao|~u10|~u10,

using the drag coefficients cdio = 3 · 10−3 and cdao = 10−3. The ocean and 10m-
wind velocities are written as ~uw and ~u10, respectively. Finally, the total ocean
surface stress is expressed as:

~τo = aTi ~τio + (1− aTi ) ~τao.

4.2.2 LIM3
LIM3 is a C-grid dynamic-thermodynamic sea ice model which includes a repre-
sentation of the subgrid-scale distribution of ice thickness, enthalpy and salinity,
which is initially coupled to the finite difference ocean model (NEMO). Its main
features are developed in the paragraphs hereinafter.

Sea ice dynamics. The ice velocity is also determined by the equation 4.2,
solved using the C-grid formulation (Bouillon et al., 2009) of the EVP rheology
(Hunke and Dukowicz, 1997). 300 sub-iterations are used for ice dynamics with
a time step of dt = 96s. For ice strength, the formulation of Hibler (1979) is
used with P ∗ = 40000N/m which depends on the resolution and configura-
tion of LIM3 (in this case, NEMO.3.1 with a resolution of ORCA2̊ ). The sea
ice state variables are then transported using the advection scheme of Prather
(1986) which conserves the second-order moments of their spatial distributions.
Pratically almost non-diffusive, it is also quite computationally expensive.

Ice thickness distribution. The ice thickness distribution (ITD) in LIM3
follows the formulation of Bitz et al. (2001) and Lipscomb (2001) with 5 thick-
ness categories (Nc = 5). For each of them, the ice cover is vertically divided
into five layers of sea ice, covered by one of snow. Each thickness category has
a mean thickness (hl, l ∈ [1, Nc]) in the interval [Hl−1, Hl], as shown in Figure
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open ocean

Figure 4.2: Boundaries of the model ice thickness categories.

4.2. This discretization of ice thickness is used for the distribution of the global
variables: the sea ice concentration ai, the sea ice volume per unit area vi, the
sea ice enthalpy per unit area ei, the salt content smvi, the snow volume per
unit area vs and the snow enthalpy per unit area es.

Mechanical redistribution. Due to ice motion, the ice pack is opened
by divergence, and this situation can create areas of open water, whereas the
convergence creates thicker ice. Besides, the shear can contribute as to conver-
gence as to divergence following the situation (Kwok and Cunningham, 2002;
Tuhkuri and Lensu, 2002). In order to ensure area and volume conservations,
the redistribution of sea ice over thickness categories is partly done according
to the mechanical deformation of the pack (Thorndike et al., 1975). This mech-
anism is developed in detail in Section 1.3.

Sea ice thermodynamics. The thermodynamic processes include verti-
cal diffusion of heat in the snow/ice system, snow/ice growth and decay, and
creation of new ice in open water. In LIM3, there is no explicit account for lat-
eral melting because it is controlled by floe size (Steele, 1992) as it is implicitly
taken into account with the thin ice melting (Bitz et al., 2001). The vertical
ice growth and decay rates are determined by the energy conserving model of
Bitz and Lipscomb (1999) using the 1D heat diffusion equation. Whereas the
solar radiation cannot penetrate into the snow, it is attenuated following Beer’s
law with an extinction coefficient of 1/m. As in equation (4.1) utilized in the
FESOM thermodynamics, the sea ice growth/melt rates are then computed
from the imbalance between the different fluxes at the ice interfaces with the
atmosphere and the ocean. The boundary conditions are fixed, on the one
hand, by the seawater freezing point at the sea ice bottom and, on the other
hand, by the surface energy balance. When the surface temperature is equal
to Tm, the ice layers successively melt until the available energy of melting
is exhausted. Ice grows if the balance between the conductive radiative and
ocean heat fluxes at the ice bottom is negative, and melts otherwise. If the
seawater surface temperature is equal to Tf , the surface lost heat and new ice
can appear. The effects of brine pockets on the heat transfer and storage in ice
are taken into account thanks to the formulation of Maykut and Understeiner
(1971) and Bitz and Lipscomb (1999). The sea ice thermal properties are then
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expressed as functions of salinity and temperature. The formation of snow ice,
which results from the refreezing of seawater-soaked snow into ice (Fichefet and
Maqueda, 1997), occurs, in particular, when the snow is sufficiently thick to
depress the snow-ice interface under the sea level so that the seawater floods
and refreezes into the snow. This leads to modifications in the salt and heat
contents of the sea ice surface layers in the Southern Ocean. Ultimately, the
new temperature profile is computed in order to take the thicknesses and salin-
ity changes into account.

Thermodynamical redistribution. After the thermodynamical growth/-
melt of sea ice is computed, the linear remapping scheme described in Lipscomb
(2001) is used to redistribute the ice over the different categories of ice thick-
ness. This second-order semi-Lagrangian scheme, shown to be weakly diffusive
and rapidly converging, is valid as long as the ice velocities are not too large.
Based on three steps, the category boundaries are first shifted, the thickness
distribution is then re-computed on these new categories and, finally, the orig-
inal boundaries are restored.

Halodynamics. The evolution of the sea ice salt content is determined
using parameterizations for brine entrapment and drainage processes (Vancop-
penolle et al., 2009a). Gravity drainage prevails in winter, whereas flushing
occurs mostly in summer when melting makes sea ice permeable. Moreover,
snow ice formation induces the concentration of salt at the ice surface as ob-
served by Jeffries et al. (1997). The evolution of the salinity profile is thus
computed from basal ice formation, snow ice formation, gravity drainage and
flushing. The salinity in new ice is computed as a function of the sea surface
salinity following the formulation of Cox and Weeks (1988). A vertical salinity
profile is only considered for thermodynamic computations, while the sole salt
content is advected horizontally with the sea ice (Vancoppenolle et al., 2007).

Atmospheric fluxes. Initially, LIM3 uses the atmospheric CLIO forcing1

combining daily reanalyses of 10m wind velocity and air temperature from
NCEP/NCAR (Kalnay et al., 1996) and monthly climatologies of relative hu-
midity (Trenberth et al., 1989), cloud fraction (Berliand and Strokina, 1980)
and precipitation (Large and Yeager, 2004). The net solar radiation is then
computed as a linear combination of clear and overcast skies contributions
with the formulation of Shine (1984). The parameterization of the longwave
radiation flux follows Goosse (1997) with a correction factor to take the effects
of clouds into account. The turbulent latent and sensible heat fluxes are also
computed as in Goosse (1997) where the specific humidity of the air at satura-

1The CORE forcing is also an other configuration that can be used sometimes by LIM3.
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tion is expressed as a non-linear function of the surface temperature.

Freshwater flux. Using the approach of Tartinville et al. (2001), the fresh-
water fluxes for the ocean and sea ice follow a special convention: a freshwater
flux is computed based on evaporation and precipitation, but all gains or losses
of freshwater through ice melting or freezing are treated as a salt flux in the
system. With this formalism, the sea ice can be seen as a negative reservoir of
salt. The salt is rejected during new ice formation in open water, basal conge-
lation, snow ice formation and melt of salty ice. Then, the freshwater flux at
the ocean surface is written as FSw = P − E + R + FM + SE, where R is the
river runoff, FM the flux associated to the freezing and melting of snow ice
and SE the flux relative to the salt uptake and release.

4.3 Coupling strategy

As FESOM and LIM3 have not the same data structures, the storage of the
sea ice state variables in LIM3 must be first treated as in FESOM. Then, the
key components of LIM3 are integrated in FESOM following a specific calling
sequence. An overview of those components chosen in each model is provided

Characteristics FESOM LIM3

Thermodynamics ×
Halodynamics NA ×

Dynamics ×
ITD NA ×

Mechanical redistribution NA ×
Thermodynamic redistribution NA ×

Fluxes/Forcing ×

Table 4.1: Illustration of the features kept for the coupled model, where NA (Not
Available) refers to a missing characteristic in the particular model.

in Table 4.1. In order to complete a successful coupling, the inputs required by
LIM3 and the outputs given back to FESOM are also detailed. The last section
is devoted to the heat fluxes needed for the balance equation (4.1), which must
be consistent with the oceanic component.
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4.3.1 Storing sea ice state variables on the FESOM grid
The FESOM surface mesh is constituted of nE elements and each of them can
be identified by a number: e = 1, .., ne. Each element is characterized by three
nodes, that can also be nodes for other elements. From this discretization, the
ice thickness field is expressed as

h(x, y) =
Nn∑
j

hjφj(x, y),

where Nn is the number of nodes, hj are the nodal values and φj are the basis
functions. Following the same formalism, each variable field has its own nodal
values, and these values are ordered by node number in an associated vector for
the different computations. This is a major difference with the finite difference
method where the variables are directly stored into a 2D matrix and organized
according to their longitude and latitude coordinates, respectively.

Global variables LIM3 FESOM-LIM3 Units

Sea ice concentration ai(Nx, Ny, Nc) ai(Nn, Nc) [−]
Sea ice volume vi(Nx, Ny, Nc) vi(Nn, Nc) [m]

Sea ice enthalpy ei(Nx, Ny, Nl, Nc) ei(Nn, Nl, Nc) [J/m2]
Sea ice salt content smvi(Nx, Ny, Nc) smvi(Nn, Nc) [‰ ·m]

Snow volume vs(Nx, Ny, Nc) vs(Nn, Nc) [m]
Snow enthalpy es(Nx, Ny, Nc) ei(Nn, Nc) [J/m2]

Total lead fraction atoi(Nx, Ny) atoi(Nn) [−]

Table 4.2: Transformation of the global variables by the bijective mapping, where
Nx and Ny are the dimensions of the matrix along the x and y coordinates of the finite
difference grid, and Nc and Nl are the number of categories and layers, respectively.

All components from LIM3, coupled to FESOM, represent processes that
are independent from one grid cell to another. LIM3 matrices of dimension N
are thus transformed into matrices of dimension N − 1, as illustrated in Table
4.2. By this way, a particular position in a LIM3 vector is directly linked to the
same particular node in FESOM, as schematized in Figure 4.3. Thanks to this
formulation, the source code of LIM3 does not need to be fully modified and a
bijective mapping must be applied between the different approaches. Given the
non-intuitive correspondence in variables names between FESOM and LIM3,
a technical note is provided in Appendix B.2.
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Figure 4.3: Schematic illustration of the coupling of variables between LIM3 and
FESOM. An initial matrix from LIM3 is transformed into a vector for the coupling of
LIM3. Next, each FESOM node is directly linked to a specific position in this LIM3
vector for all the computations.

4.3.2 Calling sequence

A new interface FESOM−LIM3, illustrated in Figure 4.4, is built in order to
exchange the necessary variables between the two models. In practice, FESOM
starts by reading the forcing and computing sea ice dynamics. Then, the main
call to LIM3 is performed thanks to the interface. For the sake of simplicity,
the main source code of LIM3 is conserved but adjusted to remove the call
to its dynamic component. Thus, all the processes summarized in Table 4.1
are kept. Before the call of the halo-thermodynamics in LIM3, the mechanical
redistribution must be called because the global ice state variables which have
been advected by FESOM, have not been updated. All variables are consis-
tently transformed from LIM3 to FESOM by the bijective mapping. After the
execution of LIM3, FESOM receives the net freshwater and heat fluxes back,
as well as the global ice state variables and their average, which completes the
ice ocean time step.

4.3.3 Inputs/Outputs

In addition to the global sea ice state variables that are exchanged between
both models, LIM3 requires specific inputs. First, the atmospheric fields are
necessary to compute the heat fluxes at the ice or ocean surface: air tempera-
ture [K], wind velocity [m/s], specific humidity, solid and liquid precipitations
[kg/m2/s]. Then, the sea surface temperature [̊ C] and sea surface salinity [psu]
are also required. For the forcing, the shortwave and longwave radiations from
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Figure 4.4: Illustration of the coupling between FESOM and LIM3.
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the Coordinated Ocean-ice Reference Experiments data set (COREv2, Large
and Yeager, 2008) are directly given to LIM3. The latest variables required
especially for the ice redistribution, are the ice velocity [m/s], the friction ve-
locity [m/s] and the divergence εd and a measure of deformation rate ∆ which
are computed from the ice rheology of FESOM. With respect to the ice velocity
(ui, uj) and using the deformation rate of the sea ice cover .εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
,

the latter variables can be written as:

εd = ε11 + ε22,

∆2 =
(
ε211 + ε222

)(
1 + 1

e2

)
+ 4ε

2
12
e2 + 2ε11ε22

(
1− 1

e2

)
.

