
UNIVERSITÉ CATHOLIQUE DE LOUVAIN

ECOLE POLYTECHNIQUE DE LOUVAIN

INSTITUT DE MÉCANIQUE, MATÉRIAUX ET GÉNIE CIVIL

DISCONTINUOUS FINITE ELEMENT METHODS FOR

TWO- AND THREE-DIMENSIONAL MARINE FLOWS

DOCTORAL DISSERTATION PRESENTED BY

RICHARD COMBLEN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR IN APPLIED SCIENCES

THESIS COMMITTEE:

Prof. Vincent Legat, Université catholique de Louvain (Advisor)
Prof. Eric Deleersnijder, Université catholique de Louvain

Prof. Gérard Degrez, Université libre de Bruxelles
Prof. Jean-François Remacle, Université catholique de Louvain

Prof. Eric Delhez, Université de Liège
Prof. Emmanuel Hanert, Université catholique de Louvain

Prof. Matthew D. Piggott, Imperial College, London
Prof. Grégoire Winckelmans, Université catholique de Louvain (Chairman)

Louvain-la-Neuve, September 2010





Avant toute choses, j’ai de nombreux remerciements à adresser.
Durant la dernière année de mon cursus d’ingénieur, j’ai eu la chance

de réaliser un mémoire sous la direction de Vincent Legat, en proche collab-
oration avec Laurent White. Laurent, Vincent, vous m’avez donné le goût de
la recherche, et si cette thèse à commencé, c’est grâce à vous.

Durant ces quatres années, Vincent Legat a été le promoteur de ce tra-
vail. Avec sa légendaire bonne humeur, Vincent a rythmé toutes les étapes
de cette thèse. Il a toujours été présent, et en particulier quand il le fallait.
Merci pour tout, pour ces séances de correction d’articles en duo, pour le dy-
namisme communicatif que tu transmets à tout tes chercheurs.

Même si sur papier, Vincent est mon promoteur officiel, dans la
pratique, il est largement secondé par Eric Deleersnijder et Jean-François
Remacle. Eric, ta passion pour la recherche est totale. Merci pour ton en-
têtement à me faire publier, pour les échanges divers et souvent passionants
qui m’ont permis de découvrir de nombreuses choses, des marches aléatoires
à la percée de Sedan. Jean-François, merci pour la qualité de tes conseils,
pour le sérieux que tu mets dans tout ce que tu fais. Et au plaisir d’écouter
ton prochain concert. Enfin, merci à vous trois pour la gestion de cette équipe
de recherche. Vous avez recruté ces chercheurs qui sont devenu pour moi des
amis.

J’ai eu la chance de m’intégrer au sein d’une équipe de recherche, com-
posée de gens particulièrement sympathiques et accueillants. Laurent, merci
pour tout. Olivier, Olivier et Sylvain, c’était un vrai plaisir de partager vos bu-
reaux. Jonathan, merci pour toutes ces journées à deux devant le PC, j’ai ap-
pris énormément avec toi. Sam, ma messagerie instantanée te sera toujours
ouverte. Sébastien, c’est toujours un plaisir de travailler avec toi. Paul-Emile,
merci pour tout, et surtout pour cette super semaine au Canada. Benjamin,
Sam, Sébastien et Tuomas, bonne chance pour la suite. . .

Et puis tous les autres, merci à Brieux, pour toutes ces questions com-
pliquées sur Petrov et Galerkin, auxquelles tu as toujours su apporter la
bonne réponse. Merci à Laurence pour ces séances de mécanique des fluides
en duo. Merci à Maxime, tu étais le meilleur voisin, et le meilleur adversaire
aux échecs. Finalement, merci à tous ces habitants du batiment Euler, qui
m’ont permi de réaliser une thèse dans un environnement convivial et sym-
pathique.

Enfin, merci à Véronique. Ces quatres années de thèse, c’est quatre an-
née de bonheur passées à tes côtés.

Pour conclure, un grand merci à tous les membres de mon jury, pour
le sérieux avec lequel ils ont considéré ce travail.

Ce travail a été financé par le F.R.S-FNRS par le biais du mandat
d’aspirant qui m’a été accordé. Qu’il en soit remercié.





CONTENTS

Contents iii

1 Introduction 1
The need for numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Structured grid methods in ocean modeling . . . . . . . . . . . . . . . . . . . . . . 2
Unstructured mesh methods for fluid flows . . . . . . . . . . . . . . . . . . . . . . 3
Development of unstructured mesh ocean models . . . . . . . . . . . . . . . . . . 3
Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Supporting publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Comparison of finite element pairs for the shallow-water equations 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 One-dimensional illustration of key concepts . . . . . . . . . . . . . . . . . . 14
2.3 Two-dimensional discretization of the shallow water equations . . . . . . . 16
2.4 Mesh refinement methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Solving the shallow water equations on the sphere 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 An efficient methodology to handle PDEs in spherical geometry . . . . . . 36
3.3 Validation with the shallow water equations . . . . . . . . . . . . . . . . . . 40
3.4 Perturbed Rossby-Haurwitz waves . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 A three-dimensional baroclinic model: spatial discretization 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Geometrical numerical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Discontinuous Galerkin Methods . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Discrete DG finite element formulations . . . . . . . . . . . . . . . . . . . . . 63
4.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 A three-dimensional baroclinic model: temporal discretization 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

iii



iv Contents

5.3 Compatible discrete barotropic and baroclinic problems . . . . . . . . . . . 87
5.4 Implicit-explicit Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion and perspectives 109
SLIM: a multi-purpose modeling tool . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Perspectives for two-dimensional modeling . . . . . . . . . . . . . . . . . . . . . . 110
Perspectives for three-dimensional modeling . . . . . . . . . . . . . . . . . . . . . 114

Appendices 121

A Supplementary material for Chapter 3 121
A.1 Scaling of second kind Christoffel symbols . . . . . . . . . . . . . . . . . . . 121

B Supplementary material for Chapter 5 125
B.1 Time-stepping algorithms of FEOM . . . . . . . . . . . . . . . . . . . . . . . 125

C Isopycnal diffusion with FEM 127
C.1 Variance diminishing property is guaranteed . . . . . . . . . . . . . . . . . . 127
C.2 Vanishing isoneutral flux of the density is guaranteed . . . . . . . . . . . . . 128

References 131



C
H

A
P

T
E

R

1
INTRODUCTION

The oceans play a crucial role in the Earth system. They cover over two thirds of the
Earth surface. They act as a thermal flywheel, thanks to the high specific heat of water
compared to air. The thermohaline circulation, though slow, carries a huge amount of
heat from the equator to the poles, homogenizing the atmosphere temperature around
the globe. Further, the marine waters are a reservoir for many chemical species, and es-
pecially carbon dioxide. The carbon dioxide dissolves within the surface waters, where it
is used by plankton for photosynthesis. This organic material eventually falls toward the
sea bottom, and the carbon dioxide has therefore been captured. For all those reasons,
and many more, it is mandatory for scientists to gain a deep knowledge of the ocean
system, to understand the causes for the present status of the system, and to be able to
predict its future behavior.

The need for numerical modeling

The oceans are a complex dynamical system. An wide spectrum of phenomena appears
together in space and time, ranging from millimeters and seconds scales, to thousands of
kilometers and hundreds of years scales. Furthermore, unlike fluid dynamics problems
common to the engineer, it can hardly be reproduced in the laboratory.

The interesting timescales for climate studies are at least dozens of years. In situ and
satellite observations can provide an insight into past events, but cannot help for pre-
diction. Numerical models are the only predictive tools. Further, they allow to consider
various scenarii.

This thesis deals with numerical methods, used to build softwares that can be used
by oceanographers to model the behavior of the ocean system. Indeed, we stand at the
frontier between applied mathematics and geosciences. Without applied mathematics,
we cannot develop efficient software useful for oceanographers, but without a sufficient
knowledge of the ins and outs of physical oceanography, we can develop something effi-
cient but useless to oceanographers.

1



2 Introduction

Structured grid methods in ocean modeling

The seminal paper of Bryan (1969) is usually considered as the starting point of numer-
ical oceanography. This first large scale ocean model was developed at the Geophysical
Fluid Dynamics Laboratory, Princeton, in the late sixties. It was based on finite differ-
ences on structured longitude-latitude grids, with layers of equal depth. Most of the
mainstream ocean models can be seen as evolutions of Bryan’s model. These evolutions
are of three kind.

First, the numerical methods have evolved. For instance, vertical coordinate systems
have been generalized (Bleck, 1978), shaved cells (Adcroft et al., 1997) allow to repre-
sent more accurately the sea-bottom topography, and monotonic advection schemes are
available (Thuburn, 1996), that prevent nonphysical extrema of the solution.

Second, the subgrid-scale phenomena parameterizations have dramatically progres-
sed. For instance, sophisticated turbulence models have been designed (Mellor and Ya-
mada, 1982; Pacanowski and Philander, 1981), providing a much better mixing behavior.
Further, isopycnal diffusion (Redi, 1982) and Gent-McWilliams stirring (Gent and McWi-
lliams, 1990; Gent et al., 1995) provide effective parameterizations of unresolved meso-
scale eddies. Moreover, a nonlinear equation of state enables nonlinear effects due to
linear mixing, such as cabbeling and thermobaricity (Griffies, 2004).

Third, the resolved set of equations has evolved, as now free-surface movements are
taken into account. Free-surface models handle much more easily the water fluxes at
the sea surface (Blumberg and Mellor, 1987; Killworth et al., 1991). Implicit free-surface
models provide a consistent coupling of two- and three-dimensional models (Dukowicz
and Smith, 1994; Marshall et al., 1997), even if split-explicit is still resorted to in most
models. Review and perspectives of numerical ocean modeling can be found in Griffies
et al. (2000) and Griffies et al. (2009).

Within the wide range of numerical tools for solving partial differential equations in
rectangular domains, finite difference methods on structured grids are the fastest, con-
sidering discretizations of the same order providing solutions with the same accuracy.
This follows naturally the structured nature of the discretization, that enables efficient
computation of the discrete terms, using the same stencil in the whole computational
domain. This explains why for convective problems, finite difference models can use ex-
plicit time discretization, while we cannot afford such a time discretization for the same
problem using unstructured finite elements. It is commonly thought that, for the same
problem and the same resolution, an unstructured finite element model is one order of
magnitude slower than a finite difference model (even if recent progress tends to reduce
this gap).

However, finite difference models cannot be applied to all problems. They have in-
trinsic constraints, that are both their advantages and their drawbacks:

• The grid is structured, enabling fast computation of spatial operators, but prevent-
ing flexible variation of resolution.

• The grid is built upon the isolines of the parameters of the surface parameteriza-
tion, for instance longitude and latitude. To obtain a resolution close to uniform,
the parametrization must be either stretched (see for instance the grid used with
the NEMO project) or split into different surfaces, such as for the cubed sphere
(Adcroft et al., 2004). Parameterizations such as the stereographic projection can-
not be used because of the too large variations of the metric.
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• If the boundaries are aligned with the coordinate system, the finite difference so-
lution can be highly accurate. If it is not the case, boundaries are represented as
staircases, and the global accuracy of the scheme is decreased to first order, unless
immersed boundary methods are resorted to (Mittal and Iaccarino, 2005; Griffith
and Peskin, 2005), that allow to recover second order accuracy if implemented with
care.

These drawbacks are inherent to structured grid methods. To circumvent them, we
must resort to unstructured meshes.

Unstructured mesh methods for fluid flows

Finite volume methods are extremely popular in computational fluid mechanics. In-
deed, these methods are well suited for advection dominated flows, as the fluxes com-
putation takes into account the characteristic structure of the equations. Further, they
allow to use unstructured meshes. However, using such methods, it is difficult to build
a high order solution on unstructured grids. Indeed, to increase the accuracy, finite vol-
ume methods need information from the neighboring cells, and the higher order the
discretization, the more neighbors needed (Toro, 1997, Section 13.4). Reconstructing a
high order solution based on neighbors is complicated due to the unstructured nature of
the mesh, unless block structured approaches such as the spectral volume method are
used (Wang, 2002; Wang and Liu, 2002, 2004; Wang et al., 2004; Liu et al., 2006; Sun et al.,
2006), that can be compared to discontinuous Galerkin methods (Zhang and Shu, 2005).

Finite element methods were first designed for elliptic problems, such as the Poisson
equation or elasticity problems. Finite element methods are based on a functional for-
malism. The fields are discretized and the exact operators are applied onto these discrete
fields. If such a method is used as it for advection dominated flows, strong oscillations
spoil the solution. Indeed, the standard Galerkin method does not take into account
the characteristic structure of the equations. To solve this issue, stabilized methods have
been introduced, such as Petrov-Galerkin (Brooks and Hughes, 1982; Hughes and Mallet,
1986), in which test functions are upwinded, mimicking finite volume methods.

Discontinuous Galerkin finite element methods are increasingly popular for advec-
tion dominated flows. Indeed, they allows to keep to best from both finite element and
finite volume methods. From the finite element point of view, they can be seen as edge-
stabilized methods. From the finite volume point of view, they can be seen as high order
finite volume with local embedded Galerkin reconstruction. As finite element methods,
they allow for high order polynomial interpolation. From finite volume, they keep the
interface fluxes that handles naturally hyperbolic phenomena.

Development of unstructured mesh ocean models

State of the art ocean general circulation models are tremendously complex. They in-
volve many datasets, forcings, and coupling with a sea-ice model and/or an atmosphere
model. Numerous parameterizations are used to model the effects of small scale turbu-
lence, mesoscale eddies, unresolved straits, bottom friction, convective adjustment, and
many more. All these tools have been added progressively in softwares based on the his-
torical finite difference hydrodynamical kernel. However, it is impossible to modify these
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models step by step to use a finite element hydrodynamical kernel on unstructured grids.
Therefore, we must start at the beginning, and write models from scratch.

Starting from a white page does not mean forgetting forty years of numerical ocean
modeling, but rather to develop a new model while rethinking all the key choices made
by ocean modelers the past four decades.

Three research groups are working on similar projects, aiming at large scale ocean
models using finite element methods on unstructured grids, resulting in a friendly com-
petition:

• ICOM1 (Imperial College Ocean Model) is developed at Imperial College, London,
based on Fluidity, a home made finite element software for fluid flows. Mesh adap-
tivity is a key feature of this non-hydrostatic model.

• FEOM (Finite Element Ocean Model) is developed at the Alfred Wegener Institute
for Polar Research, Bremerhaven in Germany. This model is the closest to practical
large scale application, using robust numerical methods.

• SLIM2 (Second-generation Louvain-la-Neuve Ice-ocean Model) is developed in Lou-
vain-la-Neuve, Belgium, and my work fits within this project.

Several other groups are developing unstructured grid models for coastal and estu-
arine problems, using finite volumes (Chen et al., 2003; Fringer et al., 2006; Ham et al.,
2005; Casulli and Zanolli, 2000), finite elements (Walters, 2006; Le Bars et al., 2010) or dis-
continuous Galerkin methods (Aizinger and Dawson, 2002; Dawson and Aizinger, 2005;
Kubatko et al., 2006; Aizinger and Dawson, 2007).

The first step to build an unstructured mesh ocean model is to generate a mesh.
For the model to benefit from the unstructured nature of the grid, we must be able to
make meshes that have the right resolution at the right place, and represent accurately
the coastlines. Sébastien Legrand worked on mesh generation for ocean modeling, on
the sphere (Legrand et al., 2000), using complex length scale fields on complex domains
(Legrand et al., 2006), and using anisotropy to capture complex features (Legrand et al.,
2007). At Imperial College, Gerard Gorman developed mesh generation methods con-
strained by accuracy criterion on coastlines and bathymetry (Gorman et al., 2006, 2007).
More recently, coastline approximation algorithms have been designed and incorpo-
rated into the open source software Gmsh3 (Geuzaine and Remacle, 2009). Combined
with the stereographic projection, it allows the user to build easily a mesh for his zone of
interest (Lambrechts et al., 2008).

The next stage is to choose the three-dimensional structure of the mesh. ICOM re-
lies on completely unstructured meshes made of tetrahedra (Piggott et al., 2008). Such
a choice, while being the most flexible, does not take into account the specificity of the
vertical direction in ocean flows: it is the axis along which gravity occurs and, in hydro-
static models, the equations are not the same for the horizontal and vertical momentum
conservation.

For SLIM, the choice of prismatic elements has been made from the beginning (White
et al., 2008a,b). These are built by extrusion of a surface two-dimensional mesh (see Fig-

1http://amcg.ese.ic.ac.uk/index.php?title=ICOM
2http://www.climate.be/slim
3http://www.geuz.org/gmsh

http://amcg.ese.ic.ac.uk/index.php?title=ICOM
http://www.climate.be/slim
http://www.geuz.org/gmsh
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Figure 1.1: Illustrative meshes of the world ocean, made of triangles only (top), and made of both
triangles and quadrilaterals (bottom). These meshes have been generated using Gmsh
(Geuzaine and Remacle, 2009) using the same edge-length field, thanks to the tools
developed by Lambrechts et al. (2008).
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ure 1.2). Such vertically aligned elements allow for a natural treatment of the hydrostatic
pressure.

Figure 1.2: Three-dimensional mesh used to model the flow around the Rattray Island, Great Bar-
rier Reef, Australia. Picture from Blaise et al. (2007).

During the development of FEOM, vertically structured meshes made of tetrahedra
were first considered (Nechaev et al., 2003; Danilov et al., 2004, 2005), and now vertically
structured meshes made of prismatic elements are used (Wang et al., 2008a,b).

Prismatic meshes can be extruded from two-dimensional triangular meshes, quadri-
lateral meshes, or mixed meshes made of triangles and quadrilaterals. In this thesis, we
will use only meshes made of triangles, or prisms with a triangular basis for three-di-
mensional modeling. However, in a newer version of SLIM, we will be able to use mixed
meshes. Illustrations of triangular and mixed meshes of the world ocean are found in
Figure 1.1.

ICOM relies on a stabilized finite element formulation for the Navier-Stokes equa-
tions Ford et al. (2004b) using linear shape functions on tetrahedra. FEOM is now avail-
able with two versions (Danilov et al., 2008): a stabilized P1−P1 formulation, and a mixed
P NC

1 −P1 formulation based on Hanert et al. (2005).

Motivations

We aim at the development of a three-dimensional model for large scale marine flows.
This model will use meshes that are horizontally unstructured and vertically structured.
We consider finite element methods based on discontinuous or partly discontinuous
shape functions.
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The two-dimensional equations for the vertically averaged dynamics of the ocean are
the shallow water equations. An accurate discretization of this set of equations is there-
fore a prerequisite to the development of a three-dimensional model. Finite element
methods for the shallow water equations are of two kind: naturally stable formulations,
and stabilized formulations. Le Roux et al. (1998) presented a review of possible solution
to obtain a stable finite element formulation for large scale flows. Among the proposed
finite element pairs, the P NC

1 −P1 pair, using non-conforming linear elements for veloc-
ities and continuous linear elements for sea-surface elevation, was the most promising.
Hanert et al. (2005) proposed a complete description of a scheme based on this element
pair. However, it appears that this scheme is unstable in the inviscid limit. The first ob-
jective of this thesis was to obtain a stable formulation for the shallow water equations,
for all range of parameters relevant to large scale oceanography.

Geophysical flows develop at the surface of Earth, and this surface is not flat. Repre-
senting the surface of the sphere with a single two-dimensional frame of reference leads
to singularities at poles, where the metric terms are ill-defined. In finite difference dis-
cretizations, the computational grid is intrinsically linked to the parameterization of the
surface hosting the flow. It is not the case anymore using finite elements. When the reg-
ularity constraint on the surface representation is relaxed, several new algorithms can be
designed. The second objective of this thesis was to develop a suitable algorithm for
the model to operate in spherical geometry.

White et al. (2008a,b) presented the first version of the three-dimensional SLIM. This
version was based on the P NC

1 −P1 pair of elements, and did not include baroclinic ef-
fects, i.e. effects of density gradient on momentum. Indeed, baroclinicity induces a sig-
nificant increase in the possible complexity of the flow. For barotropic flows, the only
hyperbolic phenomena are surface gravity waves and advection. For baroclinic flows,
internal wave dynamics appears. Barotropic large-scale geophysical flows are always
subcritical, while internal waves can break. The third, most important objective of the
thesis, was to develop a three-dimensional baroclinic model. On the one hand, an ac-
curate spatial discretization must be deduced. On the other hand, an efficient time dis-
cretization must be performed.