All sea ice-related global variables are provided to FESOM at the end of the
sea ice time step, as well as the net heat and freshwater fluxes (including the
contributions from the ice growth and melt).

4.3.4 Input heat fluxes to LIM3

Heat fluxes Formulations Parameterization used

Net shortwave radiation (1− α) SW ↓ König-Langlo and
Augstein (1994)

Net longwave radiation LW ↓ −εσT 4 Stefan-Boltzmann Law
Latent heat flux ρaL CE |W | (qa − q)
Sensible heat flux ρaL CH |W | (Ta − T ) Parkinson and

Washington (1979)
Ocean to ice flux ρocoChtu

∗(To − Tf )
Table 4.3: Description of the heat fluxes where T [K] refers to the sea ice tem-
perature or to the ocean temperature (To) depending on the case, qa is the specific
humidity at 10m, q the specific humidity at the surface (sea ice or ocean), ui and
uo are the ice and ocean velocity, respectively, CE and CH refer to the latent and
sensible transfer coefficients, respectively, of the sea ice (constants then) or of the
ocean (variables) as the case may be.

All heat flux calculations realized in LIM3 must be consistent with the forc-
ing fields read by FESOM at tha beginning of the time step. Those fluxes and
their formulations are listed in Table 4.3. The computation of these fluxes is
based on the physical variables and parameters described in Table 4.4 and 4.5,
respectively. Those fluxes are used in LIM3 to compute the energy balance
at the ice interfaces with the atmosphere and the ocean. Following FESOM’s
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parameterizations, the incident shortwave (SW ↓) and longwave (LW ↓) radi-
ations are derived from satellite observations. These fluxes include the effects
of clouds, decreasing SW ↓ and increasing LW ↓. The expressions of the la-
tent and sensible heat transfer coefficients depend on the surface type (ocean
or sea ice). In the case of the ocean, the wind and the atmospheric instability
are taken into account according to the formula of Large and Yeager (2008),
whereas these coefficients are constants for the sea ice. The sea ice albedo used
in FESOM does not depend on the sea ice thickness and only takes four different
surface state-depending values. As LIM3 uses the Shine and Henderson-Sellers
(1985) parameterization which is more complex, the choice of the sea ice albedo
will be developed separately in section 4.5.

Variables in the heat flux Formulations Units

Surface geostrophic wind | ~W | =
√
u2
w + v2

w [m/s]
speed
Friction velocity u∗ =

√
Cdi,o|~ui − ~uo|2 [m/s]

Atmosphere-ocean drag Cda,o = 2.7 10−3

| ~W |
+ 0.142 | ~W |13090 []

coefficient
Latent heat transfer CE,o =

√
Cda,o [ ]

coefficient for the ocean
Sensible heat transfer CH,o = 18

√
Cda,o for ζ > 0 [ ]

coefficient for the ocean = 32.7
√
Cda,o for ζ ≤ 0 [ ]

in-situ freezing temperature Tf = −0.0575 S + 1.7105 10−3 S3/2

− 2.155 10−4 S2 [K]
Specific humidity q = 6.89 640380

ρa
exp −5107.4

T
[kg/kg]

Table 4.4: Description of the variables used in the heat flux calculations, where S
is the salinity of the upper oceanic layer and ζ is the atmospheric stability.
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Physical parameters Symbols Values Units

Ocean albedo αo 0.1 [ ]
Emissivity ε 0.97 [ ]

Stefan-Boltzmann constant σ 5.68 10−8 [W/(m2K4)]
Air density ρa 1.3 [kg/m3]

Reference seawater density ρo 1025 [kg/m3]
Snow density ρs 290 [kg/m3]

Bare sea ice density ρi 910 [kg/m3]
Seawater specific heat co 4190 [ ]

Heat transfert coefficient Cht 0.006 [ ]
Latent heat of vaporization L 2.5 106 [J/K]
Latent heat of sublimation L 2.834 106 [J/K]

Latent heat transfer coefficient
for the sea ice CE,i 1.75 10−3 [ ]

Sensible heat transfer coefficient
for the sea ice CH,i 1.75 10−3 [ ]

Ice-ocean drag coefficient Cdi,o 5.5 10−3 [ ]
Ice-atmosphere drag coefficient Cdi,a 1.32 10−3 [ ]

Table 4.5: List of the constant parameters initially defined by FESOM and now
used also in LIM3 in order to be consistent with the setup.

4.4 Experimental design

We use a mesh with a resolution that varies with the location: the global ocean
has a 1.5̊ horizontal resolution which increases along the coasts. With the aim
of studying the Arctic Ocean, this mesh is also refined to 24km north of 50̊ , and
further to 5km in the Canadian Arctic Archipelago (Figure 4.5). The narrow-
est locations: Lancaster Sound, Nares Strait and Hell Gate-Cardigan Straits
are represented by 11, 6 and 3 grid points, respectively. Fury and Hecla Strait
connecting the Canadian Arctic Archipelago and the Fox bassin are closed in
the model. There are 55 vertical z-levels of increasing thickness. The IBCAO
data (Jakobsson et al., 2008) are used to build the Arctic bathymetry whereas
the GEBCO data is taken for other regions. From 64̊ to 69̊ , a linear combi-
nation of both data is taken (Figure 4.6).

In order to be consistent with respect to heat fluxes in each model, the sim-
ulations were initialized in the same way in LIM3 as in FESOM. Initialized in
FESOM, the mean temperature and salinity fields from the PHC3 global ocean
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Figure 4.5: Resolution [km] of the global mesh in the Northern Hemisphere (left)
and in the Canadian Arctic Archipelago (right) [figures from C. Wekerle (AWI)].

Figure 4.6: Model bathymetry in the Canadian Arctic Archipelago [figure from C.
Wekerle (AWI)].

climatology were used (Steele et al., 2001b). In regions with an initial sea sur-
face temperature below −1̊C, an initial mean sea ice thickness of 2.0m in the
Northern Hemisphere (1.0m in the Southern Hemisphere), ice concentration of
0.95 (0.9) and snow thickness of 0.1m in both areas are prescribed. This initial-
ization allows to yield a sea ice distribution in agreement with the observations.
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The COREv2.0 data set (Large and Yeager, 2008), which includes 6 hourly
data for 10m specific humidity, 10m air temperature and 10m zonal and merid-
ional wind, as well as monthly data for precipitation and daily date for short-
wave and longwave radiations, was taken for the atmospheric forcing. We use
a climatology of monthly river runoff from Dai et al. (2009), and a sea surface
salinity restoring to the PHC 3.0 climatology with a piston velocity of 10m per
60days. FESOM-LIM3 was integrated over the time period 1970 − 2007, and
the last 29 years are used in the analysis. Monthly mean prognostic variables
were saved for this purpose.

4.5 Model tuning

As any sea ice-ocean coupled model, FESOM-LIM3 uses a large range of pa-
rameters that are not strictly constrained by physical observations. In order to
obtain simulated results that are close to observations, some of these parame-
ters need to be tuned depending on the forcing data. For instance, in Miller
et al. (2007), the optimal set of parameter values (cold, thick ice albedo, drag
coefficient and P ∗) appears to change with the atmospheric forcing data. The
sea ice albedo is often the first parameter chosen by modellers to adjust the
simulated sea ice thicknesses and concentrations (Hunke, 2010). However, it is
also important to maintain albedo near realistic values.

As the surface heat fluxes in FESOM-LIM3 are the same as those used in
FESOM, it should make sense to also keep the sea ice albedo that FESOM
employs. It depends on the snow presence and on the surface temperature and
takes the following values:

0.81 if sea ice is cold and covered by snow,
0.77 if sea ice is melting and covered with snow,
0.70 if sea ice is cold and bare,
0.68 if sea ice is melting and bare.

However, these constant values are not well adapted to the multi-category for-
malism since a very thin bare ice category has the same albedo as a thick one.
In LIM3, the sea ice albedo is parameterized following Shine and Henderson-
Sellers (1985), as a function of snow depth, ice thickness and surface temper-
ature, hence a distinct value for each sea ice category. This parameterization
which interpolates the albedo between several pivotal values depicted by the
solid blue line in Figure 4.7, whereas the plain red line corresponds to the
albedo of melting ice. Both maximum values of these albedo parameterizations
(0.53 and 0.65, respectively) are quite smaller than those of FESOM. Keeping
those values causes the sea ice to melt much faster in summer, and leads to an
unrealistically small sea ice extent. Naturally, some other parameter changes
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Figure 4.7: Illustration of the modification of the albedo parameterization of Shine
and Henderson-Sellers (1985). The blue and red solid lines correspond to the unmodi-
fied albedos of the freezing and melting bare ice, respectively. The dashed lines are the
modified albedos in order to be in the range of the albedo values initially in FESOM.
The two plain circles are the initial contant values of the FESOM parallelization for
the freezing (blue) and melting (red) bare ice.

could be investigated in this thesis, but the albedo values usually are the first
to be tuned. Two preliminary simulations were performed with the albedo pa-
rameterizations of FESOM and of LIM3. Table 4.6 shows the mean value of the
sea ice extent and volume in the Northern and Southern Hemispheres for each
parameterization. With regards to the observed values, the results with the
initial albedo parameterization of LIM3 are too low for the coupled model, but
the initial FESOM one does not vary according to the thicknesses and gives
thus larger averages. The main differences are seen in the Arctic where the
mean values are too large for the simulation αF and too small for the αL one,
especially for the minima. In the Southern Ocean, the albedo parameterization
does not have a big influence. Some other parameters that could be tuned in
order to improve the volume results in this area are the boundaries of the ITD
or the lead closing parameter. Due to shearing deformation, some open water
areas, also called leads, can appear in the ice pack. When convergence forces
leads to close, the thin ice is piled up into ridges (Stern et al., 1995). The
new ice can then be reordered to a mean thickness referred to as a lead closing
parameter. In Timmermann et al. (2005), it appears, as in this simulation with
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N.H. S.H.

Obs/Rea αF αL αU Obs/Rea αF αL αU

Extent
Mean 11.94 13.05 11.89 12.21 11.93 10.10 9.96 9.96
Max 15.58 16.89 16.61 16.66 18.76 19.45 19.42 19.33
Min 6.54 8.45 4.37 5.79 3.01 0.18 0.07 0.08

Volume
Mean 23.51 28.08 18.56 20.58 6.35 4.34 4.15 4.15
Max 31.04 37.41 29.43 31.10 9.96 9.34 9.20 9.12
Min 15.04 19.01 7.87 10.08 1.92 0.22 0.10 0.12

Table 4.6: Overview of the simulated sea ice extent [106km2] and volume [103km3]
with the different albedo parameterizations in FESOM-LIM3, where αF refers to
the simulation with the initial albedo of FESOM, αL to the initial albedo in LIM3
(Shine and Henderson-Sellers, 1985) and αU to the adjusted one. All diagnostics
are computed with respect to the mean seasonal cycles. The observed values (Obs)
were retrieved from the National Snow and Ice Data Center (NSIDC) sea ice index
(Fetterer et al., 2012) for the extent, the PIOMAS reanalyses (Rea) (Schweiger et al.,
2011) for sea ice volume in the Northern Hemisphere (N.H.) and the reanalyses (Rea)
from Massonnet et al. (2013) for sea ice volume in the Southern Hemisphere (S.H.).

FESOM-LIM3, that a small lead closing parameter leads to an underestimation
of the sea ice thickness, especially in the S.H. However, in this coupled model,
a better estimation of this parameter should maybe require two distinct values
because a larger value than 0.1[m] could be appropriate for the Antarctic, but
this increasing would also lead to too much Arctic ice. In order to keep satisfac-
tory results in both hemispheres and because Antarctic sea ice is not the focus
of this study, the single initial value for the lead closing parameter is prime
kept. Besides, defining new boundaries for the ice thickness distribution in the
S.H. may also be a solution of this problem. Indeed, the maximum observed sea
ice thickness in this area is only about 3m, whereas the fifth category begins at
3.8m. This category is thus never filled in the simulations of Antarctic sea ice.
Finding better boundary values for the ITD in the Southern Ocean is then a
path of investigations that should also be explored. In order to reduce the er-
rors, the pivotal values in the parameterization of Shine and Henderson-Sellers
(1985) were increased to get the final albedo in the same range of the FESOM
values (Table 4.6). This modified albedo was chosen for all other simulations
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and analyses with FESOM-LIM3. Some other parameters could be adapted in
further studies.

4.6 Concluding remarks

The advantages of coupling LIM3 to FESOM are manifold. LIM3, so far used
in models utilizing the finite difference formalism, already provides satisfactory
results but suffers from the coarse definition of coastlines in some regions. Using
FESOM instead allows to refine among others the coasts of the Canadian Arc-
tic Archipelago. On the other hand, the thermodynamics of sea ice in FESOM
remain relatively simple. LIM3 offers the possibility of representing the subgrid-
scale distribution of ice thickness thanks to the multi-category formalism and
includes a state-of-the-art representation of the sea ice halo-thermodynamics.
This new coupled model FESOM-LIM3 hence brings together the advantages
of each model. The coupling of both models was performed and required some
technical adaptations with regard to the fluxes at the interfaces: the param-
eterizations of the shortwave and longwave radiation, the sensible and latent
heat fluxes, as well as the ocean to ice heat flux. Moreover, an adjustment of
the albedo values was also necessary in order to get a realistic mean sea ice
cover over the period 1979− 2007. The preliminary analysis of the model with
the new albedo provides satisfactory results with respect to the sea ice mean
state. A comprehensive evaluation of the model is now required, as well as the
study of the physical impacts of LIM3’s most important features on the model
outputs in regions where its capabilities were never properly assessed due to
the limiting resolution and coastline definition.
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FESOM-LIM3

Summary

Numerous sea ice-ocean estimates from FESOM-LIM3 are compared with vari-
ous observational datasets, first at the hemispheric scale and then in particular
coastal regions. The model yields mean seasonal cycles and geographical distri-
butions of ice concentration and velocity that are in relatively good agreement
with observations. In the Southern Ocean though, contrary to the Arctic, the
ice thickness is clearly underestimated everywhere by 40% in summer and by
more than 50% in winter. This feature, discussed in detail in the previous
chapter, could be due to some parameters that are not well-adapted for this
hemisphere, such as to low a lead closing parameter, or unadapted boundaries
in the ice thickness distribution. The sea ice seasonal evolution is also an-
alyzed in the Canadian Arctic Archipelago, in the main gates of the Arctic
Ocean (Davis, Fram and Bering Straits as well as the Barents Sea Opening)
and in the Weddell sea. The overall growth and decay of sea ice, as well as the
solid freshwater fluxes, are simulated realistically in all those regions, except
the Bering Strait. In the Northern Hemisphere, FESOM-LIM3 is found to be
appropriate for large-scale sea ice and climate simulations while in the Southern
Hemisphere, some adjustments deserve to be studied in more details.
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5.1 Introduction

In the previous chapter, FESOM and LIM3 have been coupled together in order
to take the advantages of each model. The use of an unstructured mesh in FE-
SOM allows for a higher and adaptative resolution and well-defined coastlines.
On the other hand, LIM3 brings a state-of-the-art representation of the sea
ice halo-thermodynamics and the subgrid-scale distribution of the ice thickness
thanks to the multi-category formalism. After an adjustment of the heat fluxes
and a calibration (see Chapter 4), the model must be evaluated by means of
some observational datasets or reanalyses.

In the next section, a global evaluation of the new coupled model FESOM-
LIM3 is performed. The purpose is to document the model behaviour, in
particular the improvements due to the combination of the refined resolution at
high latitudes with the key components of LIM3. A simulation over the period
1970 − 2007 has been conducted with FESOM-LIM3 and the results over the
period 1979 − 2007 are discussed. The ice areal coverage is investigated, as
well as the sea ice thickness and velocity. In the following section, analyses
are performed to assess the capabilities of the new model at the regional scale.
The seasonal evolution of ice concentration in the Canadian Arctic Archipelago
highlights realistic regional features during the sea ice growth and melt periods.
In the Arctic, the simulated exports through the main gates give results in
general agreement with the available observations. Finally, in the Weddell Sea,
the modelled ice thicknesses in particular locations are studied and compared
to observations from upward looking sonars.

5.2 Global evaluation of FESOM-LIM3

The model has been run over the period 1970− 2007, but the studied period is
1979−2007 in order to skip the model spin up phase. In this section, we discuss
the simulated general sea ice physical state variables: the ice areal coverage and
volume in the Northern Hemisphere (N.H.) and in the Southern Hemisphere
(S.H.), as well as the ice velocity. The model results are compared with avail-
able observations from different sources. For the sea ice extent, the observations
are taken from the National Snow and Ice Data Center (NSIDC) sea ice index
(Fetterer et al., 2012). Initially interpolated on a polar stereographic 25km-
resolution grid, they are provided as monthly values. Sea ice volume cannot be
observed directly and continuously. In situ measurements through autonomous
submarines or moorings provide observations limited in time and space, and
satellite observations still suffer from large uncertainties. For instance, the es-
timated errors can reach 0.7m in the IceSat datasets (Kwok and Cunningham,
2008). In a few cases, the observations are assimilated into numerical mod-
els. In order to estimate the sea ice volume in the N.H., the Pan-Arctic Ice
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Ocean Modelling and Assimilation System (PIOMAS, Schweiger et al. (2011))
outputs are used. This Arctic sea ice reanalysis is obtained by assimilation
of sea ice concentration and sea surface temperature data into an ocean–sea
ice model. For the S.H., we use sea ice volume estimates from the model of
Massonnet et al. (2013) assimilating ice concentration data using an ensemble
Kalman filter. The latter sea ice volume products are hereinafter referred to as
reanalyses. Through this chapter, some indicative comparisons are also made
with the initial sea ice-ocean model FESOM, which has run over the same pe-
riod and under the same conditions (forcing, mesh, constant parameters) as
FESOM-LIM3. However, no systematic comparison has been made since the
comparison of the results between FESOM and FESOM-LIM3 is not necessarily
meaningful. While comparing FESOM-LIM3 to FESOM, we sometimes refer
to the NEMO model when the sea ice model LIM2 has been changed for LIM3
(Massonnet et al., 2011). The latter transition also concerns the improvement
of an initial simple representation (3-layer Semtner model and VP rheology) of
the sea ice physics towards LIM3 (version 3.1).

5.2.1 Ice areal coverage

In this section, the simulated mean seasonal cycle and interannual variations
of the global hemispheric ice extent as well as the modelled geographical dis-
tribution of ice concentration are discussed in both the N.H. and S.H.

Mean seasonal cycle

Averaged over 1979−2007, the modelled mean seasonal cycle (Figure 5.1) of sea
ice extent in the N.H. follows the cycles derived from the satellite observations
(NSIDC) and the reanalyses. In summer, the simulated minimum extent ap-
pears somewhat underestimated (5.79×106km2) whereas it was largely overesti-
mated in the FESOM simulation (8.8×106km2). The maximum value in winter
is overestimated by 106km2, as in the FESOM simulation. In this hemisphere,
the areal decay is faster than observed, whereas the growth seems realistic.
Somehow similarly, NEMO-LIM3 coutperformed NEMO-LIM2 in simulating
the mean seasonal cycle of ice extent, as NEMO-LIM2 overestimated the ice
extent, especially in summer. In the S.H., the simulated maximum ice extent
differs from the observations by only 0.5×106km2 (also as in the FESOM sim-
ulation). However, the minimum value is strongly underestimated since almost
no ice remains. In the FESOM simulation, the winter sea ice which persists
with a minimum at 1.2×106km2 is not so much underestimated as in FESOM-
LIM3, but is significantly different from the observed value. The time of the
winter maximum ice extent is realistically reproduced, as well as the time of
the summer minimum one.
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Figure 5.1: Mean seasonal cycles over the period 1979−2007 of N.H. (top) and S.H.
(bottom) sea ice extents in the FESOM-LIM3 simulation (red) and in observations
derived from satellite measurements (NSIDC) and reanalyses from Massonnet et al.
(2013).

Spatial distribution

Maps of simulated and observed sea ice concentrations give further insight into
the strengths and weaknesses of FESOM-LIM3. Even if there are notable re-
gional errors, the model generally simulates the position of the ice edge properly
and the spatial distribution of ice concentration is in reasonable agreement with
the observations. Note that these data must be considered with caution because
they can present some significant errors. For example, the melt pond effects,
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which influence the observations of ice concentration, lead to large uncertain-
ties in summer (Comiso, 2007). During summer melt and freeze-up in the fall,
the area deduced by the observations may be underestimated by 1.5×106km2,
and the estimated error is around 0.5× 106km2 in winter.

0 10.5

Figure 5.2: Simulated (top) and observed (bottom) mean ice concentrations over the
period 1979− 2007 for March (left) and September (right), indicating the minimum
and maximum ice coverages in the Arctic. The ice edge (purple) on the top panels
indicates the 15% ice concentration contour of the observed fields derived from the
satellite datasets (NSIDC).

For the Arctic summer (Figure 5.2), the widths of the Siberian and Kara-
Sea open area waters in summer are largely overestimated, as well as the open
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water area north of Alaska, as opposed to the FESOM simulation where the
sea ice was really close to coasts and did not melt enough especially in the
Hudson Bay. These open area waters explain the overall underestimation of
the summer Arctic ice extent in FESOM-LIM3. However, the observed ice re-
treat in the Laptev Sea is well reproduced, as well as between the Kara Sea and
Spitsbergen. The simulated ice concentration decreases, as expected, towards
lower latitudes and in the same sharp way as in observations. Finally, only

0 10.5

Figure 5.3: Simulated (top) and observed (bottom) mean ice concentrations over the
period 1979− 2007 for March (left) and September (right), indicating the minimum
and maximum ice coverages in the Antarctic. The ice edge (purple) on the top panels
indicates the 15% ice concentration contour of the observed fields derived from the
satellite datasets (NSIDC).
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a small sea ice cover subsists in the northern Baffin Bay and in the southern
Canadian Arctic Archipelago. In winter, the model overestimates the ice ex-
tent in the Labrador, Greenland and Okhotsk Seas. The Odden Ice Tongue is
not visible but sea ice is present in this region. The simulated width of the ice
stream along the east coast of Greenland is a little overestimated and extends
too much eastwards in the Denmark Strait. The sharpness of ice edge is well
represented by FESOM-LIM3, whereas it was too smooth in FESOM.

In the Antarctic (Figure 5.3), the simulated sea ice distribution in summer
features a lack of sea ice along most of the Antarctic coasts. Sea ice only
persists in the Weddell Sea, contrary to FESOM where sea ice was present in
the Ross and Amundsen seas. In winter, the simulated ice is mainly controlled
by the westerly winds and the position of the Antarctic Circumpolar Current.
The location of the ice edge in the various sectors of the Southern Ocean is
realistically simulated, except in the eastern Ross and Enderby Seas where it
is slightly too far southwards. Overall, the model ice concentrations within the
pack are overestimated compared to the satellite observations (NSIDC), as in
FESOM.

Arctic sea ice extent in September 2007

0 10.5

Figure 5.4: Simulated (left) and observed (right) sea ice concentrations for Septem-
ber 2007 where the ice edge (purple) on the left panel indicates the 15% ice concen-
tration contour of the observed fields, derived from satellite datasets (NSIDC).
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Since 1953, the Arctic sea ice extent at the end of the summer melt season
is declining (Stroeve et al., 2012). In 2007, it reached a particularly low level
since satellite observations began. The simulated spatial distribution of sea
ice concentration in September 2007 is compared to the satellite observations
(NSIDC) in Figure 5.4. FESOM-LIM3 reproduces the main feature of this
particular event. The simulated ice edge is close to the observed one on the
western side, but sea ice does not sufficiently extend on the eastern side. As
previously, FESOM-LIM3 tends to have too much ice in the southern Canadian
Arctic Archipelago, but less than in the FESOM simulation. Moreover, there
also was too much ice towards the East Siberian and Chukchi seas in FESOM.