Outline of the thesis

This manuscript is built as the collection of four papers written in the course of this the-
sis, reproduced here as four chapters.

In Chapter 2, we study a finite element formulation for the shallow water equations
where a stabilization is induced using a Riemann solver for the interface terms. This
formulation is used with five finite element pairs. The benefits and drawbacks of each
solution are compared on a set of idealized benchmark triggering the main limit cases
that appear in large scale oceanography.

In Chapter 3, we detail a new algorithm to solve vectorial system of equations on ar-
bitrary curved surfaces, and validate this approach using standard benchmarks for the
shallow water equations on the sphere. The main idea of this algorithm is to define a
Cartesian frame of reference for each vectorial degree of freedom, and for each geomet-
rical entity where finite element integrals are computed. This approach induces no mod-
ification in the discrete finite element formulation, all the metric terms are embedded in
transfer operators used to switch between frames of reference. A similar approach using
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local frames of reference has been designed by Bernard et al. (2009), enabling optimal
convergence for high order discretizations.

In Chapter 4, we detail the spatial discretization of the baroclinic model that we have
developed. This model is based on discontinuous Galerkin finite elements, taking into
account the characteristic structure of the equations related to internal waves.

In Chapter 5, we detail the temporal discretization of this model. The range of propa-
gation speeds is so wide for large scale oceanography that if we are interested in the slow
dynamics, we cannot solve the fast dynamics explicitly. In this Chapter, we present a so-
lution based on a mode-splitting approach, where the fast dynamics is solved implicitly
while the slow dynamics is solved explicitly, using implicit-explicit (IMEX) methods.

Chapter 6 provides concluding remarks and perspectives for the future of the model.
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COMPARISON OF FINITE ELEMENT PAIRS FOR

THE SHALLOW-WATER EQUATIONS

This Chapter reproduces an updated version of the following paper, first submitted on 28
November 2008:

R. Comblen, J. Lambrechts, J.-F. Remacle, and V. Legat. Practical evaluation of five part-
discontinuous finite element pairs for the non-conservative shallow water equations. In-
ternational Journal for Numerical Methods in Fluids, 73:701–724, 2010.
doi: 10.1002/fld.2094.

Abstract

This paper provides a comparison of five finite element pairs for the shallow wa-
ter equations. We consider continuous, discontinuous and partially discontinuous
finite element formulations that are supposed to provide second order spatial accu-
racy. All of them rely on the same weak formulation, using a Riemann solver to eval-
uate interface integrals. We define several asymptotic limit cases of the shallow wa-
ter equations within their space of parameters. The idea is to develop a comparison
of these numerical schemes in several relevant regimes of the subcritical shallow
water flow. Finally, a new pair, using non-conforming linear elements for both ve-
locities and elevation (P NC

1 -P NC
1 ), is presented, giving optimal rates of convergence

in all test cases. The P NC
1 -P1 and P DG

1 -P1 mixed formulations lack of convergence
for inviscid flows. The P DG

1 -P2 pair is more expensive but provides accurate results
for all benchmarks. The P DG

1 -P DG
1 provides an efficient option, except for inviscid

Coriolis-dominated flows, where a small lack of convergence is observed.

11
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2.1 Introduction

The shallow water equations are a classical model used in a wide area of physics and en-
gineering. They govern flows in estuaries, enable modeling of dam-breaks, floods and
tides, and are a key building block for ocean modeling as well as atmosphere model-
ing. Different numerical methods have been designed for the shallow water equations.
Finite volumes are very popular for small scale applications as well as atmosphere mod-
eling, whereas ocean models are mainly based on finite difference methods (Mesinger
and Arakawa, 1976), as described for instance in the book Griffies (2004). In the finite
element framework, major contributions have been developed with both discontinuous
and continuous elements.

The Discontinuous Galerkin (DG) method focuses growing interest since the late
nineties, and gives accurate results for hyperbolic conservation laws. Basically, it consists
in a volume term built as in all finite element methods, and an interface term built as in
finite volume methods. High order shape functions can be easily incorporated and at the
interfaces, an efficient upwind flux calculation can be performed to tackle the treatment
of wave phenomena. Thanks to the absence of continuity constrain on the inter-element
boundaries, h-adaptivity (Hartmann and Houston, 2002; Bernard et al., 2007) and p-
adaptivity (Burbeau and Sagaut, 2005) can be easily implemented. Efficient slope and
flux limiters enable positive and shock-capturing versions of the scheme (Cockburn and
Shu, 1998b; Chevaugeon et al., 2005; Remacle et al., 2006). For atmosphere modeling,
the high order capabilities of this scheme are really attractive (Nair et al., 2005; Giraldo,
2006), and the increasing use of DG follows the trend to replace spectral transform meth-
ods with local ones. Coastal modeling also benefits from this method (Aizinger and Daw-
son, 2002; Kubatko et al., 2006; Bernard et al., 2008a), and high Froude number flows are
accurately captured by this kind of schemes (Schwanenberg and Harms, 2004; Remacle
et al., 2006). However, the implementation of elliptic dissipative terms requires some
specific modifications, as reviewed in Arnold et al. (2002). The local-DG method (LDG)
and the interior penalty method (IP) are among the most popular solutions. LDG intro-
duces a mixed formulation for velocities and stress and can be difficult to handle with an
implicit time-stepping (Cockburn and Shu, 1998a), while IP requires the introduction of
a penalty parameter that worsens the conditioning of the discrete spatial operator (Riv-
iere, 2008).

Continuous linear finite elements are compelling as they provide high geometric flex-
ibility, they are supposed to be much more accurate than first order methods, and have
fewer degrees of freedom than linear discontinuous Galerkin methods. Further, they
naturally handle elliptic operators used as subgrid scale models. Several choices can
be made between stable mixed methods, and stabilized methods. Stabilized methods
were first designed for scalar advection-diffusion equation, where the standard Galerkin
method gives oscillating result when the mesh Peclet number is too large (Donea and
Huerta, 2003). For shallow water models, Bova and Carey (1996); Hauke (1998); Ribeiro
et al. (2001); Hauke (2002) use a symmetric formulation that is stabilized with Petrov-
Galerkin approach.

In this paper, we do not analyze stabilized continuous finite elements methods, we
choose to use naturally stable finite elements. Furthermore, to develop a fair comparison
with all stabilized continuous formulations, it would require a very systematic analysis
that is out of the scope of this paper.
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The search for an efficient mixed formulation for the shallow water equations with-
out explicit stabilization is described in a series of papers (Le Roux et al., 1998; Le Roux
et al., 2000; Le Roux, 2001; Hanert et al., 2005; Le Roux et al., 2005; Le Roux, 2005; Hanert
et al., 2008). The favorite candidate is the P NC

1 −P1 pair, namely linear non-conforming
P NC

1 for the velocities, and linear conforming P1 for the elevation. This pair was first
presented by Hua and Thomasset (1984) within the framework of two-layer models. The
idea is simple: try to mimic the staggering of variables used in finite difference schemes
in the finite element framework. Le Roux et al. (1998) provide a seminal review paper
on mixed methods for finite element shallow water and initiated several works on the
P NC

1 −P1 mixed element pair. Further, this pair has been shown to be free of spurious
elevation modes (Le Roux et al., 2005), and it has been tested with both Eulerian and
Lagrangian discretizations of advection terms (Hanert et al., 2005). In the inviscid limit,
the semi-Lagrangian discretization of Hanert et al. (2005) exhibits a strong noise in the
velocity field, which needs to be filtered out. The Eulerian formulation described in this
paper appears to avoid this noise, due to the stabilizing effect of the upwind scheme on
advection terms. The analysis of dispersion and dissipation properties is performed by
Le Roux (2005) where a semi-analytical dispersion relation is derived on structured grids.
Dissipation and dispersion relations are computed numerically on unstructured grids by
Bernard et al. (2008b). It appears that the P NC

1 −P1 pair works really well on structured
grids, but is suboptimal on unstructured grids, in terms of accuracy (Hanert et al., 2008)
and in terms of dispersion. Recently, a new mixed element, P DG

1 −P2, has been presented.
Such an element exhibits stability and good rates of convergence for the Stokes problem
and the wave equation (Cotter et al., 2009a) and has been proven to be LBB stable (Cotter
et al., 2009b).

Within its space of parameters, the shallow water system has several asymptotic limit
cases. In the steady viscous limit, the well-known Stokes system is found. The linear
non-rotating and inviscid shallow water equations reduce to a wave equation. When the
Coriolis force is the leading term, we observe a geostrophic equilibrium. An almost op-
timal finite element method is known for each of those problems. The Stokes problem
is a saddle-point problem, and the finite element formulation needs to satisfy the LBB
condition, which for Galerkin formulations leads to choose a larger discrete space for
velocities than for elevation, for instance P2-P1. The velocities and elevation have a sym-
metric role in the wave equation, so using the same space for both fields is the natural
solution. In the geostrophic limit, the space for velocities is the gradient of the space
for elevation, and a pair like P DG

1 -P DG
2 appears to be best suited. Of course, in real life

applications, those different regimes are mixed, and a formulation at least stable in all
ranges of parameters is sought. Our typical domain of application is estuarine, coastal
and ocean modeling. Therefore, we do not put the focus on supercritical flows, where
shocks require specific handling, while we are aware that this regime is of crucial impor-
tance for smaller scale applications.

In this paper, we focus on numerical schemes where the stabilizing strategies are only
applied on the interface terms. It must be noted that it would be also possible to add
stabilizing terms in the surface terms as it is usual in continuous stabilized formulations.
In general, continuous stabilizing terms correspond to adding diffusion with a coefficient
depending on the element size, in a more or less consistent manner. For discontinuous
methods, the interfaces integrals are estimated with an upwind bias introducing the right
amount of dissipation to keep the scheme stable. We provide here a comparison between
different finite element pairs that all rely on the same weak formulation: P DG

1 −P DG
1 ,
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P1 P NC
1 P DG

1 P2

Figure 2.1: Sketch of the different finite elements used.

P NC
1 −P NC

1 , P NC
1 −P1, P DG

1 −P1 and P DG
1 −P2. A sketch of those elements is given in

Figure 2.1.
The outline of this paper is the following: Section 2.2 explains the methodology fol-

lowed to derive all the formulations in the framework of one-dimensional linear shallow-
water equations, Section 2.3 details the formulation for the five finite element pairs con-
sidered, and finally, we assess the qualities and drawbacks of each formulation in Section
2.4.

2.2 One-dimensional illustration of key concepts

In this section, the main concepts used in this paper are illustrated for the one-dimen-
sional wave equation, which is the simplest idealization of the shallow water equations.
The one-dimensional wave equation reads:

∂2η

∂t 2 = g h
∂2η

∂x2 , (2.1)

and is equivalent to the following system of equations, known as the linearized inviscid
shallow water equations in a non-rotating framework:

∂η

∂t
+h

∂u

∂x
= 0, (2.2)

∂u

∂t
+ g

∂η

∂x
= 0, (2.3)

where u is the depth-averaged velocity, η the free surface elevation, h the depth at rest
and g the gravitational acceleration.

We analyze the selection of mixed continuous or discontinuous spaces and the de-
sign of a suitable Riemann solver. In particular, three different finite element pairs are
considered:

• P1 −P1 elements, for velocity and elevation, respectively.

• P DG
1 −P DG

1 elements, the one-dimensional equivalent to the P DG
1 −P DG

1 two-di-
mensional pair and the closest to the P NC

1 −P NC
1 pair.

• P DG
1 −P1 elements, which is the closest to two-dimensional P NC

1 −P1 and P DG
1 −P1.

All mixed methods rely on the same weak formulation:

< ∂η

∂t
η̂>+< h

∂u

∂x
η̂> = 0, (2.4)

< ∂u

∂t
û >+< g

∂η

∂x
û > = 0, (2.5)
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with < > denoting the integral overΩ, and η̂ and û the test functions. This domainΩ is
then discretized into a mesh or a collection of non-overlapping elements Ωe . Equations
(2.4-2.5) can be expressed as a sum of the integrals on each element:∑

e

(
< ∂η

∂t
η̂>Ωe +< h

∂u

∂x
η̂>Ωe

)
= 0, (2.6)

∑
e

(
< ∂u

∂t
û >Ωe +< g

∂η

∂x
û >Ωe

)
= 0. (2.7)

Finally, in order to incorporate the local Neumann boundary condition, we integrate the
gradient terms by part:∑

e

(
< ∂η

∂t
η̂>Ωe +hu∗η̂

∣∣∣
∂Ωe

−< hu
∂η̂

∂x
>Ωe

)
= 0, (2.8)

∑
e

(
< ∂u

∂t
û >Ωe +gη∗û

∣∣∣
∂Ωe

−< gη
∂û

∂x
>Ωe

)
= 0, (2.9)

where f
∣∣∣
∂Ωe

denotes the difference between f at the right end of the element and f at

the left end. The values of the fields at both ends of each interval are denoted with a star
superscript, because they need to be uniquely defined for both neighboring elements of
the interface. The way to define u∗ and η∗ is the key ingredient to obtain a stable and
accurate numerical formulation. Along interior interfaces, for continuous test functions,
the boundary integral on the one element is canceled out by the boundary integral on
the other element, but it is not the case for discontinuous test functions.

Riemann solver

To derive consistent values of fluxes u∗ and η∗ at the interface, relying on the charac-
teristic structure of the equations, it is usual to introduce Riemann solver for numerical
methods. Riemann solvers are a solution to deduce consistent values of fluxes. It allows
to add just enough numerical dissipation to keep the scheme stable. For a scalar ad-
vection equation, using the upwind value at the interface introduces the right amount of
dissipation that prevents the oscillations of the numerical solution. The Riemann solvers
can be viewed as the generalization of the upwinding technique for systems of equations.

In matrix notation, the shallow water system of equations (2.2-2.3) reads:(
η,t

u,t

)
+

(
0 h
g 0

)
︸ ︷︷ ︸

A

(
η,x

u,x

)
=

(
0
0

)
. (2.10)

Let us now perform a change of variable such that the matrix A becomes diagonal. We
then obtain the shallow water equations in terms of the characteristic variables:

(
U
V

)
= R−1

(
η

u

)
=

 η
2 +

√
h
g

u
2

η
2 −

√
h
g

u
2

 , (2.11)

where R is the matrix whose columns are the eigenvectors of A:

R =
(

1 1√
g /h −√

g /h

)
. (2.12)
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The system in terms of the characteristic variables corresponds to two uncoupled advec-
tion equations: (

U,t

V,t

)
+

( √
g h 0
0 −√

g h

)(
U,x

V,x

)
=

(
0
0

)
. (2.13)

We define the ∗ variables using the upwind value, that depends on the sign of the eigen-
value:

U∗ =U L , V ∗ =V R , (2.14)

where the L and R superscript denote values taken at the left and right side of the inter-
face, respectively. Expressing the original variables in terms of the characteristic ones,
we get:

η=U +V , u =
√

g

h
(U −V ), (2.15)

and we derive the classical well-known expressions:

η∗ =U L +V R = {η}+
√

h

g
[u], u∗ =

√
g

h
(U L −V R ) = {u}+

√
g

h
[η], (2.16)

with {a} = aL+aR

2 the mean and [a] = aL−aR

2 the half jump.
The same methodology can be applied to the hybrid continuous/discontinuous fi-

nite element pair. The interface terms in the elevation equation disappear due to the
continuity of the test functions, as corresponding equal contributions are added at a
node by the two elements surrounding the interface. If η is continuous, (2.16) degen-
erates to:

η∗ = η+
√

h

g
[u], u∗ = {u}. (2.17)

To assess the quality of this formulation with the three finite element pairs, we have
performed a convergence analysis on a wave problem with periodic boundary condi-
tions (Figure 2.2). We observe second order accuracy for each discretization. The optimal
rate of convergence observed with the hybrid discretization P DG

1 −P1 shows that using a
mixed discontinuous-continuous pair of elements is not a priori a bad idea, even if the
number of degrees of freedom is different, and so the symmetry of the discretization is
broken.

2.3 Two-dimensional discretization of
the shallow water equations

Let us now consider the complete shallow water equations including inertia terms, Cori-
olis effects, viscous terms, and both wind and bottom stresses. It is usual to distinct two
classical formulations, when deriving a numerical scheme. On the one hand, the conser-
vative formulation in terms of the total depth H and the transport Hu reads:

∂H

∂t
+∇· (Hu

) = 0, (2.18)

∂Hu

∂t
+∇· (Huu

)+ f k × (
Hu

)+ g H∇(
H −h

) = ∇·
(
Hν

(∇u
))+ τs +τb

ρ
, (2.19)
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Figure 2.2: Convergence analysis for the wave equation with periodic boundary conditions. Sec-
ond order convergence is observed on both fields for three mixed linear continu-
ous/discontinuous discretizations.

with h the depth at rest, f is the Coriolis factor, k the vertical unit vector, τs and τb the
surface and bottom stresses, ρ the density and ν the eddy viscosity. On the other hand,
the non-conservative formulation in terms of free-surface elevation η (with H = h +η)
and velocity u reads:

∂η

∂t
+∇·

(
(h +η) u

)
= 0, (2.20)

∂u

∂t
+u · (∇u

)+ f k ×u + g∇η= 1

H
∇·

(
Hν

(∇u
))+ τs +τb

ρH
. (2.21)

It is customary to use the conservative formulation when deriving finite difference sche-
mes for the shallow water equations, in order to obtain a conservative numerical scheme.
However, in a continuous framework, both formulation are strictly equivalent.

In this paper, we use the non-conservative form of the shallow water equations to de-
rive the weak formulation, with a nonlinear approximate Riemann solver deduced from
the conservative form of the same equations. This approach might appear exotic but it
is motivated by the following facts. Firstly, it is natural to write a Riemann solver in terms
of fluxes of quantities to be conserved. Secondly, it would be attractive to write a weak
conservative formulation but in this case, the elevation gradient term has to be split in
two parts, a flux term and a source term:

g H∇(
H −h

)= g∇(
H 2 −h2

)
2

− g
(
H −h

)∇h. (2.22)

With discontinuous Galerkin methods, both terms are not treated in the same way. It has
been shown that the scheme may exhibit nonphysical oscillations if the integration is not
accurate enough (Bernard et al., 2008a). Therefore, a weak non-conservative formulation
seems more efficient and robust in the considered numerical discretization.
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Non-conservative weak formulation

The weak form of this non-conservative formulation reads:

∑
e

(
< ∂η

∂t
η̂>Ωe +<∇·

(
(h +η) u

)
η̂>Ωe

)
= 0 , (2.23)

∑
e

(
< ∂u

∂t
· û >Ωe +< u · (∇u

) · û >Ωe +< f (k ×u) · û >Ωe +g < (∇η) · û >Ωe

)
=∑

e

(
< 1

H
∇·

(
Hν

(∇u
)) · û >Ωe +< τs +τb

ρH
· û >Ωe

)
. (2.24)

Again integrating by parts, we get:

∑
e

(
< ∂η

∂t
η̂>Ωe +¿ (h +η∗)u∗

n η̂À∂Ωe −< (h +η) u ·∇η̂>Ωe

)
= 0 , (2.25)

∑
e

(
< ∂u

∂t
· û >Ωe +¿ u∗

nu∗ · û À∂Ωe −<∇· (uû
) ·u >Ωe

+< f (k ×u) · û >Ωe + g ¿ η∗ûn À∂Ωe − g < η(∇· û
)>Ωe

)
= ∑

e

(
¿ ν

{∂u

∂n

}
· û À∂Ωe −< ν(∇u

)
:
(∇û

)>Ωe

+< ν 1

H

(∇H
) · (∇u

) · û >Ωe +< τs +τb

ρH
· û >Ωe

)
. (2.26)

The vector quantities multiplied by the outward normal are denoted with a n sub-
script. Again, the variables used in the boundary integrals are doubled-valued, and are
denoted with a star superscript. However, for the diffusive flux, it is natural to take the
centered values denoted by { }, as diffusive phenomena are isotropic. As explained
in the introduction, a specific treatment is needed to obtain a stable and accurate dis-
cretization of the diffusive term when using discontinuous elements for the velocities.
We implement an incomplete interior penalty method (IIPG), following Riviere (2008).
In this case, the following term is added in the right-hand side of equation (2.26):

∑
e

(
−¿ νσû · [u] À∂Ωe

)
, (2.27)

with σ a penalization parameter defined as:

σ= (p +1)(p +2)

h
, (2.28)

with h a typical length scale of the element, and p the polynomial order of the finite
element space. This value of the penalization parameter has been proposed by Shahbazi
(2005).