Interannual variations

Considering the model annual mean ice extent, a trend in the Arctic of −7.79%
per decade is found for the full 1979− 2007 period, which is faster than for the
satellite measurements (NSIDC), suggesting a decline of −5.12% per decade.
In the S.H., a negative trend of −1.39% per decade is also simulated, while
the trend is positive in satellite observations (0.81% per decade). Time series
of monthly anomalies of ice extent (Figure 5.5) indicate that FESOM-LIM3
captures reasonably well the ice extent variability. The correlation between
the model and observations reaches 0.87 in Arctic. Fluctuations of Arctic ice
extent occurring on a month-to-month time scale are not always reproduced
correctly but some particular events happen at the right times. For instance,
the large growth in 1997 and the melting during the summer 2007 are well sim-
ulated. Besides, the standard deviation derived from the model outputs (0.82)
is quite larger than the one from the observations (0.55). This overestimation
of the internnual variability was also noticed in NEMO-LIM3 in comparison
to NEMO-LIM2 (Massonnet et al., 2011). In the S.H., the simulated anomaly
variations are larger than in the Arctic and differ from the anomalies of the
observations more significantly. Indeed, the correlation between the model and
observations is low (0.22). But, the respective standard deviations are closer,
with 0.59 for the model and 0.42 for the observations. Some unusually low ice
extents in the austral winters 1979/1980, 1986/1987 and 1996/1997 are well re-
produced, but there is an unexpected larger low ice extent in 2006/2007 which
is not noticed in the satellite data (NSIDC). The latter feature may be due to
an inappropriate response to the atmospheric forcing fields. Compared to the
observed minima and maxima, the model often represents these events with a
shift of one or two months.
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Figure 5.5: Times series of monthly mean anomalies (i.e. differences of individ-
ual monthly means from the mean seasonal cycle, which corresponds to the monthly
means over the 1979 − 2007 period.) of sea ice extent [106km2] for the N.H. (top)
and S.H. (bottom) as simulated by FESOM-LIM3 (blue) and from the satellite ob-
servations (NSIDC, black).

5.2.2 Ice thickness and volume
Mean seasonal cycle

Figure 5.6 shows the simulated mean seasonal cycles of sea ice volume compared
to reanalyses through 1979 − 2007. In the N.H., the simulated cycle has a
larger amplitude than those from PIOMAS and the reanalyses from Massonnet
et al. (2013). In summer, the simulated minimum volume is underestimated,
with a value of 10.08× 103km3, against 15.04× 103km3 for PIOMAS, but the
maximum value in winter is particularly well estimated with a difference of only
0.06 × 103km3 compared to the PIOMAS data. The summer melting in this
hemisphere is faster than observed and due to the thickness-growth feedback,
the thinner ice tends to grow also faster. The seasonal cycle of FESOM-LIM3
is quite better than those of FESOM since it overestimated the whole observed
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Figure 5.6: Mean seasonal cycles of N.H. (top) and S.H. (bottom) sea ice volume
over the period 1979− 2007 in FESOM-LIM3 (red) and in reanalyses from PIOMAS
and Massonnet et al. (2013) (referred to as reanalyses from Massonnet et al. (2013)
in this figure).

cycle by at least 10 × 103km3. For the S.H., FESOM well reproduced the
minimum mean volume but largely overestimated the maximum with 16 ×
103km3. In FESOM-LIM3, the biases are consistent with those in extent: the
sea ice volume underestimation is particularly pronounced during the austral
summer where the difference between the model and observations is around
1.80 × 103km3. In austral winter, this difference is smaller by 0.80 × 103km3.
The times of the ice volume extrema are realistically reproduced.
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Ice thickness

0 6 [m]3

Figure 5.7: Simulated (top) and observed (bottom) spring (left) and autumn (right)
sea ice thicknesses [m] in the N.H. over the period 2003 − 2007. Modelled ice thick-
nesses are displayed for spring and autumn (mean values for February-March and
October-November, respectively) and compared to the IceSat observations (Kwok
et al., 2009), in which sea ice has only been detected inside the Arctic basin. Some
satellite data are then missing in the other regions.

The spring and autumn sea ice thicknesses derived from the IceSat satellite
data by Kwok et al. (2009) are used here to evaluate the model results (Figure
5.7). A qualitative comparison of the modelled spring sea ice thicknesses with
the observations shows a general agreement. Sea ice thickness decreases from
5− 6m off the north coast of Greenland and the Canadian Arctic Archipelago
to 3.5m at the North Pole, and 0− 2m on the Siberian shelf. In FESOM, this
progressive decreasing in ice thickness was not as well described and an ice
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thickness of 9m remained at the northern Canadian Arctic Archipelago over
the seasons. In the seasonal ice zone, ice thickness in FESOM-LIM3 does not
exceed 1.5m in winter. The thickness gradient between the Siberian shelf and
Greenland is also well captured. In autumn, sea ice has a smaller thickness in
the center of the northern Canadian Arctic Archipelago than observed, and the
thickness between Greenland and the Laptev sea is underestimated by about
2m.

Figure 5.8: Simulated mean sea ice thicknesses [m] in March (left) and September
(right) in the S.H. over the period 1979− 2007.

The simulated austral winter sea ice thicknesses (Figure 5.8) feature ice
values between 0.75 to 1.5m in the Weddell Sea, with a maximum of 2.0m
at the Filchner Ice Shelf edge. Some thinner areas, maybe polynyas, appear
along the east coast of East Antarctica and in the Ross Sea. A area of thicker
ice extends from the Amundsen Sea into the Ross Sea. These characteristics
show an overall underestimation of 1m everywhere compared to observations
(Worby et al., 2008), whereas FESOM was in reasonable agreement with them
and NEMO-LIM2 showed an overestimation of the thickness in the Weddell
Sea. In the FESOM simulation, the sea ice thicknesses extended from 1m to
3m in the Ross and Weddell Seas in September and had a maximum value of
2m in March in the Weddell sea, which are more realistic than FESOM-LIM3.
In March, the thickness simulated by FESOM-LIM3 does not exceed 0.7m in
the Weddell Sea and is very thin in other places. This very low ice feature of
FESOM-LIM3 will be discussed below. As in NEMO-LIM3 vs NEMO-LIM2
studies, the representation of ice thickness is better reproduced in the N.H.
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Ice thickness distribution

The annual cycle of the ice thickness distribution (ITD) averaged above the
Ellesmere Island (80 − 85̊ N and 75 − 105̊ W ) is represented in Figure 5.9,
where each category of sea ice concentration is illustrated. The sea ice growth
is most important in October, resulting in a substantial increase in thin ice
area. The ice continues to form throughout the fall and winter, filling in the
thicker ice categories until the spring. The thickest ice category remains nearly

Figure 5.9: Annual cycle of the ice thickness distribution simulated by FESOM-
LIM3 above the Ellesmere Island (80 − 85̊ N and 75 − 105̊ W ) in 2007, where the
fractional coverage in each ice category (cat.#) is shown.

constant throughout the year and represents 10% of the areal coverage. Qual-
itatively, the annual cycle of the ITD simulated by FESOM-LIM3 reflects well
the main sea ice features in this area.

In order to evaluate the ice thickness distributions simulated by FESOM-
LIM3, the datasets from Operation IceBridge (Kurtz et al., 2013) are used.
These observations are provided thanks to airborne remote sensing platforms
which measure a wide variety of sea ice properties (sea ice thickness, free-
board, snow depth,...) over the period 2009 − 2012. The spatial coverage
extends from −165̊ to 15̊ in longitude and from 80̊ to 90̊ in latitude. For
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the comparison, only the mesh nodes of FESOM-LIM3 located in this area
are used and even if the time period chosen (2003 − 2007) is earlier than the
one observed since no forcing data COREv2 is available for these last years
(2008, 2009, 2010, 2011, 2012), they are even though quite close. The simulated
ITDs show in Figure 5.10 an underestimation in both months of all ice thick-

Figure 5.10: Simulated (black) and observed (red) ice thickness distributions in
March (left) and April (right) with bounds in sea ice thickness fixed to those from
the ITD in FESOM-LIM3. The observations from the IceBridge flights concern the
period 2009 − 2012 whereas the FESOM-LIM3 results are averaged over the period
2003− 2007.

nesses, except for the middle one where there is a large overestimation of more
than 50%. In March, the distribution in the first simulated category is also
overestimated by 50% but the second one is in good agreement with the Ice-
Bridge observations, as well as the last one. The amount of ice in the 4th
category is underestimated by 50%. In April, the sea ice thicknesses are well
distributed in the first and last categories, and overestimated in the second and
fourth ones by 30%.

5.2.3 Ice velocity

The simulated sea ice drifts in the N.H. and S.H. reflect the general patterns of
the atmospheric circulation. In the Arctic, the two main circulation features,
i.e., the Beaufort Gyre and the Transpolar ice Drift, are captured by FESOM-
LIM3 (see Figure 5.11). Sea ice which drifts along the eastern Greenland coasts
is notably fast, with an ice velocity around 20cm/s. The particularly large ice
drift in Fram Strait was also noticed in NEMO-LIM3 and the grid formulation
was suggested by Massonnet et al. (2011) as possible reason. However, higher
drifts compensate for thinner ice north of Fram Strait. In FESOM-LIM3, the
mean ice drift FESOM-LIM3 highlights the divergent motion over the Siberian
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Figure 5.11: Simulated annual mean ice velocity distribution (top) in the N.H.
(left) and S.H. (right), and their associated vector fields (bottom) over the period
1979− 2007.

shelf and the Canadian Arctic Archipelago is a nearly motionless ice zone.

In the S.H., the strong westward drift adjacent to the coast of Antarctica
(around 10cm/s) and the offshore circulation (around 5cm/s) are well repre-
sented by FESOM-LIM3 (see Figure 5.11). These patterns are similar to those
shown by Schmitt et al. (2004). Moreover, the Weddell and Ross Gyres are
captured by the model, with drift speeds of 5 − 10cm/s. These motions are
in agreement with observations, although maxima of ice velocity are observed
in the Indian and West Pacific sectors of the Southern Ocean, where satellite
data show on the contrary an ice cover nearly at rest there (Fedotov et al.,
2013). Finally, the position of the transition zone between coastal and offshore
ice currents is well located, between 65̊ and 70̊ S.
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5.2.4 Discussion

In this section, we discuss some hypotheses about the external factors and
physical mechanisms that could be responsible for the previously described
differences between model and observations. As for NEMO-LIM3, the role of
the halo-thermodynamics remains quite difficult to quantify in the simulations
since numerous processes are involved.

Lead closing parameter. In the S.H., the lead closing parameter, also
called the initial ice thickness (0.1[m]), which we chose not to tune (initial
value of NEMO-LIM3), has a strong influence on the new ice formation. As a
reminder, open water areas that appear in the ice pack due to ice divergence
and shearing deformation are called leads. When convergence forces leads to
close, the thin ice formed in these leads is piled up into ridges and reordered to
a mean thickness referred to as a lead closing parameter. A low value for this
parameter leads to thin new ice by the end of winter which will quicker disap-
pears in summer than a thicker one, and the thick multi-year ice cover is then
more difficult to keep. After several tests performed to check this dependency,
the intense melting in Antarctic seems due, in part, to the low value of the
lead closing parameter. However, it was kept as it is because it is well-adapted
for the N.H., it allows a stable simulation with a quick spin-up phase and it
proved its efficiency in NEMO-LIM3. Moreover, this initial ice thickness must
stay below the low boundary of the second category ([0.6m]), otherwise the
ITD becomes meaningless since the new ice will be directly transferred to the
second category. This parameter is thus to handle with care. The creation of
a double lead closing parameter which would allocate a different value for each
hemisphere would require further investigations in order to find the suitable
values and check if there is not another parameter that could induce this ice
underestimation.

Oceanic convection. Sea ice formation and ocean mixed layer are strongly
linked in the Southern Ocean. The brine released when sea ice forms induces a
large variation between seawater and sea ice salinities, which may lead to con-
vective mixing. This intense vertical mixing mainly occurs during winter with a
local maximum mixed layer depth above 500m in the Weddell sea (Barthélemy
et al., 2015). Besides, the mixed layer also influences the sea ice energy bal-
ance since it modifies the ocean heat flux at the base of the ice layer or at the
ocean surface. If too much warm deep waters are moved at the surface due to
the oceanic convection, the sea surface temperature could prevent the sea ice
formation or to avoid to keep the multi-year ice in the expected areas (Weddell
sea, Ross sea and shelves). The mixed layer depth in September simulated by
FESOM-LIM3, shown in Figure 5.12 (left), is in good agreement with respect
to other recent modeling studies (e.g., Petty et al., 2014; Holland et al., 2014;
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Figure 5.12: Simulated mixed layer depth [m] averaged for September by FESOM-
LIM3 (left) over the period 1979−2007 and by NEMO-LIM3 (right,Barthélemy et al.
(2015)) over the period 1983− 2005.