Approximate nonlinear Riemann solver

A Riemann solver cannot be applied on the non-conservative form of the equations, as
they are not in flux form. To derive the Riemann solver, we use the conservative form
(2.18-2.19) of the shallow water equations, where the dissipation, Coriolis and diffusion
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terms are neglected. Considering u the velocity normal to the interface, and v the veloc-
ity tangent to the interface, the flux reads:

F =
 FH

FHu

FH v

=
 Hu

Huu + g
2 H 2

Huv

 . (2.29)

The exact Riemann solver requires the resolution of a nonlinear problem at each inte-
gration point. It is usually preferred to use an approximate Riemann solver. In order to
deduce such an approximate Riemann solver, the next step consists in linearizing the
fluxes. The Jacobian matrix of the fluxes is:

J =
 0 1 0

−u2 + g H 2u 0
−uv v u

 . (2.30)

Finally, we use the Roe averages to obtain a approximate Jacobian matrix Jlinearized, as
in classical textbooks (LeVeque, 2002). This rule can be deduced easily from the Rankine-
Hugoniot relation:

Jlinearized

 [H ]
[Hu]
[H v]

= [F ] . (2.31)

As the first line of the Jacobian matrix is linear, the Rankine-Hugoniot relation leads to
an underdetermined system. To obtain a unique solution of the system, we select the
arithmetic mean for H , and we get the classical Roe averages:

HRoe = {H } , (2.32)

uRoe = uL
p

HL +uR
p

HRp
HL +

p
HR

, (2.33)

vRoe = vL
p

HL + vR
p

HRp
HL +

p
HR

. (2.34)

By substituting (H ,u, v) by (HRoe,uRoe, vRoe) in the Jacobian, the approximate Riemann
values of the conservative variables can be deduced as the exact solution of the linearized
problem, as shown in the illustrative one-dimensional wave equation. The values of the
conservative and non-conservative variables at the interface are given by:

H∗ = {H }+ 1√
g HRoe

([Hu]−uRoe [H ]) , (2.35)

(Hu)∗ = {Hu}+ 1√
g HRoe

(
uRoe [Hu]−u2

Roe [H ]
)+√

g HRoe [H ] , (2.36)

(H v)∗ = (H v)upwind + vRoe({H }−Hupwind) (2.37)

+ 1√
g HRoe

(vRoe [Hu]−uRoevRoe [H ]) ,

η∗ = H∗−h, (2.38)

u∗ = (Hu)∗

H∗ , (2.39)

v∗ = (H v)∗

H∗ . (2.40)
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2.4 Mesh refinement methodology

Description of the meshes

Convergence tests are carried out with a family of 25 meshes adapted to the reference
solution of the flow except for both wave problems where uniform unstructured meshes
are used. We use adapted meshes rather than uniform meshes, since some of the studied
flows have western boundary layers that need to be sufficiently resolved to observe the
asymptotic convergence of the schemes. Using uniform meshes would require many
more elements to observe asymptotic behavior. Note that this is different from mesh
adaptation in time, where the mesh is adapted to the numerically computed flow during
the simulation, as in Bernard et al. (2007). The greatest eigenvalue of the elevation field’s
Hessian matrix is used as an a priori error estimator, since with linear elements, the error
is dominated by the quadratic component of the solution. We define a reference edge
length field δ as:

δ(x, y) =

√√√√√
∫
Ω

e(x ′, y ′) d x ′d y ′

e(x, y)
. (2.41)

where e(x, y) is the norm of the greatest eigenvalue of the Hessian matrix of the elevation
field. The meshes are generated using Gmsh (Geuzaine and Remacle, 2009), where we
use hδ as edge length field, with h a constant over the domain. The generated meshes
have therefore about 1/(ah2) elements, with a ≈ 0.8 the typical area of a triangle whose
edge have unit length. Such meshes are designed optimally for schemes giving second
order accuracy, i.e. among all the meshes with such a number of elements, these meshes
provide the best results. However, the mesh need not to be optimally adapted to observe
the right convergence behavior. If it is suitably adapted, asymptotic convergence will
occur with fewer elements. In Figure 2.3, we show the reference edge length field δ and
five of the corresponding meshes for the nonlinear Munk testcase. The 9th finest mesh
of each family, made of about 2500 triangles, are shown in Figures 2.5 to 2.9. Reference
solutions are obtained using highly accurate P DG

3 -P DG
2 scheme for Stokes problem and

P DG
3 -P DG

3 scheme for all other problems, using the same discrete formulation and time-
stepping algorithm on the finest mesh used for the convergence tests.

Description of the 8 testcases

In realistic applications, a process, i.e. advection, geostrophy, diffusion, etc. . . , can be the
leading phenomena in some areas while being almost negligible in other areas for a sin-
gle computation. Therefore, the limit cases including or not including this phenomenon
have both to be solved accurately. Unfortunately, it is not the case for some schemes that
would appear to be attractive otherwise.

Considering typical oceanic and coastal flows, we define a serie of testcases, with the
corresponding relevant meshes, detailed in Figures 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9. The
objective is to compare fairly the proposed finite element pairs. Three limit flow states of
the shallow water system, namely geostrophy, wave propagation and viscosity, are tested
separately, and then the complexity of the problem is increased toward more realistic
computations. Each flow develops in a square basin of 1000×1000 km.

Some of the testcases use a zonal wind stress, defined as:

τs = 0.1× sin
(
π

y

L

)
ex , (2.42)
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Figure 2.3: Sketch of the edge-length field δ and five corresponding meshes for the nonlinear
Munk testcase.
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Nonlinear
advection and

L H g f β γ ν free-surface Wind
[m] [m] [ms−2] [s−1] [m−1s−1] [s−1] [m2s−1] terms stress

Unsteady wave 106 103 9.81 0 0 0 0 no no

Steady wave 106 103 9.81 0 0 10−6 0 no yes

Stokes 106 103 9.81 0 0 0 104 no yes

Geostrophic equilibrium 106 103 9.81 10−4 0 0 0 no no

Stommel gyre 106 103 9.81 10−4 2×10−11 10−6 0 no yes

Munk gyre 106 103 9.81 10−4 2×10−11 0 104 no yes

Advective Stommel gyre 106 103 9.81 10−4 2×10−11 5×10−7 0 yes yes

Advective Munk gyre 106 103 9.81 10−4 2×10−11 0 3000 yes yes

Table 2.1: Summary of physical parameters for each testcase.

inducing a clockwise circulation, and a linear dissipation term defined as:

τb =−ρhγu. (2.43)

For all the testcases, we use slipping coasts. Indeed, we do not consider problems
with a viscous boundary layer. The testcases with viscosity need a second boundary con-
dition, so we cancel out the normal flux of tangential velocity, and we compute the nor-
mal flux of normal velocity with the interior value of the velocity. Table 2.1 summarizes
the physical parameters that define each testcase.

Wave equation

As a first testcase, we consider the linear wave equation:

∂η

∂t
+∇· (hu

) = 0, (2.44)

∂u

∂t
+ g∇η = 0. (2.45)

It is the simplest approximation of the shallow water equations. Wave phenomena are
the leading effects in small scale low Froude number flows. A Gaussian is given as initial
condition for the elevation, and we observe the solution after one hour, so that the wave
crest has covered more than 350 km. A fourth order explicit Runge-Kutta scheme is used
to progress in time, with a time step corresponding to the CFL condition, ensuring that
the solution is converged in time.

As the goal of this paper is to show which finite element pair may be unstable or
exhibit a lack of convergence, a steady testcase is much tougher. Indeed, the spurious
modes that can appear in a finite element discretization are fully excited in steady solu-
tion, while they appear progressively in a time dependent problem. We then simulate a
steady flow where wind forcing is balanced by linear dissipation:

∇· (hu) = 0, (2.46)

g∇η = τs

ρh
−γu, (2.47)
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with γ= 10−6 s−1.

−1.88−01 2.81+00initial elevation [m] −6.30−01 4.26−01elevation [m] −5.77−02 5.77−02zonal velocity [m/s] −5.77−02 5.77−02meridional velocity [m/s]

−2.98−03 2.98−03elevation [m] −6.01−02 6.01−02zonal velocity [m/s] −9.17−02 9.17−02meridional velocity [m/s]

Figure 2.4: Sketch of the elevation and velocity fields for the unsteady (top, after one hour of phys-
ical time) and steady (bottom) wave testcases.

Stokes flow

The Stokes equations represent creeping flows, where inertial terms are negligible com-
pared to viscous terms. This problem is difficult to solve numerically, because the incom-
pressibility equation acts as a constrain on the velocity field. In order to obtain a mixed
discrete formulation that defines a well-posed problem, it is mandatory to stabilize the
discrete formulation or to define the mixed discretization space in such a way that the
LBB condition is satisfied (Brezzi and Fortin, 1991). From a practical point of view, the
discrete space for elevation/pressure must be small enough compared to the discrete
space for velocities, in a usual mixed formulation. The wind forcing now balances the
viscous dissipation:

∇· (hu) = 0, (2.48)

g∇η = τs

ρh
+∇· (ν∇u), (2.49)

with ν= 104 m2s−1.

Geostrophic equilibrium

Geophysical flows experience the Coriolis force, due to Earth rotation. It is one of the
leading terms in the large scale shallow water equations. We test the ability of the differ-
ent methods to maintain a linear geostrophic equilibrium, where the Coriolis force is in
balance with the elevation gradient. As there is no dissipation, a good numerical scheme
should maintain this equilibrium for a long time. The elevation field is a Gaussian bell of
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−2.98−03 2.98−03elevation [m] −3.19−01 3.19−01zonal velocity [m/s] −3.38−01 3.38−01meridional velocity [m/s]

Figure 2.5: Typical mesh and sketch of the elevation and velocity fields for the Stokes testcase.

three meter height. Coriolis parameter f is 10−4s−1 in the whole domain. A third-order
implicit-explicit Runge-Kutta method is used to progress in time, with a time step cor-
responding to the CFL criterion on advection, the terms related to gravity waves being
treated implicitly. The flow satisfies the following equations:

∂η

∂t
+∇· (hu) = 0, (2.50)

∂u

∂t
+ f k ×u + g∇η = 0. (2.51)

−1.88−01 2.81+00elevation [m] −1.78+00 1.78+00zonal velocity [m/s] −1.78+00 1.78+00meridional velocity [m/s]

Figure 2.6: Typical mesh and sketch of the elevation and velocity fields for the geostrophic equi-
librium testcase.

Stommel gyre

A time dependent problem may not exhibit all the troubles that can be generated by the
discretization. The steady counterpart to the geostrophic equilibrium is the Stommel
gyre (Pedlosky, 1987). The Coriolis effect is taken into account using the β-plane approx-
imation, f = f0 +βy , with f0 = 10−4 s−1 and β = 2× 10−11 m−1s−1, corresponding to a
midlatitude domain in the northern hemisphere. The flow is forced by the wind stress
defined at equation (2.42), that induces a clockwise circulation, while a linear dissipa-
tion with coefficient γ= 10−6 s−1 balances the forcing. The variation of this Coriolis pa-
rameter induces Rossby waves that propagate westward and generate a strong boundary
current. The flow satisfies the following equations:
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∂η

∂t
+∇· (hu) = 0, (2.52)

∂u

∂t
+ f k ×u + g∇η = τs

ρh
−γu. (2.53)

−4.65−02 6.47−02elevation [m] −3.18−02 3.19−02zonal velocity [m/s] −1.53−02 2.40−01meridional velocity [m/s]

Figure 2.7: Typical mesh and sketch of the elevation and velocity fields for the Stommel gyre test-
case.

Munk gyre

The Munk gyre testcase is similar to the Stommel one, the difference is that now the
wind forcing is balanced by viscous dissipation rather than linear damping (Pedlosky,
1987). The viscosity parameter is constant in space and taken as ν= 104 m2s−1. The flow
satisfies the following equations:

∂η

∂t
+∇· (hu) = 0, (2.54)

∂u

∂t
+ f k ×u + g∇η = τs

ρh
+∇· (ν∇u). (2.55)

This testcase is often the easiest to solve by all numerical schemes. The viscous terms are
typical elliptic contributions removing most of the troubles that may pollute the inviscid
solution.

Nonlinear problems

Finally, we incorporate the advection terms in both the Stommel and the Munk gyre
problems. The first one is inviscid, satisfying the system:

∂η

∂t
+∇· ((h +η)u

) = 0, (2.56)

∂u

∂t
+u ·∇u + f k ×u + g∇η = τs

ρH
−γu, (2.57)
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Munk gyre

−5.85−02 1.16−01elevation [m] −5.10−02 5.10−02zonal velocity [m/s] −3.99−02 1.63−01meridional velocity [m/s]

Figure 2.8: Typical mesh and sketch of the elevation and velocity fields for the Munk gyre testcase.

Stommel gyre with advection

−5.54−02 7.60−02elevation [m] −3.50−02 3.23−01zonal velocity [m/s] −3.37−02 3.64−01meridional velocity [m/s]

Munk gyre with advection

−5.98−02 1.19−01elevation [m] −4.37−02 1.17−01zonal velocity [m/s] −7.01−02 2.48−01meridional velocity [m/s]

Figure 2.9: Typical meshes and sketch of the elevation and velocity fields for the nonlinear Stom-
mel (top) and Munk (bottom) gyres.

with the same Coriolis factor as the two previous testcases, and a linear dissipation of
coefficient γ= 5×10−7. The second one is viscous, with viscosity ν= 3000 m2s−1:

∂η

∂t
+∇· ((h +η)u

) = 0, (2.58)

∂u

∂t
+u ·∇u + f k ×u + g∇η = τs

ρH
+ 1

H
∇· (Hν∇u). (2.59)

The numerical handling of the advection term is not simple, and requires a suitable nu-
merical strategy. However, some difficulties appearing in the problems without advec-
tion terms are sometimes solved by the diffusion introduced within the discretization of
those advection terms.
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2.5 Numerical results

To quantify the errors for all finite element pairs for each testcase, convergence studies
are given in Figures 2.10 and 2.11. The left panels show the diagrams for the elevation
field, while the right panels show the diagrams for velocities. The dots represent the
values of the L2 norm of the discretization error normalized by the range of the field.
The slopes of the linear mean-square regression, representing the orders of accuracy, are
given in the legends. To further quantify the optimality of the method, the error of the
best solution that can be obtained in the sense of the L2 norm is traced in continuous
line. It is defined as the error in L2 norm between the reference solution and the L2 pro-
jection of this reference solution onto the finite element space defined with the current
mesh.

A few conclusions may be drawn directly. The velocity fields of P NC
1 -P1 and P DG

1 -P1

pairs lack of convergence in the absence of viscosity. The P NC
1 -P1 pair was known to have

such a behavior (Hanert et al., 2008, 2005). This trouble is related to the wave component
of the shallow water problem. The velocity field has too many degrees of freedom, and
a velocity noise can develop with little influence on the elevation field. This noise com-
ponent is bounded, as we still observe convergence at a reduced rate. The boundedness
of the noise implies that the noise is not an eigenvector lying in the nullspace of the dis-
crete operator, hence this noise was not shown by the study of Le Roux et al. (2005). This
mode depends on the structure of the mesh. With structured meshes made of squares
divided in half, optimal convergence is observed for both fields (Hanert et al., 2008). The
same observation has been made for dispersion and dissipation properties, where ana-
lytical considerations on structured grids give promising results (Le Roux, 2005; Le Roux
et al., 2007, 2008), while numerical analysis on unstructured grids exhibits disappointing
results (Bernard et al., 2008b). Using structured meshes of squares divided in four where
all triangles are not topologically identical, a relatively structured noise appears (see Fig-
ure 2.12). It is therefore possible to carry out spectral analysis as by Le Roux et al. (2007,
2008), to further characterize the behavior of this pair.

The P DG
1 −P2 pair demonstrates its very good properties in the vast majority of the

testcases. An optimal rate of convergence for velocities is observed in all the testcases,
and furthermore the solution is always quite close to the optimal solution for this ele-
ment (i.e. close to the solid line in the right panels of Figures 2.10 and 2.11). Optimal
convergence rate for elevation is obtained for the time-dependent testcases, where ini-
tial condition was third order accurate, but also for the linear Stommel gyre. The latter
can be explained as the functional spaces are optimally designed for geostrophy, as the
gradient of the P2 space exactly lies in the P DG

1 space. The nonlinearities seem to slightly
deteriorate the accuracy of the solution to second order as the velocity and elevation
fields are much more coupled.

For the Stokes flow, all the pairs exhibit second order accuracy for velocities, and a 1.5
order of convergence for elevations. Our discontinuous Galerkin method applied to the
Stokes equations must be related to the one from Bassi et al. (2006) and Di Pietro (2007),
where interface fluxes are deduced from an artificial incompressibility Riemann prob-
lem. The time-dependent shallow water equations do not exhibit a solenoidal constrain
for the velocity field, but in the steady limit, we recover an incompressibility constrain.
Therefore, we use the surface gravity wave speed

√
g h where an arbitrary wave velocity c

is used in Bassi et al. (2006). An additional difference is that the BRMPS method (referred
as Bassi et al. [13] in the review Arnold et al. (2002)) is used to treat the diffusion terms,
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Figure 2.10: Convergence analysis. The circles denote the L2 error, while continuous lines indi-
cate the error of the L2 projection of the reference solution onto the finite element
space. The light gray lines indicates reference second order convergence. The errors
are plotted against the ratio h between the edge length and the reference size field.
The number of elements scales as h2.
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Figure 2.11: Convergence analysis. The circles denote the L2 error, while continuous lines indi-
cate the error of the L2 projection of the reference solution onto the finite element
space. The light gray lines indicates reference second order convergence. The errors
are plotted against the ratio h between the edge length and the reference size field.
The number of elements scales as h2.
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Figure 2.12: Sketch of the error for the steady wave problem, using P NC
1 -P1 on the "Union Jack"

mesh.
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Figure 2.13: Zonal (center) and meridional (right) velocity field of the linear Stommel problem
solved with the P DG

1 -P DG
1 pair on a structured mesh (left).

where we use an incomplete interior penalty method (IIPG method in the book Riviere
(2008)). Still with DG, the same behavior is observed in Cockburn et al. (2002), using
local-DG formulation, and proof that first and second order accuracy are expected for
pressures and velocities, respectively, is given. All the finite element pairs do converge,
but it cannot be excluded that some of them exhibit pressure modes on specific grids.

When Coriolis comes into play, the P DG
1 -P DG

1 pair lacks almost half an order of con-
vergence for velocities. The velocity field in geostrophic equilibrium with a piecewise
linear elevation field is piecewise constant. Then, interface terms are needed in the for-
mulation to smooth the velocity field. Indeed, some flux terms exist for the normal ve-
locity, but not for the tangent velocity. Therefore, some jumps on tangent velocities are
allowed by the formulation, as shown in Figure 2.13 for the inviscid Stommel problem
on a structured grid. The same half order of convergence is lost with second order shape
functions (P DG

2 −P DG
2 ) on the same meshes.

The nonlinear advection terms do not significantly change the behavior of the dif-
ferent schemes. For the P DG

1 -P DG
1 , in the inviscid case, the lack of convergence on the

velocity field is propagated in the elevation field. The P NC
1 -P1 and P DG

1 -P1 velocity so-
lutions are slightly smoothened by the numerical dissipation associated with the han-
dling of the advective term, but the optimal convergence rates are not recovered. High
Froude number are needed for the interface dissipation to be large enough to smooth
the solution and recover the optimal behavior. Indeed, the Gulf of Mexico testcase from
Hanert et al. (2005) corresponds to a maximum Froude number of more than 1/4, and
the Williamson’s testcases on the sphere, that were solved with optimal convergence rate
in Comblen et al. (2009), are also advection dominated, with Froude numbers as high as
1/10.

The P NC
1 -P NC

1 pair has an overall quite encouraging behavior. The pair shows opti-
mal convergence rate in all the testcases, except the Stokes flow. Those rates are never
lower than the rates observed with the P DG

1 -P2 pair. The error values are slightly higher
than those for P DG

1 -P2 or P DG
1 -P DG

1 (when optimal rates are observed), but it must be
noticed that it only requires half the number of degrees of freedom of the discontinuous
Galerkin method. Moreover, the P NC

1 element naturally treats diffusion terms, while P DG
1

requires interior penalty method.
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2.6 Conclusions

We provide an unified framework to define finite element formulations of the shallow
water equations with continuous, discontinuous or partially discontinuous discretiza-
tions. We then perform a systematic numerical comparison of five relevant finite ele-
ment pairs used in oceanic and coastal flows.

We have considered convergence analyses on benchmark problems as the first mean-
ingful numerical tests. Convergence analyses show whether the numerical solution is
optimal or not, i.e. whether the approximation error is similar to the interpolation error
or not. If it is not the case, we learn that there are issues with the discrete formulation.
For finite element formulation that converge optimally, it would be interesting to con-
sider further discrete properties, such as energy/enstrophy conservation and dispersion
and dissipation properties.

In short, the following facts are observed:

• Large physical viscosity is required to obtain optimal order of convergence for
P NC

1 -P1 and P DG
1 -P1 pairs.

• The accuracy of Discontinuous Galerkin discretization of Coriolis dominated flows
is deteriorated by the lack of control on the jumps of tangent velocity.

• P DG
1 -P2 gives accurate results in all ranges of flow, at the expense of second order

shape function for elevation, hence higher order quadrature rules.

• P NC
1 -P NC

1 appears to behave optimally in all ranges of flow, with a reasonable num-
ber of degrees of freedom. The diffusion terms are naturally handled by the dis-
crete space.

In terms of CPU efficiency, sharp conclusions are difficult to draw, as these are strongly
implementation dependent. For explicit computations, using the same number of ele-
ments, P NC

1 -P NC
1 and P DG

1 -P DG
1 have truly similar cost per time-step, as most of the CPU

time is spent computing the finite element integrals, that require the same accuracy for
both finite element pairs. The computation of spatial operators for P DG

1 -P2 is more ex-
pensive as the higher order of the shape function for elevation requires more accurate
quadrature rules. The DG pair has all the degree of freedom associated with the triangles,
giving a block structure that speeds up the assembling procedure. For implicit compu-
tations, CPU time spent in the linear solver is important. The size of the system depends
on the number of degree of freedom per element. The requirements of P DG

1 −P DG
1 and

P DG
1 −P2 pairs are similar, with respectively 9 and 8 dof per element. P NC

1 −P NC
1 behaves

optimally in all our testcases, and uses only 4.5 degree of freedom per element. There-
fore, it is an interesting alternative that should be further studied to confirm its promising
behavior.
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SOLVING THE SHALLOW WATER EQUATIONS ON

THE SPHERE

This Chapter reproduces an updated version of the following paper, first submitted on 14
January 2008:

R. Comblen, S. Legrand, E. Deleersnijder, and V. Legat. A finite element method for solving
the shallow water equations on the sphere. Ocean Modelling, 28:12–23, 2009.
doi: 10.1016/j.ocemod.2008.05.004.

In the previous chapter, we have considered discretizations of the shallow water equations,
that rule the vertically averaged marine flows. As the main objective of the thesis is to obtain
a baroclinic model that can be used as hydrodynamic kernel for an ocean general circulation
model (OGCM), it is mandatory for our model to operate on the sphere.

In the following chapter, we present an novel algorithm for solving vector set of equations
on curved manifolds with second order finite elements, and we validate this methodology
with standard benchmarks for the shallow water equations on the sphere.

The discrete formulation used in this paper is exactly the one described in the previous chap-
ter. However, this work was realized during the first year of this PhD, and the comparison of
Chapter 2 had not been performed yet. Its conclusions were therefore not known at the time
of the writing. This explains why the P NC

1 −P1 finite element pair was used, even if it is now
known to have issues with such inviscid computations. Yet, the methodology described in
this paper can be applied to any second order finite element discretization.

Further research has been carried out by Paul-Emile Bernard concerning Discontinuous Ga-
lerkin discretizations of vector PDEs on curved manifolds. A similar approach, relying on
local frame of reference, has been investigated (Bernard et al., 2009). Indeed, if high order
shape functions are resorted to, the geometry of the domain must itself be described with
an equally high order representation, i.e. isoparametric finite elements. This is why Bernard
et al. (2009) use a local tangent non-orthogonal frame of reference.
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Abstract

Within the framework of ocean general circulation modeling, the present paper
describes an efficient way to discretize partial differential equations on curved sur-
faces by means of the finite element method on triangular meshes. Our approach
benefits from the inherent flexibility of the finite element method. The key idea
consists in a dialog between a local coordinate system defined for each element
in which integration takes place, and a nodal coordinate system in which all local
contributions related to a vectorial degree of freedom are assembled. Since each
element of the mesh and each degree of freedom are treated in the same way, the
so-called pole singularity issue is fully circumvented.

Applied to the shallow water equations expressed in primitive variables, this
new approach has been validated against the standard test set defined by William-
son et al. (1992). Optimal rates of convergence for the P NC

1 −P1 finite element pair
are obtained, for both global and local quantities of interest.

Finally, the approach can be extended to three-dimensional thin-layer flows in
a straightforward manner.

3.1 Introduction

As the shape of Earth is almost spherical, it is critical for atmosphere and ocean mod-
eling to develop efficient methods to solve partial differential equations on the sphere.
On the latter, the most intuitive way to discretize a system of equations is to use spher-
ical coordinates. Unfortunately, this coordinate system introduces two singular points,
i.e. the poles. At these poles, the North and East directions are undefined and the met-
ric is singular. Those issues need to be addressed, for the purposes of geophysical flow
modeling.

We focus on the shallow water equations. Indeed, this two-dimensional model is a
key building block for the dynamical core of ocean models. The horizontal momentum
equation for a hydrostatic three-dimensional model is rather similar to the momentum
part of the shallow water equations. Further, a classical approach in large scale ocean
modeling is to resort to mode splitting. The idea of mode splitting is to use a different
time stepping for the two-dimensional barotropic mode, whose fastest processes are ex-
ternal gravity waves, and the much slower three-dimensional baroclinic mode, whose
fastest processes are internal waves and advection (Gadd, 1978; Madala, 1981; Blumberg
and Mellor, 1987; Killworth et al., 1991; Deleersnijder and Campin, 1995; Hallberg, 1997;
Higdon and de Szoeke, 1997; Higdon, 2002). In this case, the barotropic mode equations
are the shallow water equations, with some additional coupling terms. This is why the
shallow water equations are a relevant benchmark.

The pole problem is an issue that has been addressed in many ways:

• In classical longitude-latitude models, the solution can be filtered, the noise near
the pole being removed, and the constraint on the time step being weakened (Mur-
ray and Reason, 2002).

• The spectral transform method applied to the equations rewritten with vorticity
and divergence as prognostic variables rather than the two velocity components is
a popular solution to the “pole problem” in atmospheric sciences. Swarztrauber
(1996) reviews these methods. The absence of vector field, combined with the cal-
culation of derivatives in spectral space, allows them to be exempt of pole prob-
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lems. This approach cannot be applied in complex geometry. Hence, it is unlikely
to become popular in ocean modeling.

• The use of a scalar expression of the momentum equation such as vorticity-diver-
gence or stream function-velocity potential formulations, combined with an ex-
pression of the spatial operators in terms of a stencil circumvents the pole prob-
lem. Such a formulation using the icosahedral-hexahedral grid can be found in
Sadourny et al. (1968); Heikes and Randall (1995); Thuburn (1997). For a model in
primitive variables, Majewski et al. (2002) use a local spherical coordinate system
at each grid point. The latter approach can be seen as a finite-difference counter-
part of the present work.

• A lot of implementations use a single global Cartesian coordinate system. There-
fore, velocity vectors are expressed with three components rather than two. These
additional degrees of freedom are either deduced from the other d.o.f. (Priestley,
1992) or constrained by a Lagrange multiplier (Côté, 1988), ensuring that veloc-
ity vectors remain tangent to the surface of the sphere (Swarztrauber et al., 1997;
Stuhne and Peltier, 1999; Giraldo, 2000; Tomita et al., 2001; Giraldo et al., 2002,
2003; Giraldo and Warburton, 2005; Giraldo, 2006). Further, Stuhne and Peltier
(2006) applied this approach to three-dimensional oceanic flows in the framework
of finite volume schemes.

• Splitting the sphere into several domains, each having its own curvilinear coordi-
nate system appears as an attractive approach. The “cubed sphere” with six local
curvilinear coordinate systems is introduced in several papers (Ronchi et al., 1996;
Taylor et al., 1997; Adcroft et al., 2004; Nair et al., 2005; Rossmanith, 2006; St-Cyr
et al., 2008). A spherical coordinate system, with two stereographic caps at the
poles is also used in atmosphere modeling (Lanser et al., 2000). Ocean modelers
use several spherical coordinate systems, for instance one rotated for the North-
Atlantic and the Arctic Oceans, in addition to the classical one (Deleersnijder et al.,
1993; Eby and Holloway, 1994; Coward et al., 1994; Webb et al., 1998).

• Finally, stretched or multipolar grids are often used in oceanography, with the
poles located on dry land (Murray, 1996; Madec and Imbard, 1996; Roberts et al.,
2006). This methodology is efficient for the world ocean, but cannot be used for
simulating atmospheres or truly global oceans (aquaplanets) such as that of Eu-
ropa, the moon of Jupiter.

In this paper, an efficient approach to handle partial differential equations on the
sphere is developed for global ocean modeling. Our technique provides a good com-
promise between simplicity, efficiency and accuracy. It has been successfully applied
in the development of SLIM (Second-generation Louvain-la-Neuve Ice-Ocean Model -
http://www.climate.be/SLIM). As all general circulation models, it uses primitive
variables as prognostic quantities. We take advantage of the inherent geometrical flexi-
bility of the finite element method to generalize the geometrical algorithm to any smooth
manifold. The extension of this method to three-dimensional thin-layer flows is straight-
forward. In addition, the method only implies a few modifications in the finite element
algorithm, and allows us to use the same model for both planar and curvilinear prob-
lems. Finally, the computational overhead to handle the spherical geometry is almost
negligible.

http://www.climate.be/SLIM
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The paper is organized as follows. Section 3.2 describes the methodology for dealing
with curved geometry. Section 3.3 is devoted to the validation of the method on the
test cases of Williamson et al. (1992). Finally, section 3.4 shows how our finite element
scheme behaves for the difficult test case of Smith and Dritschel (2006).

3.2 An efficient methodology to handle PDEs
in spherical geometry

The inviscid shallow water equations can be obtained by averaging the incompressible
Navier-Stokes equations along the vertical direction. The usual non-conservative form
reads:

∂u

∂t
+u ·∇u+ f k×u+ g∇η= 0, (3.1)

∂η

∂t
+∇· [(h +η)u

]= 0, (3.2)

where u is the two-dimensional mean velocity, η is the elevation of the free-surface, f is
the Coriolis parameter, k is a unit upward normal vector, g is the gravitational accelera-
tion and h is the reference depth at rest.

Unlike finite differences, the finite element method does not need a global coordi-
nate system to derive the discrete matrix operators. If the most obvious discrete finite dif-
ference differential operators on the sphere are directly built along meridians and paral-
lels, the finite element local matrices, that define the local discrete differential operators,
are usually built in the framework of a local coordinate system defined for each element.
In other words, the finite elements intrinsically do not exhibit the classical coordinates
singularity issue. The basic principle adopted herein is to write local problems in a lo-
cal orthonormal curvilinear system (eξ,eη,eζ) defined for each element. Both eξ and eη
are tangent to the surface of the sphere, while the normal to the surface is given by eζ.
The next step consists in assembling all the local problems in the global discrete alge-
braic system. As the local vectorial equations are written in distinct coordinate systems,
it is required to perform suitable change of variables to rewrite the local contributions
in the same coordinate system. As we cannot use a single coordinate system valid for
each point on the sphere, we define a nodal orthonormal coordinate system (ex ,ey ,ez )
associated with each vectorial degree of freedom, ex and ey being tangent to the surface.
A key advantage of the finite elements is that the support of a shape function is limited to
only a few elements. Then, this nodal coordinate system needs to be valid only on the el-
ements where the associated shape function does not vanish. Finally, a global reference
system is needed only to define the position of the vertices and the components of both
local and nodal basis vectors.

Basically, the pole problem arises when a vectorial equation of a vectorial quantity
has to be solved. For notational convenience, we highlight the most important aspects
on a simplified case, without any loss of generality. For instance, let us only consider the
resolution of the momentum equation (3.1) of the shallow water model on the sphere.
Equation (3.1) can be written in the following compact notation:

f(u) = 0, (3.3)
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where the vector u tangent to the surface is expressed in terms of local or nodal compo-
nents:

u = uξeξ+uηeη = ux ex +uy ey . (3.4)

In order to switch from the local to the nodal basis, a local linear operator is defined
such as: (

ux

uy

)
︸ ︷︷ ︸

x U

=
(

ex ·eξ ex ·eη
ey ·eξ ey ·eη

)
︸ ︷︷ ︸

x Pξ

(
uξ

uη

)
︸ ︷︷ ︸
ξU

. (3.5)

Conversely, the transformation from the nodal to the local basis is defined by:(
uξ

uη

)
︸ ︷︷ ︸
ξU

=
(

eξ ·ex eξ ·ey

eη ·ex eη ·ey

)
︸ ︷︷ ︸

ξPx

(
ux

uy

)
︸ ︷︷ ︸

x U

. (3.6)

If both systems are orthonormal curvilinear representations of the same C1 surface, the
matrix x Pξ is the inverse of ξPx .

In order to solve the nonlinear equation (3.1), it is common to have recourse to stan-
dard linearization techniques, such as the Newton-Raphson method:

Au = b, (3.7)

where A is the gradient of f (or a suitable approximation of this gradient). Equation (3.7)
may be viewed in terms of local components inside each element:(

aξξ aξη
aηξ aξξ

)
︸ ︷︷ ︸

ξAξ

(
uξ

uη

)
︸ ︷︷ ︸
ξU

=
(

bξ
bη

)
︸ ︷︷ ︸
ξB

. (3.8)

The same equation can also be expressed in terms of nodal components:(
axx ax y

ay x ay y

)
︸ ︷︷ ︸

x Ax

(
ux

uy

)
︸ ︷︷ ︸

x U

=
(

bx

by

)
︸ ︷︷ ︸

x B

. (3.9)

To assemble local contributions (3.8) into a common nodal version, it is required
to transform equation (3.8) into equation (3.9). Such a transformation can be obtained
easily by matrix operations, taking advantage of the relations (3.5-3.6):

ξAξ ξU = ξB

↓

ξAξ
︷ ︸︸ ︷
ξPx x U = ξB

x Pξ ξAξ ξPx︸ ︷︷ ︸ x U = x Pξ ξB︸ ︷︷ ︸
↓ ↓

x Ax x U = x B.
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Finite element formulation

To obtain a discrete algebraic system, it is required to define a piecewise polynomial ap-
proximation of the unknown field. In the local basis, such an approximation can be writ-
ten as the linear combination of n local shape functions:

ξUw
n∑

i=1
φi (ξ,η)

(
ξUi

ηUi

)
︸ ︷︷ ︸
ξUh

i

. (3.10)

On each element, a weak formulation of (3.8) can be derived through the Galerkin
procedure (Hughes, 2000):

ξAh
ξ ξUh = ξBh , (3.11)

where ξUh = [ξU1 ηU1 ξU2 ηU2 . . . ξUn ηUn]T . For simplicity, let us restrict ourself to
Turner triangles (linear conforming P1 elements). In this case, only three nodes exist.
The length of ξUh and ξBh is 6, and the size of the matrix ξAh

ξ
is 6×6. To obtain the global

algebraic system, equation (3.11) must be expressed in terms of the nodal components:

ξAh
ξ ξUh = ξBh

↓

ξAh
ξ

︷ ︸︸ ︷
ξPh

x x Uh = ξBh (3.12)

x Ph
ξ ξAh

ξ ξPh
x︸ ︷︷ ︸ x Uh = x Ph

ξ ξBh︸ ︷︷ ︸
↓ ↓

x Ah
x x Uh = x Bh ,

where the transformation operator is now given by:

ξPh
x =

 ξPx1

ξPx2

ξPx3

 . (3.13)

The symbol ξPxi denotes the transformation operator from the local basis of the element
onto the nodal basis associated to the i th node of this element. Then the usual assem-
bling procedure of the finite element method can be applied.

To consider the general coupled shallow water equations, we just need to define ξUh

and ξPh
x as follows:

ξUh =



ξUh
1

E1

ξUh
2

E2

ξUh
3

E3

 , ξPh
x =



ξPx1

1

ξPx2

1

ξPx3

1

 , (3.14)

where Ei denote the nodal values of elevation. The diagonal terms equal to unity corre-
sponds to the elevation degrees of freedom.
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Selection of the mapping

To obtain the discrete algorithm, we have to choose a local curvilinear coordinate sys-
tem. The available choices range from the exact discretization of the surface (spherical
triangles) to linear mapping (flat triangles). On the one hand, the spatial differential op-
erators for spherical triangles must take into account the variations of the local basis
vectors, as the mapping is nonlinear. These complex expressions can be derived with the
help of differential geometry theory. An accurate quadrature rule has to be introduced
to integrate the nonlinearities due to the mapping. On the other hand, flat triangles al-
lows us to use the classical Cartesian expressions of differential operators, and low order
quadrature rules are sufficient.

The geometrical error with flat triangles converge at the same rate as the discretiza-
tion error when linear interpolations are used. Typically, the derivatives of the velocity
field with respect to the local variables are:

∂u

∂ξ
=

(
∂uξ

∂ξ
+Γξ

ξξ
uξ+Γξ

ξη
uη

)
eξ+

(
∂uη

∂ξ
+Γη

ξξ
uξ+Γη

ξη
uη

)
eη, (3.15)

∂u

∂η
=

(
∂uξ

∂η
+Γξ

ηξ
uξ+Γξηηuη

)
eξ+

(
∂uη

∂η
+Γη

ηξ
uξ+Γηηηuη

)
eη, (3.16)

where Γα
βγ

are the second kind Christoffel symbols. In Appendix A.1, we show that those
symbols scale as:

Γαβγ ≈
h

r 2 , (3.17)

with r the radius of the sphere (or the local radius of curvature for a more complex man-
ifold), and h the length of the largest edge.

Inspecting the order of magnitude in the discrete version of 3.15 yields:

∂u

∂ξ
=

(
∂uξ

∂ξ
+Γξ

ξξ
uξ+Γξ

ξη
uη

)
eξ+ (. . . )eηuη

i , j

=
([
∂uh,ξ

∂ξ
+O (h)

]
+O

(
h

r 2

)
uξ

i , j +O

(
h

r 2

))
eξ+ (. . . )eηuη

i , j

where ∂uh,ξ

∂ξ represents a component of the gradient of the discrete field, that is piecewise
constant if linear shape functions are used. Therefore, we see that the errors made ne-
glecting the curvature terms are O (h), as the error on the gradient of the field. Therefore,
the errors due to the discrete representation of the geometry converge at the same rate as
the error of a scheme using linear shape functions, i.e. we obtain a second order accurate
scheme. Moreover, as long as r À h, this geometrical error will be much smaller than the
discretization one. In ocean modeling, the sizes of all elements are always tiny in com-
parison to Earth radius. Therefore, when linear finite element are used, flat triangles are
sufficient.

For vectorial degrees of freedom defined at nodes, it is now impossible to define a
nodal coordinate system that is coplanar to all local coordinate systems of neighboring
triangles. The most natural definition of the nodal basis located at a vertex consists in
taking ez as a weighted average of the normals of the surrounding elements, while the
two other axes are chosen arbitrarily. This is the classical definition of the normal to a
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mesh at a node (Gresho and Sani, 2000, p. 542). The transfer operator x Pξ can be defined
by equation (3.5). The converse transfer operator ξPx defined by equation (3.6) is not(

x Pξ
)−1 anymore. To ensure consistency, x Pξ ξPx should be the identity operator, so we

define ξPx = (x Pξ)−1.
For vectorial degrees of freedom defined along the edges, it exists a natural definition

of x Pξ. The two triangles sharing a common edge can be unfolded onto a plane. The
nodal basis on the edge is defined so that ex axis is aligned with the edge, and ey axis
is embedded in the plane. Then the transfer matrices between any of these bases are
simply two-dimensional rotation matrices. Then the following property holds: x P−1

ξ
=

x PT
ξ
= ξPx .