Barthélemy et al., 2015)(right Figure 5.12). In the Ross and Weddell seas, the
mixed layer is particularly deep (600m) and over some local continental shelves,
it exceeds 200m whereas it is low in the Bellingshausen and Amundsen seas. In
March, the overall mixed layer depth is quite smaller (30− 70m), as expected.
These characteristics are similar with other modeling studies (Holland et al.,
2014; Petty et al., 2014) and do not suggest an ocean anomaly in FESOM-LIM3
that could lead to the underestimation of the sea ice thickness in March. The
sea surface salinities simulated by FESOM-LIM3 do not reveal any singularity
in March or September with values around 33− 34psu.

ITD. A major advance in the coupled model FESOM-LIM3 is the intro-
duction of an ice thickness distribution (ITD). With the ITD formalism, thin
ice disappears faster in early summer in the marginal ice zones, which leads to
a lower ice concentration. More shortwave radiation is then absorbed in the
ocean, and the processes finally increase the ice bottom melt as well as the
freezing in autumn-winter. This partially explains the large amplitude of the
seasonal cycles. As NEMO-LIM3, FESOM-LIM3 seems to be more responsive
than with its former sea ice model version to atmospheric forcing due to the
inclusion of the ITD. In the annual cycle of the ITD above the Ellesmere Is-
land, the seasonal changes through the ice categories highlights the growth and
melt phases in FESOM-LIM3. The comparisons of ITDs with the IceBridge
observations show that the simulated ice is thinner than observed since the dis-
tribution in the third category is larger than the fourth one, whereas the fourth
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category in the observations is the larger in March and April. The ice distribu-
tion is then mainly shifted towards the thinner categories, as in the studies of
Massonnet et al. (2011), in which the contribution of the first category is the
largest or, Vancoppenolle et al. (2009b), in which the largest proportion of ice
is often found in the second category. However, the thicker categories (4 and 5)
are in good agreement with observations, whereas this feature was not found in
the work of Lecomte et al. (2013). The lack of precision in the simulated ITDs
could be due to some uncertainties related to the IceBridge observations, which
can reach values of around 0.5 − 1.5m, and this kind of range can easily shift
ice thickness from a category to another one. These errors vary with respect to
the sensors and to the constant approximations of variable parameters used to
compute the ice thickness. Besides, the boundaries defined for the ITD are the
same for the N.H. and the S.H., whereas the maximum ice thicknesses in both
hemispheres are quite different: around 9m for the N.H. and about 3m for the
S.H. This choice means that the fifth category is never filled for Antarctic sea
ice and the ITD is not optimal in this area. An adjustment of these boundaries
for the S.H. probably may deserve further investigations.

Forcings. In the model, sea ice in the northern Canadian Arctic Archipelago
does not melt sufficiently in summer. This problem arises because there is a
negative bias in the shortwave radiation of COREv2 forcing fields in this area.
Moreover, as this data set is based on the NCEP reanalyses, the warm bias in
the NCEP temperatures in summer (Hunke and Holland, 2007) may also be
responsible for the complete retreat of the sea ice in the northeastern Kara Sea
and off the Siberian and Alaskan coasts. In the S.H., the overall underestima-
tion of ice thickness can be related to the poor representation of the atmospheric
forcing fields (Windmuller, 1997), and near the tip of the Antarctica Peninsula,
a warm bias is also found in the NCEP-NCAR surface air temperatures.

Average. In the N.H., the Odden/Nordbukta ice tongue is not sufficiently
developed in the simulated geographical distribution of mean winter ice con-
centration. However, the number of mesh cells should be sufficiently large
to support the hypothesized mechanisms for its formation (e.g., cold air out-
bursts, instabilities of the East Greenland Current, Comiso et al., 2001). From
the satellite observations, it appears that the ice tongue has a large interannual
variability in the size, location and even persistence, mainly due to the deep-
ocean convection that also varies from year to year in this area (Shuchman
et al., 1998). From this perspective, it appears that the averaging of the model
results over the 1979 − 2007 period masks out the location of the ice tongue
that varies a lot on internnual time scales. For this reason, it is interesting
to notice for instance that the Odden/Nordbukta ice tongue is simulated by
FESOM-LIM3 in March 1997, as illustrated in Figure 5.13. Besides, some im-
portant processes in the shelf regions are misrepresented because the summer
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Figure 5.13: Simulated Arctic ice concentrations in March 1997, highlighting the
Odden/Nordbukta ice tongue.

ice retreat is too important in the East Siberian Sea. In the S.H., the underes-
timation of ice cover could also be due to the absence of ocean waves and tides
component. Indeed, the surface waves break the ice pack into numerous ice
floes, which directly affect the exchanges between the ocean, the atmosphere
and the ice. Tidal currents add a highly variable stress force at the ice-ocean
interface. Because of the speed up of their retreats, they tends to reduce the
expansion of the ice cover (Koentopp et al., 2005).

5.3 Sea ice seasonal variability in coastal regions

After this first standard evaluation, some specific analyses are now performed
on the sea ice variability in the Canadian Arctic Archipelago, the main gates
of the Arctic Ocean and the Weddell Sea. With the local mesh refinement in
the Arctic, the geometry of the Canadian Arctic Archipelago is very realistic in
the model and the sea ice evaluation can thus be conducted there with details.
The exports in the main gates of Arctic: Bering, Davis, Fram Straits and the
southern Barents sea, are also investigated. In this subsection, the mean ocean
volume flux and solid freshwater exports are investigated, as well as the seasonal
variation of these same fluxes. As the resolution around the Antarctica is also
rather fine, the last study concerns the ice draft at some particular locations in
this area which are compared through time series with the datasets obtained
from the upwards looking sonars.
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5.3.1 Canadian Arctic Archipelago

The Canadian Arctic Archipelago (CAA) is a region of particular interest be-
cause of it makes the link between the Arctic and Atlantic Oceans. Its narrow
straits and shallowness (see Figure 5.14) also constitute a challenge for numer-
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Figure 5.14: Labels of the geographical places of interest for this study in the
Canadian Arctic Archipelago.

ical modelling. While numerous GCMs can reproduce sea ice processes in the
Arctic, a larger number of them are unable to resolve those processes in the
CAA. In Lietaer et al. (2008), the CAA is shown to be important in terms
of ice mass balance because it contains 10% of the total Arctic ice volume.
Sou and Flato (2009) developed a regional CAA model with a 0−layer sea
ice component and a horizontal resolution of 22km. The simulated mean ice
concentrations were evaluated against observations in terms of spatial and sea-
sonal variability. Some specific patterns, such as polynyas in Amundsen Gulf
and Smith Sound, were reproduced but the model retained too much ice near
Alaska and not enough in the southern channels of the CAA. Moreover, the
minimum ice cover did not occur at the right time, but several weeks too early.

Every winter, sea ice forms and fully covers the CAA. During the summer
months, sea ice does not completely melt in some straits or gulfs. In these sea
ice regions, the ice conditions are often stable because of the sea ice persistence
(Tivy et al., 2011) Between both extrema, the evolution of the sea ice cover can
be followed from spring to autumn by means of satellite data (NSIDC). The
observed sea ice melt from May to July is shown in Figure 5.15 and the growth
from October to December in Figure 5.16. In the following, the monthly mean
ice concentrations simulated by FESOM-LIM3 are qualitatively compared with
them, and the results from FESOM simulations which have been performed un-
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Figure 5.15: Monthly mean ice concentrations for May (top), June (middle) and
July (bottom) over the period 1979 − 2007. Simulated results from FESOM-LIM3
(left) are compared with satellite observations (NSIDC,middle) and simulated results
from FESOM (right).
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der the same conditions (mesh resolution, forcings).

In Figure 5.15, the FESOM results are illustrated on the right hand-side
panels and the FESOM-LIM3 results on those of its left hand-side. In May, the
sea ice melting is better represented in FESOM-LIM3. The Amundsen Gulf
and the Baffin Bay are the first areas where the sea ice starts to melt, still not
sufficiently, but the local ice concentrations are lower than in FESOM. How-
ever, the annual North Water Polynya (NWP) does not begin to form in Smith
Sound as observed in the satellite datasets (NSIDC). In this open water area,
shortwave radiation is highly absorbed, which enhances the ice melt. This is
in June that the NWP begins to open in FESOM-LIM3, whereas this region is
completely ice free in reality. In the Amundsen Gulf, the ice concentration is
70% which is closer to the 50% value derived from observations than the 90%
ice concentration in FESOM. However, the Foxe Basin does not begin to melt
in June where its sea ice concentration should be around 0.8. The main fea-
tures observed in July are well represented by FESOM-LIM3 whereas they are
all missing in FESOM. Indeed, in FESOM-LIM3, the Amundsen Bay is almost
free of ice, the center of the CAA begins to melt and the ice concentration in
the Queen Maud Gulf is low. Besides, the June characteristics are now present:
there is 50 − 60% of ice in the Baffin Bay and in the Foxe Basin, and a large
NWP. However, the ice remains too compact in the center of the CAA, which
is due to the shortwave radiation bias in this area, already mentioned in section
5.2.

Let’s now have a look at the sea ice growth in autumn. The satellite ob-
servations (NSIDC) show for October ice free areas in the Baffin Bay, the Foxe
Basin and the Amundsen Gulf. The NWP is no longer present and the Queen
Maud Gulf is half-covered by ice. In November, the Amundsen Gulf becomes
fully ice-covered, as well as the north of Baffin Bay. The ice concentration in
Foxe Basin is 50%. The CAA is fully covered by ice in December, only some
open water areas remain along the eastern Greenland coasts. FESOM-LIM3
well represent these main features with the appropriate timing (Figure 5.16-
left), contrary to FESOM in which ice concentrations are generally too large
(Figure 5.16-right).
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Figure 5.16: Monthly mean ice concentrations for October (top), November (mid-
dle) and December (bottom) over the period 1979 − 2007. Simulated results from
FESOM-LIM3 (left) are compared with satellite observations (NSIDC, middle) and
simulated results from FESOM (right).
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5.3.2 Exports through the main gates of the Arctic basin
The Arctic Ocean is a key component of the global hydrological cycle because
it exports, stores, receives, transforms freshwater and has limited connections
to the World Ocean. As illustrated in Figure 5.17, the main gates of the
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Figure 5.17: Locations of the main Arctic gates studied in this section.

Arctic basin, which are studied in this section, are the Bering Strait, Fram
Strait, Davis Strait and the southern Barents Sea Opening (BSO). Between the
Baffin Island and Greenland, the Davis Strait is characterized by the relatively
warm and salty West Greenland Current (WGC) which flows northwards, and
the relatively cold and fresh Baffin Island Current (BIC), which flows in the
opposite direction (Figure 5.18). With its narrow width of 350km, it connects
the CAA to the Labrador Sea. The only deep path from the Arctic Ocean
to the North Atlantic is taken by the cold and fresh East Greenland Current
(EGC) and the warm West Spitzbergen Current (WSC) coming from Fram
Strait. The BSO allows to the Barents Sea to receive salty water. The Bering
Strait, with its width of 85km and depth of 50m, is the only connection between
the Pacific and Arctic Oceans. The Pacific waters flowing into the Arctic basin
represent an important source of freshwater.
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Figure 5.18: Main north Atlantic oceanic currents [source: http :
//www.uscg.mil/lantarea/iip/F AQ/Ocean1.shtm]

Table 5.1 provides the averages of ocean volume flux through these gates
computed for FESOM-LIM3 over the period 1979 − 2007, and gives observa-
tional estimates for comparison. In both cases, a positive value indicates a

Fram Bering Davis BSO
FESOM-LIM3 −2.22 0.43 −0.206 1.98
Observations −2.0± 2.7a 0.8± 0.2b −1.6± 0.2c [2.0; 2.3]d

Table 5.1: Mean ocean volume fluxes [Sv] simulated by FESOM-LIM3 and observed
(a: Schauer et al. (2008), b: Roach et al. (1995), c: Curry et al. (2013), d: Smedsrud
et al. (2010)).

source for the Arctic Ocean. The volume flux Fv is computed by integrating
the normal velocity over a vertical cross section of area A:

Fv =
∫
A

~u · ~n dA,
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where ~n is the unit normal. The results in the Fram Strait and BSO are in good
agreement with observations, whereas there is a largely underestimated volume
transport in the Davis Strait. However, its mean direction is correct and cor-
responds to an export. FESOM-LIM3 also underestimates the Bering Strait
volume export mostly because of the coarse resolution used in this area (24km).