To sum up, a simple general methodology to handle curved geometry has been devel-
oped. It can be implemented into standard flat geometry softwares with only marginal
modifications. The whole geometry is fully defined by the discrete vertices of the mesh.
Therefore, such a methodology is valid for any manifold discretized by the vertices. It
must be emphasized that all triangles will be handled in the same way. As a conse-
quence, the pole problem is completely circumvented. The computational overhead is
very small, since only local matrix/matrix and matrix/vector multiplications are added,
as explained in equation (3.12). All the conservation properties of the discretization are
preserved.

3.3 Validation with the shallow water equations

The methodology developed above is validated using the P NC
1 −P1 discretization, applied

to the shallow water equations. The non-conforming linear shape functions P NC
1 for ve-

locities, and conforming linear ones P1 for elevation are illustrated in figure 3.1. The
velocity nodes are located at the mid-edge points, and the elevation ones on the vertices.
This pair of elements is well suited for shallow water flows (Hanert et al., 2005). It enjoys
attractive mathematical properties in terms of spurious elevation modes, that could ap-
pear in a mixed discretization of the steady state shallow water equations (Le Roux et al.,
2005; Hanert and Legat, 2006). In addition, the shape functions for velocities are orthog-
onal, so the blocks of the mass matrix corresponding to the velocities are diagonal. It
is particularly advantageous for an explicit time integration, without any mass lumping.
The linear system is nondiagonal only for elevation nodes, which account only a seventh
of the whole set of degrees of freedom. As the nonconforming linear shape functions
are discontinuous on the edges, this approximation can be viewed as a hybrid choice
between continuous and discontinuous approximations. In short, this element appears
to combine most advantages of both continuous and discontinuous approaches. On the
one hand, the discontinuous character allows us to stabilize the momentum equation
with an approximate Riemann solver. On the other hand, sharing the same mid-edge
value allow us to implement diffusive second order terms in a straightforward manner
(Hanert et al., 2004, 2005).

Within the framework of the SLIM project, the time integration is performed by a
family of so-called IMEX Runge-Kutta methods, where the linear terms can be treated
implicitly (Ascher et al., 1997). In this case, the time step is only constrained by the usual
Courant-Friedrichs-Lewy condition associated with advective terms. In most oceanic
flows, such a condition is much less stringent than the stability condition related to the
external gravity waves if we use a fully explicitly time integrator. The ratio between ex-
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Figure 3.1: Conforming (left), and non-conforming (right) linear triangular shape functions. The
former is used for the elevation, while the latter is resorted to the velocity components.

plicit and semi-implicit time steps is of the order of the Froude number. However, as
all the test cases evaluated here are highly advective, the advantage of semi-implicit
time-stepping is much smaller. As we want to evaluate the spatial discretization, explicit
Runge-Kutta time-stepping schemes have been used, so that the stable time step ensure
that the errors due to the time discretization are small.

Five of the seven standard test cases defined by Williamson et al. (1992, hereafter
W92) are considered. The two remaining test cases are dropped because implementation
of complicated source terms will be needed, or it will involve an initial condition problem
for the atmosphere that is of no major interest for ocean modeling. All papers related to
the shallow water equations on the sphere include validation results based on these test
cases which can be now viewed as a de facto benchmark. Numerical solutions can be
easily compared to analytical ones or to numerical reference results. To perform mesh
refinement analysis, we consider four meshes deduced from the icosahedron, where the
faces are recursively divided into four triangles and then projected onto the sphere. The
meshes shown in figure 3.2 are made of almost equilateral triangles, with nearly uniform
edge length.

W92 test case 1: advection of a cosine bell of tracer

Solving accurately the advection of a cosine bell on the sphere is a quite good test of
the ability of a numerical scheme to represent efficiently any velocity field, anywhere on
the sphere. The advection equation is the equation for elevation (3.2) with a uniform
depth and a nondivergent velocity field constant in time. Using a single spherical coor-
dinate system, the velocity field of this problem exhibits discontinuities for both North
and East component at the poles. The finite element method naturally circumvents this
issue. Calculations are performed with an initial tracer field defined as a cosine bell, with
values between 0 and 1000. This bell is advected with a constant velocity field corre-
sponding to a solid body rotation. The orientation of the velocity field is tilted of 0.05
radian to avoid any effect of symmetry. P NC

1 elements are used. Advection is stabilized
using upwind fluxes, as described in Hanert et al. (2004). The initial condition and the
solution obtained after one revolution cannot be distinguished in figure 3.3. It can also
be observed that the L2 error norm converges at the optimal quadratic rate.
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Figure 3.2: Meshes based upon the icosahedron, with each face recursively refined 3, 4, 5 and 6
times. The number of triangles are respectively 1280, 5120, 20480 and 81920.

W92 test cases 2 and 3: zonal geostrophic flows

Williamson’s two next benchmarks are steady-state solutions to the nonlinear inviscid
shallow water equations. In the first case, the velocity field corresponds to a solid body
rotation along the axis of rotation of the Earth, whereas in the second case, it is nonzero
only for latitude ranging between 30◦South and 90◦North. The elevation is defined so
that it balances the Coriolis and advection terms of the momentum equation. W92 rec-
ommends to compute the error after five physical days. The results of a convergence
analysis on both flows are detailed in figure 3.4. The optimal rate of convergence for this
linear finite element pair in L2 norm is observed for both elevation and velocity fields.

W92 test case 5: zonal flow over an isolated mountain

This is the first unsteady test case evaluated. The initial condition is similar to the one of
test case 2: a solid body rotation velocity field, with the elevation in geostrophic balance.
The only difference is the bathymetry: a seamount conical in the longitude-latitude rep-
resentation is added, centered on a point with latitude 30◦North. The radius of the sea-
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Initial condition Solution

Convergence analysis
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Figure 3.3: Advection of a cosine bell. Graphical comparison between the initial condition and
the numerical solution after one revolution, on a mesh of 81920 triangles (top left).
Error distribution on this mesh exhibits small amplitude wiggles (right), and the con-
vergence plot of the L2 error illustrates the observed quadratic rate of convergence

(bottom left). L2 error is defined as
√∫

Ω(ch −c)2dΩ/
∫
Ω 1dΩ.
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Figure 3.4: Convergence analysis for test case 2 (left) and test case 3 (right). L2 error norms on
the elevation η (dots) and velocities u (squares) after five days of simulation on the
different meshes built upon the icosahedron (figure 3.2). L2 errors are defined as√∫

Ω(ch − c)2dΩ/
∫
Ω 1dΩ.

mount at its base is 20◦, and its height is roughly a third of the fluid mean depth. The
flow is going eastward.

In figure 3.5, our solution is compared to a very high resolution one from the German
Weather Service. They simulate this benchmark with a spectral transform shallow water
model, based on the NCAR’s model (Jakob-Chien et al., 1995) (model truncation: T-426,
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1280x640 grid points, time-step of 90 s)1. We use our finest mesh with 81920 triangles.
The time step is 90 s. The spectral model has a hyperviscous dissipation term ∇4 (with
coefficient 4.97×1011 m4/s), whereas our model does not have any explicit dissipation
term, the subgrid-scale features being filtered out by the upwinding of the numerical
scheme. The finite element model has 286720 degrees of freedom, while the spectral
model has in its grid component more than two million of unknowns. Thus, the spectral
solution should be much more resolved than the finite element one.

Spectral methods are subject to the Gibbs phenomenon. Angles cannot be repre-
sented accurately with a spectral method, and oscillations are induced in the discrete
representation, that do not converge when the grid is refined. For this testcase, the
mountain has sharp angles, and therefore the representation of the bathymetry is sub-
ject to such Gibbs phenomenon in the reference model. In a spectral method, the errors
would be localized at the vicinity of the angle or discontinuity. However, the reference
method is a pseudo-spectral method, i.e. some operators are computed with a spec-
tral algorithms while some others are computed with finite differences on a structured
longitude-latitude grid. Therefore, these oscillations can be propagated by the finite dif-
ference advection. It is believed that the difference plots of Figure 3.5 are mainly due to
this Gibbs phenomenon. The amplitude of the difference field is less than one percent of
the initial range of elevation. It is believed that the pattern of the difference field is mainly
the wiggles due to the spectral method, since this pattern does not change between our
two finest meshes, whereas scalar diagnostics do converge. Indeed, figure 3.6 shows that
the maximum and minimum values of elevation converge both at the optimal quadratic
rate. Further, the error on the total energy of the system after five days, illustrated in fig-
ure 3.7, converges at an higher rate than expected. Finally, similar behavior is observed
in Rípodas et al. (2009) for the vorticity field, while validating their model.

W92 test case 6: Rossby-Haurwitz waves

This test case has been widely used for model intercomparison. It consists of slow waves,
which are steadily evolving solutions of the nondivergent barotropic vorticity equations
(Haurwitz, 1940). The initial patterns of elevation and velocities are shown in figure 3.8.
When this flow was chosen as a test case by W92, it was thought to be stable for the
inviscid nonlinear shallow water equations. In fact, Thuburn and Li (2000) showed that
it is dynamically unstable, the wave pattern breaking down if initially perturbed.

Figure 3.9 compares our solution to a reference one. The latter was obtained by the
German Weather Service by means of the model that was also used in test case 5, with
T-511 resolution (1536x768 grid points), and a 90 s time step. Our model was used with a
60 s time step, on the icosahedral grid refined six times.

As seen in the plots of the right panel, the 4-periodic shape of the difference field
evolves toward a 2-periodic shape. This can be understood easily. As explained by Thu-
burn and Li (2000), the flow is unstable to small perturbations. The spectral method does
not trigger this instability because of its high degree of symmetry: truncation errors will
always be 4-periodic, since both the grid and the initial condition are 4-periodic. This is
why the spectral model keeps the 4-periodic wave pattern so long: only rounding errors
excite the instability. The icosahedral mesh is only 2-periodic. Therefore, the trunca-
tion errors are 2-periodic. Hence, they excite the 2-periodic component of the unstable

1Data are available at http://icon.enes.org/swm/stswm/node5.html

http://icon.enes.org/swm/stswm/node5.html
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Spectral solution

P NC
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6.4

After 5 days
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P NC
1 −P1 solution 0
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After 10 days
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1 −P1 solution 0
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After 15 days

Figure 3.5: Comparison of the elevation field with reference solution from the German Weather
Service for test case 5. The fields are presented in longitude-latitude projection. Left
panel: spectral solution on top, and finite element solution on bottom. The interval
between contourlines is 50m, the dashed lines are contourlines under the mean level,
and the solid lines are contourlines above the mean level. Right panel: visualization
of the absolute value of the difference between the reference solution and the finite
element solution. The colormaps for the difference range in [0;6.4], [0;7] and [0;6.2]
(white is 0, black is maximum).

mode, which is seen on figure 3.9. The difference field is an image of the asymmetry of
the mesh.
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Figure 3.6: Convergence of the difference between reference solution and finite element solution
for minimum (left) and maximum (right) values of elevation for test case 5 of W92.
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Figure 3.7: Fraction of total energy lost by the scheme for test case 5 of W92. Left: time series for
the four meshes, right: convergence after 15 physical days.

3.4 Perturbed Rossby-Haurwitz waves

As the Rossby-Haurwitz flow of W92 is unstable to small perturbations (Thuburn and Li,
2000), Smith and Dritschel (2006) proposed a small variation of it, so that the instability
is initially excited, and the numerical methods behave in a deterministic way. A small
perturbation is added to the initial elevation field. This perturbation is defined as :

H
(xx0 + y y0 + zz0)

40r 2 , (3.18)

with H the mean fluid height (i.e. 9523 m), (x, y, z) the coordinates of the point in the
global Cartesian frame of reference with origin at the center of the sphere, (x0, y0, z0) a
specific point located at latitude 40◦North and longitude 50◦East, and r is the radius of
the Earth.

The advantage of this test case over its W92 counterpart is that it is reproducible:
Thuburn and Li (2000) showed that for the classical Rossby-Haurwitz test case, the flow
is unstable, and thus the behavior of the simulation is completely dependent on the way
the numerical scheme excites the unstable mode(s).



3.5. Conclusions 47

0 m elevation 2560 m

0 m/s velocity 100 m/s

Figure 3.8: Initial elevation (left) and velocity (right) fields for test case 6 of W92.

Figure 3.10 compares our solution to that of Smith and Dritschel (2006), who used
a contour-advective semi-Lagrangian method on a 256x256 grid, with a 108 s time-step.
By contrast, our simulation was carried out with the same configuration as for initial
Rossby-Haurwitz waves test case, i.e. with the icosahedral grid refined six times and a
60 s time-step. The flow pattern is relatively well represented, but the difference with
respect to the reference solution is not negligible (the maximum differences after 5, 10
and 15 days are respectively 42, 147 and 221 m). This is probably due to a bias either in
the reference solution or in our initial condition. To ensure that our method converges
to a unique solution, we have considered as exact solution the result of a simulation
carried out on the icosahedral mesh refined seven times (counting 327680 triangles), and
observed how scalar diagnostics converge. This is illustrated in figure 3.11. We see that
the maximum and minimum values of elevation converge both at an acceptable rate.
Further, the error on the total energy of the system after fifteen days, illustrated in figure
3.12, converges at a higher rate than expected.

3.5 Conclusions

In this article, we propose an original solution for solving PDEs on the sphere — or on any
other curved manifold. Taking advantage of the geometrical flexibility inherent to the
finite element method, the presented methodology consists in a clever dialogue between
a local and a nodal coordinate systems. As all elements are handled in the same way, the
pole singularity issues are completely circumvented.

In order to assess the methodology, we show how to easily convert a finite element
code operational in planar geometry into an efficient PDEs solver in spherical geometry,
with a very small computational overhead. We prove that this new solver is able to re-
produce accurately the solutions of the traditional test case flows for the shallow water
equations. We observe optimal rates of convergence on both elevation and velocity fields
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Spectral solution
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3.1
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1 −P1 solution 0
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Figure 3.9: Comparison of the elevation field with reference solution from the German Weather
Service for test case 6. The fields are presented in longitude-latitude projection. Left
panel: spectral solution on top, and finite element solution on bottom. The interval
between contourlines is 50m, the dashed lines are contourlines under the mean level,
and the solid lines are contourlines above the mean level. Right panel: visualization
of the absolute value of the difference between the reference solution and the finite
element solution. The colormaps for the difference ranges in [0;3.1], [0;36] and [0;69]
(white is 0, black is maximum).

on steady state flows, as well as on different diagnostics for unsteady flows. Our solution
of complex flows compares well with published results.
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P NC
1 −P1 solution Solution of Smith and Dritschel (2006)

After 5 days

After 10 days

After 15 days

Figure 3.10: Comparison of the results for the modified Rossby-Haurwitz waves test case. The
fields are presented in longitude-latitude projection. Reference solution of Smith and
Dritschel (2006) (left) and our finite element solution (right). The interval between
contourlines is 100m, the dashed lines are contourlines under the mean level, and
the solid lines are contourlines above the mean level.

If the article mainly focuses on two-dimensional horizontal flows, the extension the
three-dimensional case is rather straightforward. As explained by White et al. (2008b,a),
our three-dimensional finite element model uses prisms as three-dimensional elemen-
tary unit. They are obtained by vertically extruding a two-dimensional triangular mesh.
Section 3.2 showed that all the integrals are computed in the local coordinate system eξ,
eη, eζ. If the extrusion of the mesh is realized in the local coordinate system, aligned with
the local vertical direction eζ, all the previous considerations are valid, if we consider the
three-dimensional vector quantity as the combination of a two-dimensional vector tan-
gent to the surface with a scalar value, which is its normal component. Note that we have
implicitly assumed that we deal with a thin layer of fluid, since the extrusion is achieved
along a constant direction within the triangle (parallel extrusion), rather than extrusion
toward the center of the sphere.
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Figure 3.11: Convergence of the difference between reference solution and finite element so-
lution for minimum (left) and maximum (right) values of elevation for perturbed
Rossby-Haurwitz waves test case after five days.
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Figure 3.12: Fraction of total energy lost by the scheme for perturbed Rossby-Haurwitz waves test
case. Left: time series for the four meshes, right: convergence after 15 physical days.
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A THREE-DIMENSIONAL BAROCLINIC MODEL:

SPATIAL DISCRETIZATION

This Chapter reproduces the following paper, first submitted on 7 July 2010:

S. Blaise, R. Comblen, V. Legat, J.-F. Remacle, E. Deleersnijder, and J. Lambrechts. A discon-
tinuous finite element baroclinic marine model on unstructured prismatic meshes. Part
I: space discretization. Ocean Dynamics (submitted), 2010.

Abstract

We describe the space discretization of a three-dimensional baroclinic finite el-
ement model, based upon a Discontinuous Galerkin method, while the companion
paper Comblen et al. (2010a) (reproduced in Chapter 5) describes the discretiza-
tion in time. We solve the hydrostatic Boussinesq equations governing marine flows
on a mesh made up of triangles extruded from the surface toward the seabed to
obtain prismatic three-dimensional elements. Diffusion is implemented using the
symmetric interior penalty method, with modified penalty coefficients to handle
anisotropy. The tracer equation is consistent with the continuity equation. A Lax-
Friedrichs flux is used to take into account internal wave propagation. By way of
illustration, a flow exhibiting internal waves in the lee of an isolated seamount on
the sphere is simulated. This enables us to show the advantages of using an unstruc-
tured mesh, where the resolution is higher in areas where the flow varies rapidly in
space, the mesh being coarser far from the region of interest. The solution exhibits
the expected wave structure. Linear and quadratic shape functions are used and the
extension to higher order discretization is straightforward.
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4.1 Introduction

Ocean models have reached a high level of complexity and eddy resolving simulations
are now much more affordable than in the past. However, mainstream models still fit
into the same framework as the pionneering model published by Bryan (1969). This ap-
proach, which uses conservative finite differences on structured grids, approximates the
coastlines as staircases and prevents flexible implementation of variable resolution. Yet,
during the last forty years, numerical methods have dramatically evolved. It is now time
for ocean modeling to benefit from all those advances by developing ocean models using
state of the art numerical methods on unstructured grids (Griffies et al., 2009).

Unstructured grid methods are mainly of two kinds: finite volumes and finite ele-
ments. In short, finite volumes were first developed for problems predominantly hy-
perbolic (i.e. dominated by waves or advective transport), while finite element methods
were first developed for problems dominated by elliptic terms. The two research com-
munities have evolved towards solutions that manage to treat efficiently both hyperbolic
and elliptic problems. Unstructured grid marine modeling is an active area of research
for coastal applications (Deleersnijder and Lermusiaux, 2008). Indeed, the coastlines
must be accurately represented, as they have a much stronger influence at the regional
scale than at the global-scale. Finite volume methods are now widely used, and models
like FVCOM (Finite Volume Community Ocean Model, Chen et al. (2003)) have a large
community of users. Many other groups are developing finite volume codes for ocean,
coastal and estuarine areas, such as Fringer et al. (2006), Ham et al. (2005), Stuhne and
Peltier (2006) and Casulli and Walters (2000). Nonhydrostatic finite element methods are
found in Labeur and Wells (2009) for small scale problems. For large scale ocean model-
ing, continuous finite element methods are used in FEOM (Finite Element Ocean Model,
Wang et al. (2008a,b); Timmermann et al. (2009)), and ICOM (Imperial College Ocean
Model, Ford et al. (2004b)) relies on mesh adaptivity to capture the multiscale aspects of
the flow (Piggott et al., 2008).

In the realm of finite difference methods, Arakawa’s C grid allows for a stable and
relatively noise-free discretization of the shallow water equations, and is now very pop-
ular for ocean modeling (Arakawa and Lamb, 1977; Griffies et al., 2000). However, the
search for an equivalent optimal finite element pair for the shallow water equations is
still an open issue. Le Roux et al. (1998) gave the first review of available choices. More re-
cent mathematical and numerical analysis of finite-element pairs for gravity and Rossby
waves are provided in Le Roux et al. (2007, 2008); Rostand and Le Roux (2008); Rostand
et al. (2008). Hanert et al. (2005) proposed to use the P NC

1 −P1 pair, following Hua and
Thomasset (1984). It appears that the P NC

1 −P1 pair is a stable discretization, but its rate
of convergence is suboptimal on unstructured grids (Bernard et al., 2008b). Following
the same philosophy, the P DG

1 −P2, pair was proposed by Cotter et al. (2009a). Such an
element exhibits both stability and optimal rates of convergence for the Stokes problem
and the wave equation (Cotter et al., 2009b) . FEOM (Wang et al. (2008b)) uses stabilized
continuous finite elements, as well as ICOM (Ford et al. (2004b)). A detailed comparison
of pairs stabilized by interface terms (including Discontinuous Galerkin methods) was
provided by Comblen et al. (2010b).