The solid freshwater flux, which contains contributions from ice and snow,
is also studied in these gates. The solid freshwater flux Ffw is computed as
suggested by Aagaard and Carmack (1989), with the reference salinity of Sref =
34.8psu defined in FESOM, as follows:

Ffw =
∫ l

0

(
Sref − Si
Sref

ρi
ρw

hi + ρs
ρw
hs

)
~ui · ~n dl,

where dl is the ocean depth, ~ui is the ice velocity, the sea ice salinity Si is
fixed to 6psu, the ice and seawater densities to 940kg/m3 and 1000kg/m3,
respectively. Then, Ffw depends on both sea ice thickness and velocity. In
the Arctic, the sea ice is mainly formed inside the basin with a small import
from the Bering Strait (Woodgate and Aagaard, 2005). There is a net export
through all other gates: the Fram and Davis Straits, and BSO, as shown in Ta-
ble 5.2. Since the CAA limits the ice exports with its narrow straits, the main

Fram Bering Davis BSO
FESOM-LIM3 −2836 −6.78 −455 −155
Observations −2300± 340a 100± 70b [−644;−427]c

Table 5.2: Solid freshwater fluxes [km3/year] simulated by FESOM-LIM3 and ob-
served (a: Serreze et al. (2006), b: Woodgate and Aagaard (2005), c: Kwok (2007)).

gateway for the solid freshwater to leave the Arctic Ocean is the Fram Strait,
where the export is the strongest. In FESOM-LIM3, its particularly high value
is related the large ice velocities. All the simulated solid freshwater (FW) fluxes
correspond to exports, although it should be an import in the Bering Strait.
This small export in this area could be explained by two different behaviours
according to the seasons. This feature will be investigated in the discussion
below. The Davis Strait export is within the range of observed values.

Figure 5.19 shows the seasonal variability of the solid FW fluxes through
the main gates. These exports mainly occur during winter. The vanishing
transports in summer in the BSO, Davis and Bering Straits are due to the nearly
ice-free conditions. With the largest seasonal variations, a continuous ice export
is always observed in the Fram Strait. With its weakest export in August, it
remains the major component of the solid freshwater mass balance of the Arctic
Ocean since it exports 10% of the total Arctic ice mass each year. As the ice flux
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Figure 5.19: Mean seasonal cycles of solid freshwater fluxes through the main gates
of the Arctic basin, averaged over 1979− 2007.

is estimated by Rothrock et al. (2000) in a range from 1600 to 5000km3/year
([130, 415]km3/month), the results are in good agreement with observations
for this area. The work of Kwok et al. (2004) also shows a good agreement for
this strait, with a montly mean export of around 280 ± 125 km3/month. In
the Bering Strait, it appears that there is ice export during spring and import
in winter, while observed values only show an import anytime (Woodgate and
Aagaard, 2005).

5.3.3 Weddell Sea
In the Southern Ocean, the Antarctic Sea Ice Processes and Climate (ASPeCt)
database provides sea ice thickness visual estimates (Worby et al., 2008). These
measurements are performed from icebreakers as they travel through the ice
pack. However, this method is quite subjective and the data may be biased
since they are collected on the ship’s path only, i.e., where the ice is the thinnest.
Over long periods, the only source for information for sea ice thickness vari-
ability in the Antarctic remains the data recorded from upward looking sonars
(ULS).
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Figure 5.20: Locations of the AWI ULS in the Atlantic sector of the Southern
Ocean with diagrams of mean sea ice drafts over the period 1990− 2008 [figure from
A. Behrendt (Behrendt et al., 2013)].
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Figure 5.21: Illustration of the measure-
ment principle with ULS, where hi is the
total ice thickness, id the ice draft and z
the instrument depth.

The Alfred Wegener Institute
dropped off 13 instruments in the
Weddell Sea, as shown in Figure 5.20,
which recorded data over several time
periods since 1990. Covering the pe-
riod 1990 − 2008, this data set in-
cludes 3.7 million observations and
contains uncorrected raw ice drafts,
corrected drafts and basic parameters
measured by ULS. In order to assess
the sea ice thicknesses simulated by
FESOM-LIM3, the four most exten-
sive data sets were considered: ULS
207 to the north of the Antarctica
Peninsula and, ULS 229, 231 and
232 located along the prime merid-
ian. The mesh nodes closest to the
ULS locations were selected for com-

parison between the model results and observations, as illustrated in Table 5.3.
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The sonars transmit sound pulses towards the sea surface, which are reflected
both by the water-air interface and by the sea ice bottom. When the pulses
gets to the ocean surface, the computed distance is equal to the instrument
depth z, as shown in Figure 5.21. When sea ice is present, this is the measure
between the ice bottom and ULS. The height of the sea ice portion below the
water level, e.g. the ice draft di, is then calculated by subtracting this distance
from the instrument depth. This information can be used to compute the total
ice thickness hTi , if the sea ice and snow densities as well as the snow thickness
hTs are known. The accuracy of these measurements is affected by errors from
different sources. For the sake of simplicity, the observed ice drafts will be
kept as they are, and the simulated ice thicknesses by FESOM-LIM3 will be
transformed into ice drafts by using the equation of hydrostatic balance:

ρsh
T
s + ρih

T
i = ρwdi

⇔ di = ρih
T
i + ρsh

T
s

ρw
,

where ρi, ρs and ρw are the ice, snow and seawater densities, respectively.

Point 207 Point 229
Lon Lat Lon Lat

ULS 63̊ 43′W 50̊ 51′S 63̊ 57′W 0̊ 02′E
Nodes of model 63̊ 48′W 50̊ 54′S 63̊ 45′W 0̊ 17′W

Point 231 Point 232
Lon Lat Lon Lat

ULS 66̊ 30′S 0̊ 01′W 69̊ 00′S 0̊ 00′E
Nodes of model 66̊ 07′S 0̊ 12′E 68̊ 48′S 0̊ 06′W

Table 5.3: Locations of the ULS chosen and the closest FESOM-LIM3 nodes, where
Lon and Lat refer to the longitude and latitude, respectively.

Although the ULS database does not cover a large geographical domain,
these observations allow to study the temporal variability of ice drafts in par-
ticular locations. Figure 5.22 depicts the seasonal evolution of the ice draft
derived from the ice thicknesses simulated by FESOM-LIM3. The ice growth
and melt timing are in good agreement with observations. However, the ice is
much thinner than observed. Near the Antarctica Peninsula, the simulated ice
draft is particularly low, with a maximum value around 1m, whereas the largest
observations at Point 207 range from 2m to 4m. Along the prime meridian, the
results are relatively good, especially for Points 229 and 231. The observations
vary from 0m to 1.0 − 1.3m, and the model thicknesses from 0 to 0.8m. At
Point 232, the ULS ice drafts are quite large (3m), while model values do not
evolve in the same range,
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Figure 5.22: Comparison of monthly mean sea ice draft-derived from simulated
ice thickness by FESOM-LIM3 (blue) with the ULS ice draft (red) over the period
1990− 2007.
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with a maximum of 0.7m. As previously mentioned, the FESOM simulation
gives ice thicknesses in the S.H. in reasonable agreement with observations.
Likewise, its simulated ice drafts have larger amplitudes than FESOM-LIM3
with average values around 1− 1.2m.

5.3.4 Discussion

In FESOM-LIM3, the seasonal evolution of the sea ice concentration is partic-
ularly well represented in the CAA thanks to the unstructured mesh. As the
channels are properly resolved, the straits open and close at the right times
in comparison to the satellite observations (NSIDC). For the first time with
a state-of-the-art description of the sea ice thermodynamics, this area can be
studied in more details. In previous works, LIM3 was used with, at best, a grid
of 1̊ horizontal resolution in global configuration with only one or two channels
represented in the CAA (NEMO-LIM3, version 3.1). Even if the new version
of NEMO-LIM3 (version 3.5) now permits high-resolution simulations in par-
ticular areas, for instance the Svalbard Archipelago (Rousset et al., 2015), no
published work has so far been made with more than two resolved channels
in the CAA. The too high ice concentrations in the CAA center may be due
to a low bias in the shortwave radiation forcing fields, as already mentioned.
Besides, the ITD could also be responsible for this characteristic because this
is an area of strong convergence and shear (Bitz et al., 2001). Inspired by the
work of Thorndike et al. (1975), a fundamental assumption is also made in the
function of distribution when shear deformation builds ridges. The thickness
distribution is computed according to the same hypothesis as when the ice
is broken and piled into ridges, meaning that all the energy is dissipated by
shearing. But, Flato and Hibler (1995) showed that only half of this energy is
used by shearing, the rest lost to sliding. Nevertheless, this qualitative study
gives a first overview of the simulated sea ice state in the CAA and it is in rel-
atively good agreement with observations, contrary to the FESOM simulation
which largely overestimated the ice concentration through all the channels of
the CAA.

The exports of ocean volume and solid freshwater have been also investi-
gated through the main gates of the Arctic basin. The mean ocean volume
fluxes are in good agreement with the various datasets of observations, except
for the Davis Strait which has a lower value than observed. The annual mean
meridional ocean velocity over all the studied period is computed in order to
check the intensity of oceanic currents in this area (Figure 5.23). As expected,
the WGC flows northwards along the western Greenland coasts and the BIC
goes southwards along the Baffin Islands. In the Davis Strait, the BIC takes up
the 2/3 of the channel width but their maximum values are similar. The mean
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solid freshwater exports through these same gates are in very good agreement
with the observations, but a strange behaviour in the Bering Strait is noticed:

−5 5 [cm/s]0

Figure 5.23: Mean annual
meridional ocean velocity at the
sea surface over the period 1979−
2007, where a positive value indi-
cates a northwards velocity.

the net export is slightly negative which
means that the solid freshwater tends to go
out of the Arctic Basin. This behaviour
was already observed in other GCMS such as
MRI-A, MRI-F or FSU-HYCOM as shown in
Wang et al. (2015), but no explanation or hy-
pothesis has been found in this work. Among
the different saved prognostic variables, the
study of the sea surface elevation in this area
does not reveal anything in particular. In the
Bering Strait, the monthly mean meridional
wind fields from the COREv2 are mainly ori-
ented southwards, whereas the ocean veloc-
ity is directed northwards, but both are in
the same range of intensity which is around
10cm/s. Considering those elements, the
atmosphere-ice drag is maybe too large in
this area with the inclusion of the ITD. In-
deed, the ITD representation tends to give

thinner ice in the marginal ice zones. The Figure 5.24 shows the ice velocities
in March and May, when the minimum and maximum exports are simulated
by FESOM-LIM3. Likewise, the ice is exported in March with a meridional
velocity of around 3cm/s towards the Bering Sea where the ice velocity is par-
ticularly strong (15cm/s), and towards the Chukchi Sea in May with a velocity
around 7.5cm/s. With these investigations, no pertinent conclusion can be
drawn and this area may deserve a further study.

Finally, the ice draft in the S.H. has been studied in some particular loca-
tions of the Weddell Sea where ULS data are available. As previously men-
tioned, the underestimation of the ice thickness could be due to unadapted
parameters, such as too small a lead closing parameter value or the large ITD
boundaries. The difference of amplitude could also come from the wrong lo-
cations correspondence which has been established between the ULS position
and the node coordinates. Besides, the numerous ridges and raftings which
influence the ice distribution in a small area cover, could amplify this ampli-
tude difference. Especially, the underestimation of ice drafts at Points 207 and
232 could be attributed to the forcing data. The computation of the ice draft
is based on the ice and snow densities which are taken constant in FESOM-
LIM3 (910kg/m3 and 290kg/m3), whereas their observed values range from
720 to 940kg/m3 (Timco and Frederking, 1996) and from 100 to 400kg/m3

(Meløysund et al., 2007), respectively. Moreover, the snow thickness is also
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Figure 5.24: Mean ice velocities in March (left) and May (right) simulated over the
period 1979− 2007 in the Bering Strait.

required in this computation and is given by FESOM-LIM3 itself. In order
to compute di, all these constant approximations can lead to some quite large
errors. Some other errors can also appear through the measure uncertainties
of the sonars or in the parameters used in the correction approach’s (Behrendt
et al., 2013). Despite that, the freezing and melting timing phases in the sim-
ulated time series are realistic with regard to the observations.