This paper focuses on the development of a marine model, called SLIM (Second-
generation Louvain-la-Neuve Ice-ocean Model1), that should be able to deal with prob-

1http://www.climate.be/slim

http://www.climate.be/slim
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lems ranging from local and regional scales to global scales. In this model, we choose
equal-order discontinuous interpolations for the elevation and velocity fields because
of the inherent advantages of the usual Discontinuous Galerkin methods for advection
dominated processes. It also allows us to decouple horizontal and vertical dynamics,
thanks to the block-diagonal nature of the corresponding mass matrix. Discontinuous
Galerkin methods (DG) can be viewed as a kind of hybrid between finite elements and
finite volumes. They enjoy most the strengths of both schemes while avoiding most of
their weaknesses: advection schemes take into account the characteristic structure of
the equations, as for finite volume methods, and the polynomial interpolation used in-
side each element allows for a high order representation of the solution. Moreover, no
degree of freedom is shared between two geometric entities, and this high level of local-
ity considerably simplifies the implementation of the method. Finally, the mass matrix
is block diagonal, and for explicit computations, no linear solver is needed. We also ob-
serve a growing interest for the Discontinuous Galerkin methods in coastal and estuarine
modeling (Aizinger and Dawson, 2002; Dawson and Aizinger, 2005; Kubatko et al., 2006;
Aizinger and Dawson, 2007; Bernard et al., 2008a; Blaise et al., 2010c). For atmosphere
modeling, the high order capabilities of this scheme are really attractive (Nair et al., 2005;
Giraldo, 2006), and the increasing use of DG follows the trend to replace spectral trans-
form methods with local ones.

Herein, we provide the detailed description of the spatial discretization used in our
Discontinuous Galerkin finite element marine model SLIM, as well as an illustrative ex-
ample of the ability of the model to represent complex baroclinic flows. Section 4.2 de-
scribes the partial differential equations considered. Sections 4.3 and 4.4 provide the
numerical tools needed to derive an efficient stable and accurate discrete formulation.
Section 4.5 details the discrete discontinuous formulation. Finally, in Section 4.6, we
study the internal waves generated in the lee of an isolated seamount as computed with
our model.

In a companion paper (reproduced in Chapter 5), the time integration procedure will
be discussed.

4.2 Governing equations

Large scale ocean models usually solve the hydrostatic Boussinesq equations. As a result
of the hydrostatic approximation, the vertical momentum equation is reduced to a bal-
ance between the pressure gradient force and the weight of the fluid. The conservation
of mass degenerates into volume conservation, and the density variations are taken into
account in the buoyancy term only. This set of equations is defined on a moving domain,
as the sea-surface evolves according to the flow.

Using the notations given in Table 4.1, the governing equations read:

• Horizontal momentum equation:

∂u

∂t
+∇h · (uu)+ ∂(wu)

∂z
+ f ez ∧u + 1

ρ0
∇h p + g∇hη

=∇h · (νh∇hu)+ ∂

∂z

(
νv
∂u

∂z

)
, (4.1)
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• Vertical momentum equation:

∂p

∂z
=−gρ(T,S) with ρ = ρ0 +ρ′(T,S). (4.2)

• Continuity equation:

∇h ·u + ∂w

∂z
= 0, (4.3)

• Free-surface equation:
∂η

∂t
+uη ·∇hη−wη = 0. (4.4)

• Tracer equation:

∂c

∂t
+∇h · (uc)+ ∂(wc)

∂z
=∇h · (κh∇hc)+ ∂

∂z

(
κv
∂c

∂z

)
, (4.5)

This set of equations defines the mathematical three-dimensional baroclinic marine model
and must be solved simultaneously with the suitable initial and boundary conditions.
In particular in the inviscid limit, impermeability cannot be imposed on lateral bound-
aries for the three-dimensional momentum equation, as "In the absence of viscosity, it is
known that the primitive equations are not well-posed for any set of boundary conditions
of local type" (Rousseau et al., 2004). Particular attention must therefore be paid to the
lateral boundary conditions..

In order to build a numerical discrete spatial scheme, it is usual to associate the
unknown field with a given equation. The horizontal velocity u(x, y, z, t ) is obtained
from the horizontal momentum equation (4.1), while the vertical velocity w(x, y, z, t ) is
deduced from the continuity equation (4.3). The three-dimensional tracers c(x, y, z, t ),
which can be T or S, are associated with the tracer equation (4.5). The density de-
viation ρ′(x, y, z, t ) is then deduced from temperature and salinity using an appropri-
ate equation of state ρ′(T,S). As we only need the pressure gradient and not the pres-
sure itself, we follow Wang et al. (2008b) and we only calculate the pressure gradient
p(x, y, z, t ) =∇h p(x, y, z, t ) from

∂p

∂z
=−g∇hρ

′(T,S), (4.6)

which is the horizontal gradient of equation (4.2), as ρ0 is constant. Such an approach
allows us to partly circumvent the numerical inaccuracies observed in the calculation
of the baroclinic pressure gradient term in the momentum equation with a transformed
vertical coordinate (e.g. sigma coordinates) (Deleersnijder and Beckers, 1992; Haney,
1991). Finally, the sea elevation η(x, y, t ) can be deduced from an modified form of the
free-surface equation (4.4) which specifies the associated impermeability condition at
the sea surface. Integrating the continuity equation (4.3) along the vertical direction
yields

wη−w−h +
∫ η

−h
∇h ·ud z = 0,

which may be transformed to:

∂η

∂t
+uη ·∇hη︸ ︷︷ ︸

wη

−u−h ·∇h(−h)︸ ︷︷ ︸
w−h

+
∫ η

−h
∇h ·ud z = 0,
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Coordinates and spatial operators

x, y Horizontal coordinates
z Vertical coordinate, pointing upwards with its origin at the sea surface at rest
∇h Horizontal gradient operator
ez Upward unit normal
∧ Cross product symbol

Material parameters or functions

g Gravitational acceleration
ρ0 Reference density
f Coriolis parameter
h Depth at rest
νh Horizontal turbulent viscosity parameter
νt Vertical turbulent viscosity parameter
κh Horizontal turbulent diffusivity parameter
κt Vertical turbulent diffusivity parameter

Variables

u Horizontal three-dimensional velocity vector
w Vertical three-dimensional velocity vector
uη Surface horizontal three-dimensional velocity vector
wη Surface vertical three-dimensional velocity vector
u−h Bottom horizontal three-dimensional velocity vector
w−h Bottom vertical three-dimensional velocity vector
η Sea surface elevation
p Baroclinic pressure
p Baroclinic pressure gradient
c Three-dimensional tracer, can be S or T
S Salinity
T Temperature

Table 4.1: Notations for the governing equations of the three-dimensional baroclinic marine
model

where we substitute the vertical velocities by using both associated impermeability con-
ditions at the sea surface and the sea bottom. Applying the Leibniz integral rule leads to

∂η

∂t
+∇h ·

∫ η

−h
ud z = 0. (4.7)

The integral free-surface equation (4.7) corresponds exactly to the mass conservation of
the shallow water equations. This prompts us to use this form rather than the local form.
Mode-splitting procedures, where baroclinic (i.e. three-dimensional) and barotropic (i.e.
two-dimensional) modes are time-stepped separately, are often resorted to. Therefore, it
is very useful to have the same free-surface equation for the three-dimensional and two-
dimensional formulations. The three-dimensional equations are designed so that the
discretely depth-integrated equations are as close as possible to an accurate discretiza-
tion of the shallow water equations (Comblen et al., 2010b). To achieve this, we rely
on the integral form of the free-surface equation for the baroclinic three-dimensional
model.
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The diffusion terms are split into an horizontal part and a vertical part, preventing
the implementation of rotated diffusion tensors as described for instance in Redi (1982).
This reflects the fact that such rotated diffusion is not available yet in our discretization.
Viscosity and diffusivity coefficients are chosen to represent the different effects of each
of the many unresolved physical processes. The viscosity and diffusivity are strongly
anisotropic (Griffies, 2004). If we consider a fluid stratified only in the vertical direction,
stratification tends to annihilate vertical turbulent transport. As a consequence, many
transport processes tend to spread properties more efficiently along isopycnal surfaces
(horizontal direction) rather than across them (vertical direction). Measurements of the
tracer diffusivity in the ocean by Ledwell et al. (1993) showed that, at the larger scales
(order of hundreds of kilometers), the ratio between horizontal and vertical mixing co-
efficients is as large as 108. Particular attention must be paid to ensure the stability and
accuracy of the anisotropic diffusion scheme. The subgrid scale phenomena are com-
pletely different depending whether they are related to the horizontal or the vertical di-
rection. Processes modeled by vertical eddy viscosity consist of small scale (from mil-
limeters to meters) turbulence, mainly generated by shear instabilities and gravitational
instabilities. Due to their very small scales, these processes are never resolved in ocean
models. Horizontal dominant subgrid scale processes correspond to larger scales of mo-
tions such as the mesoscale eddies (tens of kilometers). In that case, larger phenomena
can be resolved by the model, depending of the resolution, and the eddy diffusivity must
increase with the mesh size.

4.3 Geometrical numerical tools

Before deriving the discrete formulation, we first present the geometrical tools that are
valid for all finite element (continuous or discontinuous) discretizations.

• The computational domain evolves with time and it is required to take into ac-
count the evolution of the domain in the discrete model. In Section 4.3.1, the stan-
dard ALE technique (Arbitrary Lagrangian Eulerian) implemented in the model is
described.

• Moreover, the computational domain lies on a sphere. In Section 4.3.2, we recall
the algorithm that renders the model able to operate on any manifold including an
arbitrary shaped surface including a sphere or a planar surface.

4.3.1 Arbitrary Lagrangian Eulerian Methods

As the variation of the sea surface elevation modifies the domain of integration, the posi-
tion of the nodes at the sea surface will move in the vertical direction as prescribed by the
elevation field η. Moving the free surface nodes without changing the position of inte-
rior nodes will lead to unacceptable element distortions along the sea surface. Then, we
must propagate the motion of the boundary nodes into the domain by means of a mov-
ing mesh algorithm. Its purpose is to avoid mesh distortion due to the sea surface motion
and to maintain the original element density in the deformed mesh. In the model, the
computational domain is stretched uniformly in the vertical direction. If we denote z∗
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the original vertical coordinate of the nodes in the initial reference fixed domainΩ∗ (the
computational domain with the sea surface at rest), the vertical position z(x, y, z∗, t ) and
the vertical velocity wz (x, y, z∗, t ) of the nodes in the moving domainΩ(t ) are prescribed
by

z(x, y, z∗, t ) = z∗+η(x, y, t )
h(x, y)+ z∗

h(x, y)
, (4.8)

∂z

∂t
(x, y, z∗, t )︸ ︷︷ ︸

wz

= ∂η

∂t
(x, y, t )

h(x, y)+ z∗

h(x, y)
. (4.9)

The mesh velocity wz is relative to the arbitrary motion of the mesh that is stretched
uniformly only to maintain the original aspect ratio in the deformed mesh. Such a ve-
locity is fully arbitrary and is fully independent of the real velocity of the fluid particle.
This is why such an approach is usually called an Arbitrary Lagrangian Eulerian method.
Dealing with a moving domain requires the modification of the material derivative of a
field c

Dc

Dt
= ∂c

∂t
+u ·∇hc + (w −wz )

∂c

∂z
. (4.10)

Therefore, the tracer equation (4.5) has to be modified to take into account the moving
mesh algorithm

∂c

∂t
+∇h · (uc)+ ∂(wc −wz c)

∂z
+ c

∂wz

∂z
=∇h · (κh∇hc)+ ∂

∂z

(
κv
∂c

∂z

)
, (4.11)

where the mesh velocity is subtracted from the vertical fluid velocity in the vertical ad-
vection term. The second additional term can be viewed as a correction to the volume
modification introduced by the displacement of the moving mesh. The vertical deriva-
tive of the mesh velocity can be directly deduced from (4.9)

∂wz

∂z
= ∂η

∂t

1

h
. (4.12)

A similar adaptation must be applied for the horizontal momentum equation (4.1).
In a full standard ALE approach, all integrals and spatial operators appearing in fi-

nite element discrete formulation have to be considered in the deformed mesh. This
is mandatory to obtain both global conservation and consistency (White et al., 2008b).
However, incorporating the deformation of the mesh into all integrals and spatial differ-
ential operators of the discrete formulation will require at each time step the geometri-
cal mapping between the parent element and the deformed physical element. For single
stage time integrators, typically a θ scheme for implicit terms, and forward Euler for ex-
plicit terms as used by White et al. (2008b), such a general accurate approach can be
applied. The generalization of such an approach for a multi-stage time-stepping scheme
is a quite tedious and complex task. Therefore, it is not the main objective of this paper.
Taking into account the deformation of the mesh in the integrals and the spatial opera-
tors is expensive in terms of CPU.. Moreover as for large scale oceanography problems,
approximating the exact spatial differential operators by the same operators on the fixed
reference grids can be considered as an acceptable approximation if the fluctuations of
the free surface are significantly small compared to the depth of the ocean. In the same
way, integrating the discrete formulation on the fixed domain (and not on the deformed
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domain) only slightly modifies the discrete formulation where the relative weights of the
elements are given with the surface of those elements in the reference fixed mesh and
not in the deformed domain. Again, if the free surface fluctuations are small, both dis-
crete formulations are perfectly acceptable from a numerical point of view. For coastal
problems where the free surface motion is not tiny compared to the current depth, those
approximations must be avoided and the generalization of the moving procedure with
multi-stage time integrators is mandatory. Using the linear free surface approximation,
several errors have to be monitored. Both vertical and horizontal spatial operators will be
slightly biased, as the geometrical mapping of each finite element will be performed on
the fixed domain and not on the moving computational domain. Conservation proper-
ties are also altered by the linear surface approximation. The scheme still exhibits consis-
tency (i.e. the ability to exactly transport a constant tracer concentration). In summary,
the linear free surface approximation takes into account the motion of the moving do-
main, but the local mapping of each element to the deformed mesh is approximated by
the mapping to a reference fixed domain. From this point of view, the calculations with
such an approximation can be really considered as an arbitrary Lagrangian Eulerian for-
mulation on a moving domain, even if the integrations are performed on a fixed mesh.

4.3.2 Dealing with flows on the sphere

The model operates on arbitrary shaped surfaces, including the sphere or plane surfaces,
following Comblen et al. (2009). The basic idea of the procedure is that each local geo-
metrical entity supporting vectorial degrees of freedom has its own Cartesian coordinate
system. There are also coordinate systems associated with each vector test and shape
functions for the horizontal velocity field. To supply a vectorial degree of freedom from
a frame of reference to another, we only need to build local rotation operators.

The global linear system of discrete equations is then formulated in terms of the vec-
tor degrees of freedom expressed in their own frame of reference. To build and assemble
the local matrix corresponding to an element, we first fetch all the needed vectorial de-
grees of freedom into the coordinate system of this element, then we compute the local
matrix or vector. We then apply rotation matrices to this matrix so that its lines and
columns are expressed in the frame of reference of the corresponding test and shape
functions, respectively. The transformation of the local linear system can be expressed
in terms of x Pξ and ξPx , the rotation matrices from and to the frame of reference in which
the integration is performed, respectively (Comblen et al., 2009):

ξAξ ξU = ξB

↓

ξAξ
︷ ︸︸ ︷
ξPx x U = ξB

x Pξ ξAξ ξPx︸ ︷︷ ︸ x U = x Pξ ξB︸ ︷︷ ︸
↓ ↓

x Ax x U = x B.

Similarly, to assemble local matrices and vectors corresponding to the integral over
an interface between two elements with different coordinate systems, we first fetch all
the information in the frame of reference of the interface, then compute the integral,
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Figure 4.1: Sketch of prismatic elements. The vertical length scale is typically much smaller than
the horizontal length scale, i.e. the prisms are thin.

and fetch back the lines and columns of the matrices in the frame of reference of the
corresponding test and shape functions. All the curvature treatment is embedded in the
rotation matrices, and the discrete equations are expressed exactly as if the domain was
planar.

With such a procedure, it is possible to solve the equations on the sphere, circum-
venting completely any possible singularity problem. For notational convenience, the
full discrete formulation will be presented within a Cartesian framework, but it is impor-
tant to note that the model is fully implemented to operate on the sphere.

4.4 Discontinuous Galerkin Methods

Now, let us introduce the finite element mesh and the discrete discontinuous approx-
imations of the field variables of the model (η, u, w , c, ρ′, p). The three-dimensional
mesh is made up of prismatic elements, as illustrated in Figure 4.1 and is obtained from
the extrusion of triangular two-dimensional elements. The vertical length scale is typi-
cally much smaller than the horizontal length scale. In other words, the prisms are thin.
We choose prismatic elements to obtain a mesh unstructured in the horizontal direction,
and structured in the vertical direction. On the sphere, these columns of prisms are ob-
tained by extruding the surface triangles in the direction normal to these triangles. As
the extrusion is parallel, the prisms have the same width at the sea surface and at the
sea bottom. This alignment of the elements along the vertical axis allows natural treat-
ment of the continuity equation (4.3) and the pressure gradient equation (4.6), that can
be integrated along the vertical direction.

The three-dimensional fields (u, w , c, ρ′, p) are discretized on the mesh of prisms.
The two-dimensional elevation field η is discretized onto the two-dimensional mesh of
triangles. The shape functions for u, w , c are obtained as the tensorial product of the lin-
ear discontinuous triangle P DG

1 and the linear discontinuous one-dimensional element
LDG

1 . The shape functions of the density deviation and the baroclinic pressure gradient
are P DG

1 ×L1. The use of different discrete vertical spaces for ρ′ and the tracer c can be
viewed as an appropriate way to average the vertical variation of the tracers in the cal-
culation of the baroclinic pressure gradient. The summary of the finite element spaces
are given in Table 4.2. For the procedure to simulate flow on the sphere, each column of
prisms defines the basic geometrical entity to assemble. It has its own coordinate sys-
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Field Finite element space

Free surface elevation η P DG
1

Horizontal three-dimensional velocity vector u P DG
1 ×LDG

1
Vertical three-dimensional velocity w P DG

1 ×LDG
1

Three-dimensional tracer c P DG
1 ×LDG

1
Density deviation ρ′ P DG

1 ×L1

Baroclinic pressure gradient p P DG
1 ×L1

Table 4.2: Summary of the finite element spaces used for each field. Triangular linear elements
are noted P1 while vertical linear elements are noted L1. The superscript DG stands for
Discontinuous Galerkin.

tem, as the degrees of freedom for a discontinuous approximations are all associated
with elements, and not with interfaces or vertices.

• The way to compute the discrete values at the inter-element interfaces is the crit-
ical ingredient to obtain a stable and accurate discrete formulation in the frame-
work of the DG methods. The discrete fields are dual-valued at the inter-element
interfaces. For the advective fluxes at these interfaces, the values of the variables
are obtained on Riemann solvers applied to the hyperbolic terms of the model.
Details about the Riemann solvers are given in Section 4.4.1.

• Incorporating the diffusion operators inside a DG formulation also requires spe-
cial care. We use the SIPG technique (Symmetric Interior Penalty Galerkin) to
accommodate diffusion operators. Moreover, the mathematical formulation ex-
hibits anisotropic diffusion and the algorithm is adapted by computing the inte-
rior penalty coefficients on a virtual stretched geometry. The methodology used is
summarized in Section 4.4.2.

4.4.1 Riemann solvers

A two-dimensional set of barotropic discrete equations can be obtained by the vertical
depth-integration (or the algebraic stacking of the resulting lines and columns of the
global system) of the three-dimensional set of discrete equations. The basic idea is to
define the lateral interface in the discrete three-dimensional baroclinic equations in such
a way that the corresponding two-dimensional discretization by depth-integration is a
robust stable formulation. In particular, the use of the integral free-surface equation
(4.7) and the selection of the discrete spaces lead to a stable and accurate corresponding
two-dimensional discrete problem. Here, the resulting corresponding discrete problem
is close to the discretization of the shallow water equations with P DG

1 shape functions for
the two-dimensional velocities and elevation. A stable and accurate formulation can be
derived for this problem, following Comblen et al. (2010b).

The key ingredient of a stable and accurate DG formulation is the choice of the def-
inition for a common value for the variables along the interfaces. Due to the discon-
tinuous representation of the variables, they are double-valued at the interface between
elements. It is necessary to define adequately these common values provided by the
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Riemann solvers. A Riemann solver simply consists of upwinding the characteristic vari-
ables. For nonlinear problems, it can be quite complicated to compute the exact Rie-
mann solver and approximate Riemann solvers are usually resorted to. For the shallow
water equations, approximate Riemann solvers are deduced from the conservative form
of the equations (LeVeque, 2002; Toro, 1997; Comblen et al., 2010b).

For the linear shallow water equations, the exact solver yields the following interfacial
values:

uriemann ·n = {u} ·n+
√

g

h
[η], (4.13)

ηriemann = {
η
}+√

h

g
[u] ·n, (4.14)

where { } and [ ] denote the mean or the jump operators, respectively 2. The vector n is
the rightward normal corresponding to the jump operator. Here, we have a simple wave
equation and these values are used in the terms accounting for surface gravity waves.
Indeed, the two-dimensional problem is not linear but, as oceanic flows usually have
really small Froude numbers, the linear Riemann solver is a pretty good approximation
of the nonlinear solver.

The three-dimensional equations allow several hyperbolic phenomena to take place.
Surface gravity waves are the fastest phenomenon, with phase speed

√
g h. The second

fastest phenomena are the internal gravity waves. Their propagation speed depends on
the stratification. It can be as large as a few meters per second. As the set of the three-di-
mensional baroclinic marine flow equations cannot be cast into a conservative form, it
is not possible deduce an approximate Riemann solver such as the Roe solver by simply
linearizing the problem. Therefore, we selected a Lax-Friedrichs flux. This flux is com-
monly used due to its simplicity. The flux is simply defined as the sum of the mean flux
and the jump of the variables multiplied by an upper bound γ on the phase speed of the
fastest wave (the maximum eigenvalue of the Jacobian matrix):

fluxlax-friedrichs = {flux}+γ [variable] (4.15)

In this work, we use the Riemann solver of the linear shallow-water equations (4.13,
4.14) for the terms corresponding to surface gravity waves (i.e. elevation gradient in the
two-dimensional, depth-averaged momentum equation and velocity divergence in the
continuity equation). In the three-dimensional problem, i.e. in the momentum equa-
tion and in the active tracers equations (typically temperature and salinity), we add to
the mean flux the jump of the variables multiplied by an upper bound on the second
fastest wave, which is the sum of the fastest internal wave phase speed and the advec-
tion velocity. Determining the phase speed of the fastest internal wave is not easy for a
complicated stratification profile. In our examples, we simply use values deduced from
our numerical experience, by a trial and error procedure.

4.4.2 Symmetric Interior Penalty Galerkin methods

In the realm of Discontinuous Galerkin methods, various discretizations of the Laplacian
operator are reviewed in e.g. Arnold et al. (2002). Two of them are especially popular: the

2In particular, the jump is defined by [a] = (aL −aR )/2 and the mean by {a} = (aL +aR )/2 where aL and
aR are the right and left values of the field a.
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interior penalty methods (Riviere, 2008) and the local-DG approach (Cockburn and Shu,
1998a). The latter approach introduces a mixed formulation for the field and its gradient
and can be difficult to handle with an implicit time-stepping.

To accurately handle the diffusion terms, we use the SIPG technique (Symmetric In-
terior Penalty Galerkin). Basically, the weak form of the Laplace equation ∇2c = 0 can
be obtained by integrating the product of this equation by a test a function on the whole
domain. Integrating by parts and choosing the mean values at the interfaces yields:

Ne∑
e=1

[
¿ ĉ {∇c} ·n Àe −<∇ĉ ·∇c >e

]
= 0, (4.16)

where <>e and ¿Àe denote respectively the integral over the elementΩe and its bound-
ary. The number of elements is Ne . Choosing the mean values at the interface seems
natural for an elliptic operator where the information propagates along all directions.
However, such a simple and intuitive treatment of the Laplacian operator is incomplete.
Indeed, the discrete solution is not unique, as at the boundary of each element, only
Neumann boundary conditions are prescribed. In order to partly complete the discrete
formulation, the Incomplete Interior Penalty Method (IIPG) consists in adding a penalty
term on the discontinuities of the field at the inter-element interfaces

Ne∑
e=1

[
¿ ĉ {∇c} ·n Àe +σ¿ ĉ [c] Àe −<∇ĉ ·∇c >e

]
= 0, (4.17)

where σ is a penalty parameter scaled in such a way that σ [c] is a term similar to a gra-
dient, at the interface level. In other words, 1/σ has to be an suitable lengthscale. It is
shown in Riviere (2008) that this formulation provides optimal results when shape func-
tions of odd polynomial order are used (i.e. P1, P3, . . . ), but lacks convergence for even
polynomial orders. Further, the resulting discrete matrix is not symmetric, while the con-
tinuous operator is symmetric. The Symmetric Interior Penalty Method (SIPG) solves
both of these issues, by adding a symmetrizing term to the IIPG formulation (4.17).

Ne∑
e=1

[
¿ ĉ {∇c} ·n Àe +¿∇ĉ ·n [c] Àe +σ¿ ĉ [c] Àe −<∇ĉ ·∇c >e

]
= 0. (4.18)

There is a lower bound on σ that ensures optimal convergence. This bound must
be as tight as possible, as the larger the value of σ, the worse the conditioning of the
operator. Shahbazi (2005) suggests to use the following formula:

σ=
[2(k +1)(k +d)

3

A(Γk )

V (Ωe ,Ω f )

]
, (4.19)

where k the order of the interpolation, A(Γk ) is the area of the interface Γk between the
two considered elements, and V (Ωe ,Ω f ) is the mean volume of the two neighboring el-
ementsΩe andΩ f .

Finally, the diffusion operators that appear in three-dimensional baroclinic marine
models are strongly anisotropic. In fact, both the diffusion operator and the mesh are
anisotropic. A very simple idea consists then in virtually stretching the mesh in the ver-
tical direction so that we recover an isotropic diffusion in the deformed geometry. The
mesh is not really modified, but the local interior penalty coefficients are chosen is such
a way that they correspond to an isotropic diffusion on the modified mesh. As an illus-
trative example, let us consider a general large scale tracer problem, on a mesh whose
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Figure 4.2: Dimensionless equivalent problem on stretched mesh involves to isotropic diffusion.
The mesh is highly distorted as it does not respect the hydrostatic consistency princi-
ple.

typical horizontal and vertical elements sizes are 100 km and 10 m. Considering unre-
solved phenomena for this mesh scale, typical values of turbulent diffusivity in the ocean
interior are of the order κh = 104 m2s−1 and κv = 10−4 m2s−1 (Griffies, 2004; Ledwell
et al., 1993; Mellor and Blumberg, 1985). The modified problem with a vertical diffusivity
κv = 104 m2s−1 corresponds to a mesh stretched by a factor 104 in the vertical direction.
The typical vertical mesh size would be 100 km and we would recover isotropic diffusion
on an isotropic mesh. If we were to consider the surface layer of the ocean, or simply
flows in the continental seas, the vertical eddy viscosity would be much larger, and the
equivalent problem with an isotropic diffusion would involve elements with a relatively
high aspect ratio. If the elements are too shallow, the stretched grid is highly distorted,
as illustrated in Figure 4.2.

4.5 Discrete DG finite element formulations

For the sake of completeness, we provide here the full weak DG finite element formula-
tions for each equation of the three-dimensional baroclinic marine model (4.1, 4.3, 4.5,
4.6, 4.7) using the numerical tools described in both previous sections. The discrete for-
mulations can be then derived by replacing the test functions and the solution by the
corresponding DG polynomial approximation.

4.5.1 Horizontal momentum equation

The discrete formulation of the horizontal momentum equation is obtained by multiply-
ing equation (4.1) by a test function û and integrating over the whole domainΩ:

< û · ∂u

∂t
>+< û · (∇h · (uu)) >+< û · ∂(w −wz )u

∂z
>

+< û · f ez ∧u >+< û · p

ρ0
>+< û · g∇hη>

−< û · (∇h · (νh∇hu)) >−< û · ∂
∂z

(
νv
∂u

∂z

)
>= 0, (4.20)
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where < > denotes the volume integral over the domain Ω. In order to be able to in-
troduce discontinuous approximations, this integral is split into Ne integrals on each
elementΩe .

Ne∑
e=1

< û · ∂u

∂t
>e +< û · (∇h · (uu)) >e︸ ︷︷ ︸

horizontal advection

+ û · ∂(w −wz )u

∂z︸ ︷︷ ︸
vertical advection

+< û · f ez ∧u >e︸ ︷︷ ︸
Coriolis

+ < û · p

ρ0
>e︸ ︷︷ ︸

baroclinic pressure gradient

+< û · g∇hη>e︸ ︷︷ ︸
elevation gradient

−< û · (∇h · (νh∇hu)) >e︸ ︷︷ ︸
horizontal diffusion

−< û · ∂
∂z

(
νv
∂u

∂z

)
>e︸ ︷︷ ︸

vertical diffusion

= 0. (4.21)

Apart from the baroclinic pressure terms, all terms containing spatial derivatives are in-
tegrated by parts on each element. Therefore, Neumann boundary fluxes appear along
the interfaces between the elements. If we use discontinuous approximations, the key
ingredient of the weak formulation is the way to define those fluxes as the variables are
not uniquely defined on those interfaces. Each term of (4.21) is then derived as follows:

• Horizontal advection:

Ne∑
e=1

[
−<∇hû : uu >e +¿ ({u} {u} · û) ·nh Àe +¿ γ [u] ·nh Àe

]
• Vertical advection:

Ne∑
e=1

[
−< ∂û

∂z
· (w −wz )u >e +¿

(
û · (w −wz )downuupwind

)
nz Àe

]
• Elevation gradient:

Ne∑
e=1

[
−<∇h · û gη>e +¿ gηriemann û ·nh Àe

]
• Horizontal diffusion:

Ne∑
e=1

[
−< νh (∇hû) : (∇hu)T >e +¿ νhû · {∇hu} ·n Àe

+ 1
2 ¿ νh∇hû ·n · [u] Àe +σ¿ νhû · [u] Àe

]
• Vertical diffusion:

Ne∑
e=1

[
−< νv

∂û

∂z
· ∂u

∂z
>e +¿ νv û ·

{
∂u

∂z

}
nz Àe

+ 1
2 ¿ νv

∂û

∂z
nz · [u] Àe +σ¿ νv û · [u] Àe

]
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Baroclinic pressure gradient:

Ne∑
e=1

[
< û · p

ρ0
>e

]

where nh = (nx ,ny ) and nz are respectively the horizontal and the vertical components
of the outgoing normal of the boundary of the element. In the interface term for vertical
advection, we perform upwinding of the advected variable u, and we use the vertical
velocity of the prism below the interface, so that the discrete vertical advection term is
as close as possible to the corresponding term in the continuity equation. As we use the
Riemann solver associated to the non-conservative P DG

1 −P DG
1 discrete formulation of

the two-dimensional shallow water equations for the gravity waves, it is critical that the
resulting two-dimensional discrete equations obtained by integrating the momentum
equation along the vertical axis approximately degenerate to this discrete formulation of
the two-dimensional shallow water equations. To achieve this, the usual test function is
divided by the depth at rest to obtain û. Finally, the Lax-Friedrichs flux for the internal
waves requires the additional boundary term ¿ γ [u] ·nh Àe where γ is an upper bound
of the fastest propagation speed of a three-dimensional phenomena, namely the sum of
the phase speed of the fastest internal wave and the advection velocity. The interface
terms for horizontal and vertical diffusion are directly derived from the SIPG procedure
described by equation (4.18).

4.5.2 Vertical momentum equation

As the discrete variable associated with the vertical momentum equation is the vector
field p that stands for the numerically computed baroclinic pressure horizontal gradient,
we discretize the gradient of the balance of the vertical momentum (4.6) as follows:

Ne∑
e=1

[
< p̂up · ∂p

∂z
>e

]
=

Ne∑
e=1

[
−< p̂up · (g∇hρ

′(T,S)) >e

]
. (4.22)

To take into account that the integration is performed from top to bottom with a con-
stant pressure at the sea surface (and therefore a vanishing pressure gradient), we use
some fully upwinded test functions derived as the tensorial product between the usual
P DG

1 triangle and the upwinded linear unidimensional element, whose value are 1 for the
degree of freedom above the element and 0 for the degree of freedom below the element.

4.5.3 Continuity equation

The continuity equation can be viewed as a steady vertical transport equation along the
vertical direction where the divergence of the horizontal velocity acts as a source term.
The continuity equation is used to deduce the vertical velocity by integrating the hori-
zontal velocity divergence from bottom to top. The discrete formulation of the continuity
equation is obtained by multiplying equation (4.3) by a test function ŵ and integrating
over the whole domainΩ:

Ne∑
e=1

[
< ŵ

∂w

∂z
>e +< ŵ∇h ·u >e

]
= 0. (4.23)
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where the integral on the domain Ω is split into Ne integrals on Ωe . Integrating by parts
all terms containing spatial derivatives yields:

Ne∑
e=1

[
¿ ŵ w downnz Àe −< ∂ŵ

∂z
w >e

+¿ ŵuriemann ·nh Àe −<∇h ŵ ·u >e

]
= 0. (4.24)

where we use wdown the value from the bottom element at the interfaces between layers
of prisms, as the information goes from bottom to top in this pure transport equation.
Moreover, a impermeability condition has to be prescribed at the sea bed, namely:

w−h +u−h ·∇hh = 0, (4.25)

This boundary condition is weakly imposed by using −u−h · ∇hh for wdown in the first
term of (4.24) at the sea bed. This only occurs on the first layer of prisms.

In the lateral interface, we use uriemann because the discrete two-dimensional inte-
gral free surface equations will be obtained by aggregating the three-dimensional dis-
crete continuity equations. In fact, the discrete procedure mimics the algebra performed
to obtain the integral free-surface equation (4.7) by integrating the equation of continuity
(4.3) and substituting the impermeability conditions at both the sea bed and the sea sur-
face. The sea bed impermeability is already included in the discrete formulation of the
continuity equation and the sea-surface condition will be incorporated by the motion of
the free-surface. Finally, let us recall that we deduce uriemann and ηriemann with the exact
Riemann solver of the linear shallow water equations, we use the fact that the depth-
integration of the momentum equation coupled with the free surface equation has to
degenerate into a stable and an accurate P DG

1 −P DG
1 discretization of the two-dimen-

sional shallow water equations. Therefore, as the discrete free-surface equation will be
obtained by aggregating the discrete continuity equation, it is mandatory to use uriemann

here, to have it in the resulting free-surface equation. As a last remark, it is also impor-
tant to emphasize that the vertical velocity is not a prognostic field. It is a by-product
used to deduce the vertical advection terms in the momentum and tracer equations. El-
evation, velocities and tracer are prognostic fields. An accurate DG discretization of our
set of equation should be such that these fields are computed with an optimal accuracy,
i.e. p +1 convergence rate if order p shape functions are used. It is not the case for ver-
tical velocity. Vertical velocity is not smooth, because it results from the integration of
the divergence of the horizontal velocity. It behaves similarly to the volume term from
an advection term integrated by parts: it is not smooth, but it does not impair the op-
timal convergence of the other fields. Indeed, at the discrete level, it is easily seen that,
if the prisms are straight, the vertical velocity lives in a discrete space that is piecewise
constant in the horizontal direction, rather than linear. The smoothness of tracer and
horizontal velocity field is recovered as usual in DG, using the interface term, acting as a
penalty term.

4.5.4 Free-surface equation

The free-surface equation (4.7) can be viewed as the two-dimensional counterpart of the
continuity equation, as the vertical integration of the continuity equation will lead to:

wη−w−h +
∫ η

−h
∇h ·ud z = 0,
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if we incorporate impermeability conditions at the sea bed and sea surface, we exactly
obtain the mass conservation equation of the shallow water problem that can be written
as:

∂η

∂t
+uη ·∇hη+u−h ·∇hh +

∫ η

−h
∇h ·ud z = 0 (4.26)

Formally, the discrete formulation of the free-surface equation is obtained by mul-
tiplying equation (4.26) by a test function η̂ and integrating over the two-dimensional
basement of the three-dimensional computational domain Ω. This basement is paved
of N f triangles ∆ f that are the elements of the initial two-dimensional mesh that was
extruded to produce the three-dimensional mesh of prisms. This discrete formulation
reads:

N f∑
f =1

[
¿ η̂

∂η

∂t
À∆ f +¿ η̂ uη ·∇hηÀ∆ f

+¿ η̂ u−h ·∇hh À∆ f +¿ η̂

∫ η

−h
∇h ·ud z À∆ f︸ ︷︷ ︸

aggregated discrete continuity equations

]
= 0. (4.27)

where ¿À∆ f denotes the integral over the triangle ∆ f of the two-dimensional mesh of
N f triangles.

The last two terms can be obtained by the aggregation of the discrete continuity
equation (4.24). One term is exactly the depth-integration of the velocity divergence
term corresponding to the continuity equation (4.3). Rather than computing this term
twice at the risk of introducing inconsistencies which would break mass conservation,
the velocity divergence operator is computed only once for the continuity equation. The
second step consists in performing an exact vertical integral by aggregating the lines
and columns of the three-dimensional discrete matrix whose corresponding nodes are
aligned on the same vertical line. It can be shown that this aggregation exactly corre-
sponds to the discrete form of the depth-integration of the continuous equation. An
interface term in the first layer of prisms in the discrete formulation (4.24) imposes the
impermeability at the sea bed. It can also be shown that this term exactly corresponds to
the term:

N f∑
f =1

[
¿ η̂ u−h ·∇hh À∆ f

]
.

The opposite sign and the difference between the areas of integration are counterbal-
anced by the vertical component of the outgoing normal nz .

Now, using the linear surface approximation simply consists of substituting equation
(4.27) by:

N f∑
f =1

[
¿ η̂

∂η

∂t
À∆ f +¿ η̂ u−h ·∇hh À∆ f +¿ η̂

∫ 0

−h
∇h ·ud z À∆ f︸ ︷︷ ︸

aggregated discrete continuity equation

]
= 0. (4.28)

Again, such an approximation may be convenient in some large scale application, but
must be avoided in coastal problems. Equation (4.28) can also be viewed as the dis-
cretization of

∂η

∂t
+∇h ·

∫ 0

−h
ud z = 0., (4.29)

which is the mass conservation equation of the linear shallow water problem.
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4.5.5 Tracer equation

As for the momentum equation, the weak formulation for the tracer equation can be
written on each element as follows:

Ne∑
e=1

< ĉ
∂c

∂t
>e +< ĉ (∇h · (uc)) >e︸ ︷︷ ︸

horizontal advection

+< ĉ
∂(w −wz )c

∂z
>e︸ ︷︷ ︸

vertical advection

−< ĉ (∇h · (κh∇hc)) >e︸ ︷︷ ︸
horizontal diffusion

−< ĉ
∂

∂z

(
κv
∂c

∂z

)
>e︸ ︷︷ ︸

vertical diffusion

= 0. (4.30)

We integrate by parts the transport and diffusion terms and choose the suitable val-
ues for the interface terms. As for the momentum equation, we add the interface term
¿ γ [c] Àe that is deduced from the Lax-Friedrichs solver for internal waves. It is a very
important term for the numerical properties of the model as internal waves are a phe-
nomenon that couples momentum and tracers. Each term of (4.30) is then derived as
follows:

• Horizontal advection:

Ne∑
e=1

[
−<∇h ĉ ·uc >e +¿ ĉ {c}uriemann ·nh Àe +¿ γ [c] Àe

]
• Vertical advection:

Ne∑
e=1

[
−< ∂ĉ

∂z
(w −wz )c >e +¿

(
ĉ (w −wz )downcupwind

)
nz Àe

]
• Horizontal diffusion:

Ne∑
e=1

[
−< κh (∇h ĉ) · (∇hc) >e +¿ κh ĉ {∇hc} ·n Àe

+ 1
2 ¿ κh∇h ĉ ·n · [c] Àe +σ¿ κh ĉ [c] Àe

]
• Vertical diffusion:

Ne∑
e=1

[
−< κv

∂ĉ

∂z

∂c

∂z
>e +¿ κv ĉ

{
∂c

∂z

}
nz Àe

+ 1
2 ¿ κv

∂ĉ

∂z
nz [c] Àe +σ¿ κv ĉ [c] Àe

]
To ensure consistency, it is mandatory that the discrete advection term degenerates

to the continuity equation when a unit tracer concentration is considered (White et al.,
2008b). Therefore, one must use the same interpolation for both c and w . Indeed, u
and w must follow the same definition as in the continuity equation, i.e. we use uriemann

in the interface term for the horizontal advection, and we use wdown in the interface
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term for the vertical advection. However, the choice of the interface value for the tracer
concentration c at the interface is not constrained by consistency considerations. We can
use upwind or centered values. The additional term from the Lax-Friedrichs solver does
not impair consistency as it is exactly nil for a constant tracer. The bottom boundary
conditions must also be compatible, this being ensured by suppressing the boundary
terms for advection at the sea bottom.