5.4 Concluding remarks

In the global evaluation, FESOM-LIM3 provides a first reasonably good de-
scription of the mean sea ice states in both the N.H. and S.H. In the Arctic,
the sea ice concentrations, volumes and velocities are in agreement with the
available observations, and the ITDs are reasonably represented over a part of
the Arctic basin. Only the center of the CAA slightly remains covered by sea
ice in summer, which is mainly due to the low bias of the COREv2 shortwave
radiation forcing in this area. In the Southern Ocean, the underestimation of
the ice thickness in summer may be due to not-well adapted parameters for this
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area, such as the single value of the lead closing parameter or the large values
for the ITD boundaries. However, the ice concentrations and velocities remain
realistic, especially in summer since almost all the sea ice melts in winter.

In the second part of this chapter, the seasonal variability of different ice
state variables was evaluated in particular coastal regions. In the straits of the
CAA, the spring melting and the autumn freezing, which open or close different
channels or gulfs, occur at the right times and places according to the satellite
observations (NSIDC). Through the main gates of the Arctic basin (Bering
Strait, Fram Strait, BSO, Davis Strait), the annual mean of the ocean volume
flux and the solid freshwater exports are in good agreement with regard to
the available observations, and their seasonal variability also remain within the
range of the observations, except for the Bering Strait. A strange behaviour in
this place is noticed in winter with ice exported towards the Bering Sea. The
time series of ice draft in the Weddell Sea are reasonably consistent with the
ULS data, even if the ice thickness in this hemisphere is quite underestimated.

The coupling of FESOM and LIM3 thus provides a sophisticated sea ice-
ocean model discretized in finite element. The inclusion of the key components
of LIM3 in FESOM allows to study in details some areas which were, until now,
often unresolved or represented with a coarse resolution. This first version
of FESOM-LIM3 proves to be quite well tuned for the mean sea ice state,
especially in the N.H. With the knowledge of its flaws, the coupled model is
suitable for large-scale sea ice and climate simulations. In order to improve
the sea ice simulation in the S.H. considerably, a fine calibration of the various
parameters should be the first of priorities. For instance, an idea may be to
differentiate the value of the lead closing parameter in order to distinguish
both hemispheres. Besides, the boundaries in the ITD could be adapted or
another deep oceanic convection scheme could be used to see if some changes
are noticed. All these changes should be studied and improved in the future.
In the N.H., it could be interesting to analyze in more details the ITD impact
on FESOM-LIM3 or to use other atmospheric forcing fields.
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Conclusions

Even if the use of parameterizations of subgrid-scale processes is widespread in
GCMs discretized with structured grids, their inclusion in finite element sea ice
- ocean models still raises questions about the influences of these parameteriza-
tions on the model results or the improvements of the model skills. Indeed, the
unstructured meshes in which the elements size can strongly vary, bring issues
about the adjustments of these parameterizations according to the shape and
the sizes of the grid elements.

The parameterization of mesoscale eddies, which occur in most places of the
World Ocean, is usually treated as two distinct processes: the isopycnal diffu-
sion and the Gent-McWilliams (GM) velocity, that are represented as suggested
by Redi (1982) and Gent et al. (1995), respectively. Although these parameter-
izations significantly improve the oceanic results, they also sometimes produce
unwanted behaviours, such as unexpected diffusion (Griffies, 2004). The follow
question :How to reduce the use of numerical artefacts associated with
those parameterizations to the benefit of their physics?, was one of the
central questions of this thesis. Thanks to the oriented penalty factor intro-
duced, which is especially built for the strongly anisotropy diffusivity tensor,
the numerical scheme is sufficiently stable and the numerical errors associated
to the inclusion of this isopycnal diffusion in SLIM appear to be less impor-
tant than with other penalty factors. Because the penalty factor influences the
results, its estimation is not an easy task. In Chapter 2, the oriented penalty
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factor seems to be the most appropriate (it induces less numerical diffusion,
lower L2 error1, better condition number and better convergence) with respect
to the other ones. It was then selected for the oceanic applications examined
in Chapter 3. The tracer concentration, initialized as a Gaussian, really tends
to follow the isopycnals in a progressively inclining density field. As, initially,
the penalty factor is not adapted to follow the isopycnals, unwanted diapycnal
diffusion is induced by the numerical scheme. But with the oriented penalty
factor, this spurious diffusion appears to be negligible with regard to the real
diapycnal diffusion. With this parameterization and the special treat-
ment of the penalty factor, the physical processes associated with
the isopycnal diffusion really seem to be respected and the remain-
ing artefacts do not seem to consequently affect the ocean results.

For the GM velocity, the one-dimensional boundary value problem sug-
gested by Ferrari et al. (2010) was applied in SLIM in order to avoid additional
tapering functions and ensure impermeable boundaries over the domain. The
idealized channel simulation investigated in Chapter 3 highlighted the interest
to include this parameterization in SLIM. Under the action of the wind, the
isotherms are getting extremely steep without the GM parameterization and
this kind of pattern could lead to numerical issues, such as high oceanic in-
stabilities. However, this feature is removed when the GM parameterization
is activated. Indeed, the isotherms are slumped and the stratification close to
the ocean surface is modified. Thanks to the one-dimensional boundary
value problem statement, the usual additional numerical artefacts
relative to the GM velocity are avoided and the expected oceanic
behaviours such as the slumped isopycnals, seem to be well esti-
mated in SLIM applications.

In this first part, I learned that the numerical schemes are far from being
perfect and numerous artefacts can appear if we do not pay attention.
However, it is often possible to deal with these issues and find adequate
methods in order to minimize their effects while better emphasizing the
physical processes.

Subgrid-scale processes can also be parameterized in sea ice models in order
to improve their skills and to reach a high level of complexity in the physics
representation. Although they already yield real improvements when they are
taken into account in sea ice models running on structured grids, these pa-
rameterizations were never included in sea ice models based on unstructured
meshes. This is why we addressed the following question in this thesis: what

1The L2 error is defined as the square root of the sum of the square of the differences
between the numerical and analytical solutions.
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are the interest and potential applications of having a state-of-the-art
representation of the sea ice physics on an unstructured mesh? The
key components of LIM3 have been coupled with the sea ice - ocean model FE-
SOM described in Chapter 4 in order to take the advantages of each model. The
unstructured mesh from FESOM associated to the inclusion of a state-of-the-
art representation of the halo-thermodynamics and the ice thickness distribu-
tion (ITD) with the multi-category formalism of LIM3 required some technical
adaptations with regard to the heat fluxes at the interfaces. In particular, the
albedo parameterization, initially included in FESOM, which consisted in four
constant valuesdoes not appear to be well suited for the multi-category formal-
ism of LIM3. In order to get a realistic mean sea ice state over the 1979− 2007
period, the parameterization of Shine and Henderson-Sellers (1985) was modi-
fied to reach the albedo values in the same range of FESOM’s ones and to take
the ice thickness into account for albedo calculations.

In Chapter 5, the mean geographical distributions of sea ice concentration
are shown to be well simulated in the Arctic. The simulated ice thickness in
parts of the northern Canadian Arctic Archipelago is smaller overall than ob-
served in March and April, and its distribution is shifted towards the thinner
categories with regard to the IceBridge observations. Such low biases were
also observed in studies conducted by NEMO-LIM3 (Massonnet et al., 2011;
Vancoppenolle et al., 2009b). The mean seasonal cycle of ice extent only dif-
fers by 10% in amplitude compared to the NSIDC observations in which the
errors can vary from 5% in winter to 20% in summer (Partington et al., 2003).
In the Arctic, the time series of monthly anomalies of ice extent simulated
by FESOM-LIM3 and observed (NSIDC) are especially well correlated (0.87),
contrary to the S.H. (0.22). This difference of features in both hemispheres can
be due to some unadapted parameters for the S.H., such as the lead closing
parameter or the boundaries of the ITD. Moreover, in the Antarctic, the ice
thickness is clearly underestimated by 40% and the sea ice almost completely
disappears in summer.

In the Canadian Arctic Archipelago, where all the narrow straits are rep-
resented, FESOM-LIM3 exhibits specific characteristics that were missing in
the FESOM simulations, such as polynyas in the Amundsen Gulf and Smith
Sound. In the main gates of the Arctic, the simulated solid freshwater fluxes,
which contain contributions from ice and snow, are in good agreement with
observations, except in the Bering Strait, where the solid freshwater flux tends
to go out of the Arctic basin. The seasonal solid freshwater flux is particularly
well simulated by FESOM-LIM3 with a continuous ice export all over the year
in the range of observations. Even if the ice drafts are underestimated with
respect to ULS observations, as for the S.H., the freezing and melting timing
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phases in these time series remain realistic.

The coupling of FESOM and LIM3 provides a sophisticated sea
ice - ocean model discretized on an unstructured mesh and enables
to study in details some areas which were, until now, unresolved or
represented with a coarse resolution. Even if some improvements are
expected from models including a high-level of complexity within the
representation of sea ice and ocean physics, this is not trivial. A fine
calibration of the parameters should be performed to ensure such
improvements in the simulations. From this perspective, further in-
vestigations are required.

In this second part, I learned that the coupling between key components
of two different sea ice - ocean models is not obvious even if they sepa-
rately provide satisfactory results with respect to observations. In order
to simulate the mean sea ice state in a reasonable way, the calibra-
tion of such models remains necessary although complex and difficult to
investigate.

Perspectives

In the first two chapters of this thesis, the effects of mesoscale eddies which
have been parameterized in SLIM have been only studied in test cases or ide-
alized ocean applications. When the computational time will be optimized,
some longer simulations could be conducted as in the studies of (Griffies, 1998;
Ferrari et al., 2010) or more complex areas, such as the Gulf Stream region or
the Southern Ocean, could be dealt with in greater details (Hallberg, 2013).
In this way, the understanding of these still not well-know processes and their
impacts could be improved.

With the new coupled sea ice - ocean model FESOM-LIM3, various works
are possible. Even if the sea ice is well simulated in the N.H., there is a large
underestimation of ice extent in the S.H. This issue is perhaps due to unadapted
parameters, such as the lead closing parameter or the number of categories in
the ITD. The first improvement to bring would be to achieve a fine calibra-
tion for both hemispheres. The most appropriate values should be investigated
through several long-term simulations.

Besides, the strange behaviour of the solid freshwater flux noticed in the
Bering Strait would deserve further investigations. Even if this feature has
already been observed in others GCMs (Wang et al., 2015), no explanation
or hypothesis was suggested. The effects of changes in the value of the ice-
atmosphere drag coefficient could be examined in order to fix the flux issue in
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the Bering strait. Indeed, its value is maybe too large with the inclusion of the
ITD and as the ice is thinner in the marginal ice zones, its motion can easily
be influenced by the winds.

As the model is forced by atmospheric fields, these also have some repercus-
sions on the results. For instance, the simulated too thick sea ice in the center
of the Canadian Arctic Archipelago is mainly due to a low bias of the COREv2
shortwave radiation forcing in this area. It should be interesting to use other
atmospheric forcing fields to study its impacts on the sea ice results, as for
NEMO-LIM3 in the study of Lindsay et al. (2014). Besides, the subgrid-scale
parameterizations in the oceanic and sea ice components are often functions
of several forcing fields, such as the air temperature or the winds. The reso-
lution of these atmospheric forcing fields then becomes crucial and may lead
to an optimum behaviour of the parameterizations only if it is consistent with
the model resolution below (Winton et al., 2014). If the forcing resolution is
too coarse, the advantages of parameterizations adapted to a finer model grid
are lost. From this perspective, running a simulation with another set of high
resolution forcing fields should lead to different results with FESOM-LIM3 and
may deserve further studies.

After some other adjustments to improve the mean sea ice states in both
hemispheres, some more quantitative studies could be performed in order to
study areas of particular interest, e.g. the Svalbard Archipelago investigated
in Rousset et al. (2015). In addition, some other variables can be influenced by
the resolution of specific areas and relative studies can therefore be handled.
For instance, the modelled freshwater fluxes could be analyzed in the straits
of the Canadian Arctic Archipelago in comparison with the work of Wekerle
et al. (2013), where simpler sea ice physics was used.

Finally, some other representations of the sea ice physics, such as a de-
scription of the sea ice rheology based on its elasto-brittle behaviour (Girard
et al., 2011) or the inclusion of a comprehensive snow scheme (Lecomte et al.,
2013) might be implemented in FESOM-LIM3 in order to further increase its
level of complexity and to see if these new processes really improve the sea ice
simulations.
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Supplementary material for Chapter 3

A1. Local tracer consistency

The property of local tracer consistency requires that the discrete tracer equa-
tion preserves constants in a closed domain, if there is no source or sink (White
et al., 2008b). This is equivalent to verifying that a constant tracer concen-
tration is the solution of equation (3.5). After integration by parts, the weak
formulation of the free evolution of the tracer concentration with only the
Gent-McWilliams velocity follows this equation:

∫
Ωe

∂C

∂t
τdΩ +

∑
k

∫
γk

n · {ued} CτdΓ−
∫
Ωe

∇τ · ued C dΩ = 0 ∀e. (A.1)

In order to have consistency, the following equation is obtained by imposing C
to be constant in space:

∑
k

∫
γk

n · {ued} τdΓ︸ ︷︷ ︸
¬

−
∫
Ωe

∇τ · ueddΩ︸ ︷︷ ︸


= 0. (A.2)
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The Gent-McWilliams velocity is defined from the streamfunction ψ such that:

ued = ∇× ψ

=

 −∂zψy
∂zψx

∂xψy − ∂yψx

 .

In terms of the finite element approximation, this yields:

ψhx,z =
∑
i

ψix
∂τi
∂z

=⇒ uhed =

 −
∑
i ψ

i
y
∂τi

∂z∑
i ψ

i
x
∂τi

∂z∑
i ψ

i
y
∂τi

∂x −
∑
i ψ

i
x
∂τi

∂y

 .

The term ¬ of equation (A.2) can be written as:∑
k

∫
γk

n · {uhed} τjdΓ

=
∑
k

∫
γk

∑
i

[
−nx

(
ψ+
i y + ψ−i y

2

)
∂τi
∂z

+ ny

(
ψ+
i x + ψ−i x

2

)
∂τi
∂z

+nz

(
ψ+
i y + ψ−i y

2

)
∂τi
∂x
− nz

(
ψ+
i x + ψ−i x

2

)
∂τi
∂y

]
τjdΓ

=
∑
k

∑
i

[
−

(
ψ+
i y + ψ−i y

2

)∫
γk

nx
∂τi
∂z

τjdΓ +
(
ψ+
i x + ψ−i x

2

)∫
γk

ny
∂τi
∂z

τjdΓ

+
(
ψ+
i y + ψ−i y

2

)∫
γk

nz
∂τi
∂x

τjdΓ−
(
ψ+
i x + ψ−i x

2

)∫
γk

nz
∂τi
∂y

τjdΓ
]
.

In addition, the integration by parts can be used:∫
Ωe

∂

∂x

(
∂τi
∂z

)
τjdΩ =

∫
γk

nx
∂τi
∂z

τjdΓ−
∫
Ωe

∂τi
∂z

∂τj
∂x

dΩ.
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The equation (A.1) then becomes:∑
k

∫
γk

n · {uhed}τdΓ

=
∑
k

∑
i

[
−

(
ψ+
i y + ψ−i y

2

)∫
Ωe

(
∂

∂x

(
∂τi
∂z

)
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∂z

∂τj
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)
dΩ

+
(
ψ+
i x + ψ−i x

2

)∫
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(
∂

∂y

(
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)
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dΩ
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(
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(
∂

∂z

(
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)
dΩ

]

=
∑
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∑
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2

)∫
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(
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∂x

∂τj
∂z
− ∂τi
∂z

∂τj
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)
dΩ

+
(
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(
∂τi
∂z

∂τj
∂y
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∂y

∂τj
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)
dΩ

]
.

(A.3)

As the interface side by default is the left-hand side, the term  of equation
(A.2) can be written as:∫

Ωe

∇τj · u+
eddΩ =

∑
i

[
ψ+
i y

∫
Ωe

(
∂τi
∂x

∂τj
∂z
− ∂τi
∂z

∂τj
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)
dΩ

+ψ+
i x
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(
∂τi
∂z

∂τj
∂y
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∂τj
∂z

)
dΩ

]
.

(A.4)

With the solutions (A.3) and (A.4), equation (A.2) can be written as:

∑
i

[(
ψ−i y − ψ

+
i y

2

)∫
Ωe

(
∂τi
∂x

∂τj
∂z
− ∂τi
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∂τj
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)
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+
(
ψ−i x − ψ

+
i x

2

)∫
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(
∂τi
∂z

∂τj
∂y
− ∂τi
∂y

∂τj
∂z

)
dΩ

]
= 0.

ψ must then be continuous to be consistent.

A2. Conservation
In this case, the tracer concentration depends on time and space. After inte-
grating on the volume, the free evolution of the tracer concentration with only
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the Gent-McWilliams velocity can be written as:∫
Ω

∂C

∂t
dΩ +

∫
Ω

∇ · (ued C) dΩ = 0.

After integration by parts, the equation becomes:

d

dt

∫
Ω

C dΩ +
∫
∂Ω

n · (ued C) dΓ = 0.

With the streamfunction Ỹ , the Gent-McWilliams velocity becomes:

uhed =


∑
i Ỹ

i
x
∂τi

∂z∑
i Ỹ

i
y
∂τi

∂z

−
∑
i Ỹ

i
x
∂τi

∂x −
∑
i Ỹ

i
y
∂τi

∂y

 .

Since Ỹ (Γ) = 0, the second term of the equation disappears and the equation
becomes:

d

dt

∫
Ω

C dΩ = 0.

The tracer concentration is then conserved.
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B.1 EVP rheology in FESOM

In the representation of the sea ice dynamics in FESOM, the elastic-visco-
plastic (EVP) rheology is performed as suggested by Hunke and Dukowicz
(2001). Under the assumption that the sea ice is behaving as a non-linear
compressible viscous fluid, its internal stress tensor follows the equation:

σij = 2η(εij −
1
2δijεkk) + ζδijεkk −

1
2δijP,

where

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
is the deformation rate tensor, η and ζ are the shear and bulk viscosities,
respectively, and P is the ice strength which depends on the ice concentration
ai and thickness hi:

P = P ∗ hi e
(−c(1−ai)).

As empirical parameters, P ∗ = 23000N/m2 and c = 20. From these calcula-
tions,

∆2 =
(
ε211 + ε222

) (
1 + 1/e2)+ 4ε212/e

2 + 2ε11ε22
(
1− 1/e2) ,
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where the eccentricity e = 2. The shear and bulk viscosities are written as:

η = P

2∆ ,

ζ = P

2e2∆ .

With σD = σ11 + σ22, σT = σ11− σ22, the EVP model consists in the following
time-dependent equations:

∂σD
∂t

+ σD
2T + P

2T = P

2T∆εD,

∂σT
∂t

+ e2σT
2T = P

2T∆εT ,

∂σ12

∂t
+ e2σ12

2T = P

2T∆ε12,

where the deformation rate components are εD = ε11 + ε22 and εT = ε11 − ε22,
and an implicit time stepping scheme (backward Euler) is used to solve them.
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B.2 Correspondance in the name of variables between
FESOM and LIM3

The purpose of this technical subsection is to provide the information required
to reproduce this coupling, especially through the correspondance in the name
of variables between FESOM and LIM3.

Equivalence of symbols

FESOM LIM3 Variable names

ai ice concentration (5 categories)

aTi
∑N=5
i=1 ai total ice concentration

vi ice volume by unit area (5 categories)

mi = Mi

ρi
vTi total ice volume per unit area

vs snow volume by unit area (5 categories)

ms = Ms

ρs
vTs total snow volume per unit area

Ts
∑N=5
i=1

aiTs,i

aT
i

total surface temperature (ice or snow)

h̃i
∑N=5
i=1

aivi

aT
i

effective ice thickness

h̃s
∑N=5
i=1

aivs

aT
i

effective snow thickness

Table B.1: Equivalent variables in LIM3 and FESOM.
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T. Kärnä, V. Legat, and E. Deleersnijder. A baroclinic discontinuous galerkin
finite element model for coastal flows. 0cean Mod., 2012. 1, 23, 53, 63, 70,
78

H. Kernkamp, A. Van Dam, G. Stelling, and E. de Goede. Efficient scheme for
the shallow water equations on unstructured grids with application to the
Continental Shelf. Ocean Dyn., 61:1175–1188, 2011. 9

N. Kliem. A sea ice forecasting system for the waters around greeanland. In
16th International Conference on Port and Ocean Engineering under Arctic
Conditions, pages 1217–1226, 2001. 10, 78

M. Koentopp, O. Eisen, C. Kottmeier, L. Padman, and P. Lemke. Influence
of tides on sea ice in the weddell sea: Investigations with a high-resolution
dynamic-thermodynamic sea ice model. J. Geophys. Res., 110, 2005. 117



156 References

N. T. Kurtz, S. L. Farrell, M. Studinger, N. Galin, J. P. Harbeck, R. Lindsay,
V. D. Onana, B. Panzer, and J. G. Sonntag. Sea ice thickness, freeboard, and
snow depth products from operation icebridge airborne data. The Cryos., 7:
1035–1056, 2013. 111

R. Kwok. Baffin bay ice drift and export: 2002–2007. Geophys. res. let., 34,
2007. 124

R. Kwok and G. Cunningham. Seasonal ice area and volume production of
the arctic ocean: November 1996 through april 1997. J. Geophys. Res., 107,
2002. 84

R. Kwok and G. F. Cunningham. Icesat over arctic sea ice: Estimation of snow
depth and ice thickness. J. Geophys. Res., 113, 2008. 100

R. Kwok, G. Cunningham, and S. Pang. Fram strait sea ice outflow. J. Geophys.
Res., 109, 2004. 125

R. Kwok, G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi.
Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. J.
Geophys. Res., 114, 2009. 109

Z. Lai, C. Chen, G. Cowles, and R. Beardsley. A nonhydrostatic version of
fvcom: 1. validation experiments. J. Geophys. Res., 115, 2010. 9

J. Lambrechts, R. Comblen, V. Legat, C. Geuzaine, and J.-F. Remacle. Mul-
tiscale mesh generation on the sphere. Ocean Dyn., 58:461–473, 2008. 37

W. Large and S. Yeager. Diurnal to decadal global forcing for ocean and sea
ice models: The datasets and climatologies. Technical Report TN-460+STR,
NCAR, 2004. 85

W. Large and S. Yeager. The global climatology of an interannual varying
air-sea flux data set. Clim. Dyn., 33:341–364, 2008. 90, 91, 94

O. Lecomte, T. Fichefet, M. Vancoppenolle, F. Domine, F. Massonnet, P. Math-
iot, S. Morin, and P. Barriat. On the formulation of snow thermal conductiv-
ity in large-scale sea ice models. J. Adv. Mod. Earth Sys., 5:542–557, 2013.
116, 137

S. Legrand, V. Legat, and E. Deleersnijder. Delaunay mesh generation for an
unstructured-grid ocean circulation model. Ocean Mod., 2:17–28, 2000. 9

P. Lemke. A coupled one-dimensional sea ice-ocean model. J. Geophys. Res.,
92:13164–13172, 1987. 81

P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron
transport equation. Academic Press, USA, 1974. 23



References 157

O. Lietaer, T. Fichefet, and V. Legat. Coupled model of ocean general circula-
tion and sea ice evolution in the arctic ocean. Ocean Mod., 24:140–152, 2008.
10, 78, 118

R. Lindsay, M. Wensnahan, A. Schweiger, and J. Zhang. Evaluation of seven
different atmospheric reanalysis products in the arctic. J. Clim., 27:2588–
2606, 2014. 137

W. Lipscomb. Remapping the thickness distribution in sea ice models. J.
Geophys. Res., 106:13989–14000, 2001. 83, 85

R. Lohner, K. Morgan, J. Peraire, and M. Vahdati. Finite element flux-
corrected transport (FEM-FCT) for the euler and Navier-Stokes equations.
IJNMF, 7:1093–1109, 1987. 80
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T. Jung, and J. Schröter. The Finite Element Sea Ice-Ocean Model (FESOM)
v.1.4: formulation of an ocean general circulation model. Geosci. Mod. Dev.,
7(2):663–693, 2014. 80

Q. Wang, M. Ilicak, R. Gerdes, H. Drange, et al. An assessment of the arctic
ocean in a suite of interannual core-ii simulations: Sea ice and freshwater.
Ocean Mod. (submitted), 2015. 130, 136



164 References

X. Wang, Q. Wang, D. Sidorenko, S. Danilov, J. Schröter, and T. Jung. Long
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