4.6 Numerical results

To demonstrate the accuracy of the model, we simulate the internal waves in the lee of a
moderately tall seamount. The simulation of such a complex flow can be considered as a
relevant test case to validate the accuracy and the robustness of a three-dimensional ma-
rine model. Complicated phenomena can be observed in the wake of mountains, such
as internal wave structures (see Figure 4.3) and vortex streets (see Figure 4.4). (Chap-
man and Haidvogel, 1992, 1993; Ford et al., 2004a). Such a problem was simulated with
three-dimensional baroclinic finite difference (Huppert and Bryan, 1976; Chapman and
Haidvogel, 1992, 1993), finite volume (Adcroft et al., 1997), finite element models (Ford
et al., 2004a; Wang et al., 2008a,b). It exhibits similar dynamics as atmospheric flows,
but with lower Rossby and Froude numbers. If the seamount is small enough, a com-
plicated structure of standing internal waves can develop in the wake of the seamount.
Chapman and Haidvogel (1993) provide a detailed numerical study of internal lee waves
trapped over isolated Gaussian shaped seamounts. Such a testcase is also used by Ford
et al. (2004a) to assess the qualities and drawbacks of their model. With our three-dimen-
sional baroclinic marine model, we simulate the internal lee waves for a seamount whose
the height is 30% of the total depth. The complicated internal wave structure developed
in the wake of the seamount can be considered as a relevant test case for assessing the
accuracy of the spatial discretization. In this paper, we thus focus on the accurate rep-
resentation of the spatial structure of these waves in the area where the flow structure is
established in time.

The set up of the problem can be summarized as follows. A Gaussian seamount is
located at 45 degrees North with a bathymetry given by:

1− h(x, y)

H
= δexp


(
x − R

2

)2 + (
y − R

2

)2 +
(
z − Rp

2

)2

−L2

 , (4.31)

where H = 4.5 km is the maximum depth, δ= 0.3 is the relative height of the seamount,
R = 6 372 km is Earth radius and L = 25 km is the length scale of the seamount. The co-
ordinates x, y and z are relative to the global Cartesian frame of reference. The flow sim-
ulation is initiated with a global zonal geostrophic equilibrium ignoring the seamount.
In other words, the initial guess of the calculation is selected as in the Testcase 5 of Wil-
liamson where the velocity field only exhibits a non vanishing East component ue . In this
testcase (Williamson et al., 1992), the elevation and velocity fields are shown in Figure 4.5
and are respectively given by

η

U 2/g
= − z2

R2

(
1+

p
2

RΩ

U

)
, (4.32)

ue

U
=

√
x2 + y2

R2 , (4.33)
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Figure 4.3: Cloud waves in the lee of Amsterdam Island, located in the Indian ocean. NASA image
courtesy Jeff Schmaltz, MODIS Land Rapid Response Team at NASA GSFC (http://
earthobservatory.nasa.gov/IOTD/view.php?id=6151) .

Figure 4.4: Vortex street in the lee of Jan Mayen island, located about 650 km northeast of Iceland.
Image courtesy NASA/GSFC/LaRC/JPL, MISR Team (http://earthobservatory.
nasa.gov/IOTD/view.php?id=2270).

http://earthobservatory.nasa.gov/IOTD/view.php?id=6151
http://earthobservatory.nasa.gov/IOTD/view.php?id=6151
http://earthobservatory.nasa.gov/IOTD/view.php?id=2270
http://earthobservatory.nasa.gov/IOTD/view.php?id=2270


4.6. Numerical results 71

−34.57m elevation scale 0m

Figure 4.5: Initial condition for sea-surface elevation and velocities. The mesh is refined in the
lee of the seamount.

where U = 0.516 m s−1 is the velocity scale at 45 degree North, Ω = 7.292× 10−5 s−1 is
Earth rotation rate, and g = 9.81 ms−2 is the gravitational acceleration. We consider the
density deviation ρ′ as the unique tracer of the model and the initial value of the density
deviation is a linear function of the vertical coordinate, with vanishing mean. The deriva-
tive of the density with respect to the vertical coordinate is given by ∂ρ/∂z = −3.43×
10−5 kg m−4 and the reference density is selected as ρ0 = 1025 kg m−3. The turbulent
viscosities and diffusivities are given by: νh = κh = 12.9 m2 s−1, νv = 0.0001 m2 s−1 and
κv = 0. With those parameters, the flow is characterized by the same four dimensionless
numbers as that of the Section 3d of Ford et al. (2004a). These dimensionless number are
defined as follows:
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3150m bathymetry scale 4500m

Figure 4.6: Close-up view on the mesh and the bathymetry around the seamount. The mesh is
refined in the lee of the seamount.

- Seamount ratio δ= 0.3

- Rossby number Ro = U

f L
= 0.2

- Reynolds number Re = U L

νh
= 1000

- Burger number Bu = N H

f L
=

√
−g

ρ0

∂ρ

∂z

H

f L
= 1

where N is the Brunt-Väisälä frequency.
The computational domain is the whole sphere, as we can take advantage of a highly

variable mesh density. It allows us to avoid open boundary conditions, while previous
publications use rectangular domains, with imposed inflow, sponge layer as outflow con-
dition, and lateral walls (Chapman and Haidvogel, 1992). Figure 4.6 shows a close-up
view of the mesh and the bathymetry near the seamount. The mesh resolution is refined
in the lee of the seamount to capture accurately the flow structure. Indeed, we know a
priori that the structures generated in the lee of the seamount are deviated to the right,
due to the mean transverse flow generated between the two vortices that are generated.
In this zone, we refined the mesh so that the element size is sufficiently small compared
to the wave length of the generated internal waves. The edge-length in this refined zone
is 2 km. This mesh is made up of 23562 triangles extruded into 25 σ layers. Basically, it
can also be viewed as a trial and error procedure where a preliminary calculation allows
us to a fine tuning of the mesh refinement. Obviously, the automatic adaptive refinement
procedure will be a more general approach.
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The only numerical parameter that has to be selected in the three-dimensional baro-
clinic model is the jump penalty parameter γ in the Lax-Friedrichs solver. For this prob-
lem, we select γ= 4 m s−1. This parameter must be an upper bound of the phase speed
of the fastest wave. From the linear theory, we know that with the prescribed stratifica-
tion, the maximum phase speed of an internal wave is about c = 1 m s−1, so that the
fastest three-dimensional phenomenon propagates at c+U ≈ 1.5 m s−1. For discontinu-
ous linear elements combined with the second order explicit Runge-Kutta time-stepper
(Chevaugeon et al., 2007) used in this simulation, the relevant CFL conditions leads us to
select a time step of 30 s with a second order explicit Runge-Kutta time-stepper.

The two-dimensional mesh on the sea bottom and the time evolution for the iso-
surfaces of the density perturbations are show in Figure 4.7. The density perturbation is
defined as the density deviation field ρ′ from which the initial density deviation has been
removed. The density perturbation can be considered as a good diagnostics: as the flow
is dominated by geostrophy, it is directly an image of the vorticity induced by the fact that
the flow is impulsively started. The free surface is raised upstream of the seamount, and
lowered downstream, leading thanks to geostrophic adjustment to an upstream clock-
wise vortex, and a downstream counter-clockwise vortex, which are both clearly visible
in Figure 4.7. The flow is strong enough to directly shed the counter-clockwise eddy away
from the seamount. The mean flow is deviated rightward downstream of the seamount.
The clockwise eddy is trapped over the seamount. In the zone between the two eddies,
internal waves are generated. Rather than being radiated away from the seamount, they
are trapped in the lee of the seamount.

In Figure 4.8, we also see that these waves have a particular structure. In the plots
of the time evolution of the density perturbation at a 400 m depth, we observe that
the waves are generated by the shedded eddy, propagate westward and stack in the lee
of the seamount. Again, the upstream clockwise vortex, and the downstream counter-
clockwise vortex, are both clearly visible in Figure 4.8.

At the seventh day, two well separated modes in the density perturbation field are
clearly visible as shown in Figure 4.9. In the left side of the lee, looking downstream, an
internal mode with two extrema appear. In the right side of the lee, an internal wave
mode with three extrema appear. These numerical results can be compared with the
theoretical analysis of the internal waves given in Lecture 17 of the book of Pedlosky
(2003). The theory of the internal waves in a flat bottom ocean with uniform stratification
implies the occurrence of eigenmodes. The vertical wave number is:

m = iπ

H
, (4.34)

with the integer i being the number of extrema of the vertical wave profile. In a linear
analysis, these modes are independent and each of these modes behaves as a shallow
water layer, with an equivalent depth defined as:

hi = N 2H 2

i 2π2g
. (4.35)

As for the usual shallow water equations, Kelvin waves along coastlines, Poincaré
waves and Rossby waves can be observed. However, as we are interested in a flow over
a relatively short period of time on a aquaplanet without coastlines , only the Poincaré
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Day 1 Day 2

Day 3 Day 4

Day 5 Day 6

Day 7

Figure 4.7: Time evolution of the isosurfaces of the density perturbation. Isovalues for the density
perturbation of −0.001 kg m−3 are in green. Isovalues for the density perturbation of
0.001 kg m−3 are in orange. The two-dimensional mesh is given on the sea bottom.
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Day 1 Day 2

Day 3 Day 4

Day 5 Day 6

Day 7

−0.006kg m−3 density perturbation scale 0.006kg m−3

Figure 4.8: Time evolution of the density perturbation field at a 400 m depth. The internal waves
lying between the two vortices are clearly visible.
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−0.01kg m−3 density perturbation scale −0.01kg m−3

Figure 4.9: Illustration of the two well separated modes at day 7. The top panel shows a view of
the isocontours of the density perturbation. Two cuts are defined and are given on the
two lower panels. Isocontours values range from −0.02 to 0.02 kg m−3 with an interval
of 0.002. Isovalues of −0.005 and 0.005 are added, while the zero isovalue is removed.
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waves are relevant here. The phase speed of the Poincaré waves is given by:

ci =
√

g hi + f 2

k2 =
√

N 2H 2

i 2π2 + f 2

k2 , (4.36)

where k is the horizontal wavenumber. For the flow to support standing waves, the prop-
agation speed of internal waves in the opposite direction of the mean flow must be equal
to the mean flow speed:

ci =U cos(α), (4.37)

where α is the angle between the mean flow speed and the direction of the waves prop-
agation. The direction of waves propagation is normal to the waves crests.

Mean flow direction

M
ode 2 wave crestMode 3 wave crest

~c
2

~U

~c
3

~U

Figure 4.10: Sketch of the wave modes and propagation speeds. ~U denotes the mean velocity
vector. It is not horizontal because the mean flow is deviated to the right by the sea-
mount. ~c2 and ~c3 denotes the phase speed vector for mode 2 and mode 3 internal
waves, respectively. The amplitude of the phase speed vectors is taken for the waves
to be stationary.

In Figure 4.10, we represent the wave modes and propagation speeds. The mean
velocity vector is not aligned because the mean flow is deviated to the right by the sea-
mount. The phase speed vector for mode 2 and mode 3 internal waves are also given,
with the amplitude of the phase speed vectors selected for stationary waves. From such
a picture, the angle α between the mean flow speed and the propagation of the waves
propagation can be deduced. For mode 2 waves, the observed angle between mean flow
velocity and horizontal wave vector is about α≈ 35 ◦ in Figure 4.10. Taking advantage of
the theoretical linear analysis, we use equation (4.36) and equation (4.37), to estimate
the horizontal wavenumber of the waves from the observed angle α and the vertical
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Figure 4.11: Cut in the density field at day 7, along the cut plane for mode 2 defined in Figure 4.9.
We observe large amplitude internal waves.

wavenumber (i.e. the number. of modes)

c = 0.42 ms−1,
k = 1.03×10−3.

This speed is close to the threshold value 0.410 ms−1, under which the flow is subcriti-
cal for mode 2, and stationary lee waves cannot exists. From the calculated horizontal
wavenumber, the wave length is estimated to be 2π/k = 6.1 km and should corresponds
to the crest to crest distance. However, in Figure 4.10, we observe a crest to crest distance
of 18.75 km for mode 2. Such a discrepancy between those two results can be explained
by the fact that the phase speed is very close to the threshold value for which no wave
can exist. Therefore, the phase speed does not depend so strongly on the wavenum-
ber. Moreover, if we perform a vertical slice in the density deviation field ρ′, we observe
that the amplitude of the waves is significant compared to the total depth in Figure 4.11.
Therefore, considering the linear regime for the theoretical computation of the disper-
sion relation is probably a bad assumption and can induce significant errors.

4.7 Conclusions

The spatial discretization of a three-dimensional baroclinic free-surface marine model
is introduced. This model relies on a Discontinuous Galerkin method with a mesh of
prisms extruded in several layers from an unstructured two-dimensional mesh of tri-
angles. As the prisms are vertically aligned, the calculation of the vertical velocity and
the baroclinic pressure gradient can be implemented in an efficient and accurate way.
All discrete fields are defined in discontinuous finite element spaces, to take advantage
of the good numerical properties of the Discontinuous Galerkin methods for advection
dominated problems and for wave problems. To be able to use the Riemann solver of the
shallow water equations, the discretization of the three-dimensional horizontal momen-
tum and the continuity equations are defined in such a way that their discrete integra-
tion along the vertical axis provide a stable P DG

1 −P DG
1 formulation of the shallow water
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equations. Therefore, we can stabilize the discrete equations by using the exact Riemann
solver of the linear shallow water for the gravity waves. For internal waves, an additional
stabilizing term is derived from a Lax-Friedrich solver. In the baroclinic dynamics, the
vertical velocity acts as a source term, while the role of the approximate Riemann solver
is to penalize inter-element jumps to recover optimal accuracy. Consistency is ensured.
The model is able to advect exactly a tracer with a constant concentration, meaning that
the discrete transport term is compatible with the continuity equation.

Figure 4.12: Comparison of linear (top) and quadratic (bottom) spatial discretization for the 30%
height case. Density perturbation isocontours after two days.

A key advantage of Discontinuous Galerkin finite elements is their ability to natu-
rally handle higher order discretizations. The discrete formulation with the same ap-
proximate Riemann solvers can be used for high order shape functions. As an illustrative
example, we simulate the same problem as in Section 4.6 with second order shape func-
tions and a mesh two times coarser involving 12 layers. The triangles are twice larger
than in the previous calculation. A comparison of the density perturbation field after
two days is shown in Figure 4.12. We observe the same behavior, as both simulations
are performed on a sufficiently fine mesh. However, some small oscillations are induced
by the subparametric representation of the bottom topography. They appear above the
seamount for the quadratic shape functions computation. Indeed, the bathymetry is still
represented using piecewise linear polynomials, while the fields are represented using
piecewise quadratic polynomials. But, we think that such a discretization of a three-di-
mensional baroclinic finite element marine model is an effective way for higher order
elements, paving the way for high order ocean models based on Discontinuous Galerkin
methods.
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In conclusion, we use a three-dimensional finite element baroclinic free-surface model
to represent accurately the complex structure of the internal waves in the lee of an iso-
lated seamount, using either linear or quadratic shape functions. The model does not yet
handle internally supercritical flows, that occur for instance when internal waves break
or in steed gravity currents. Including a limiting strategy to handle shockwaves would be
the next required step. Finally, the second key ingredient for an efficient three-dimen-
sional marine model is the definition of a good time integration procedure. This will be
the topic of the second part of this contribution.
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A THREE-DIMENSIONAL BAROCLINIC MODEL:

TEMPORAL DISCRETIZATION

This Chapter reproduces the following paper, first submitted on 7 July 2010:

R. Comblen, S. Blaise, V. Legat, J.-F. Remacle, E. Deleersnijder, and J. Lambrechts. A discon-
tinuous finite element baroclinic marine model on unstructured prismatic meshes. Part
II: implicit/explicit time discretization. Ocean Dynamics (submitted), 2010.

Abstract

We describe the time discretization of a three-dimensional baroclinic finite ele-
ment model for the hydrostatic Boussinesq equations based upon a Discontinuous
Galerkin finite element method. On one hand, the time stepper is based on an effi-
cient mode splitting. To ensure compatibility between the barotropic and baroclinic
modes in the splitting algorithm, we introduce Lagrange multipliers in the discrete
formulation. On the other hand, the use of implicit-explicit Runge-Kutta methods
enables us to treat stiff linear operators implicitly, while the rest of the nonlinear dy-
namics is treated explicitly. By way of illustration, the time evolution of the flow over
a tall isolated seamount on the sphere is simulated. The seamount height is 90% of
the mean sea depth. Vortex shedding and Taylor caps are observed. The simulation
compares well with results published by other authors.

81



82 A three-dimensional baroclinic model: temporal discretization

5.1 Introduction

The spatially discretized ocean system is a dynamical system with a very large number
of unknowns. It is the case for many computational fluid dynamics problems. How-
ever, oceanic problems typically consider very large timescales compared to those of the
rapidly varying dynamics of local flows. Indeed, for climate modeling, centuries are con-
sidered, while it only takes a few hours for a surface gravity wave to propagate around the
world. Therefore, if a completely explicit scheme is considered, hundreds of millions of
time steps are required to model the ocean system for a few centuries (considering a 2×2
degree model, that requires a 90 second time step). This must be compared to engineer-
ing problems where typically fewer time steps are needed. For instance, consider the
unsteady flow around a commercial aircraft, with elements of a centimeter (that means
many elements . . . ), at cruise speed. This would require about one million time steps to
compute the flow during 10 seconds. We see that the number of time steps required to
perform the simulation are two orders of magnitude larger for climate problems than for
engineering problems.

Early models used the rigid-lid approximation, where the sea surface is assumed to
be a rigid horizontal, impermeable boundary. This approximation filters out the fast sur-
face gravity waves. The two-dimensional mean problem is solved either using a stream-
function formulation (Bryan, 1969) or a surface pressure formulation (Dukowicz et al.,
1993). The computation of the surface pressure or streamfunction leads to elliptic two-
dimensional problems, the rest of the dynamics being computed with explicit methods
such as leap-frog with filtering (Griffies et al., 2000). Explicit methods for hyperbolic
problems are subject to the Courant-Friedrichs-Lewy stability condition: the time step
must be sufficiently small that the information in a cell only influences its direct neigh-
bors, i.e. the time step scales as the ratio of the grid size to the fastest wave speed. For
rigid-lid models, the fastest phenomena are internal gravity waves. When free-surface
is taken into account, much faster phenomena occur: surface gravity waves propagates
roughly two orders of magnitude faster than internal gravity waves. Reducing the baro-
clinic time step by a factor of a hundred was not an option for the first free-surface mod-
els (Blumberg and Mellor, 1987; Killworth et al., 1991), and specific algorithms were de-
signed to overcome this problem.

The purely explicit mode-splitting procedure, used in a large number of models, con-
sists in integrating the two-dimensional barotropic equations with many explicit time
steps while the three-dimensional baroclinic equations are solved with a single, much
larger time step. For long term computations, the numerical model must be consistent
by being able to advect a constant concentration of a given tracer exactly, up to machine
accuracy. To achieve this so-called consistency requirement, the advection term of the
tracer equation must degenerate to the continuity equation when a constant tracer con-
centration is considered (White et al., 2008b). Compatibility between the two-dimen-
sional and the three-dimensional approximations of the velocity field is a mandatory
requirement to ensure consistency (Deleersnijder, 1993). Therefore, the three-dimen-
sional velocities are a posteriori corrected so that their average matches the velocities of
the barotropic mode (Blumberg and Mellor, 1987), i.e. to obtain compatibility. Averag-
ing in time the two-dimensional quantities in the three-dimensional dynamics is usually
needed to ensure stability (Griffies et al., 2000; Higdon and de Szoeke, 1997; Hallberg,
1997).
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To get rid of this a posteriori correction step of the three-dimensional velocities, the
barotropic mode can be time stepped implicitly, using the same time step as the baro-
clinic mode (Dukowicz and Smith, 1994). Therefore, no correction step is needed, when
all three-dimensional terms are advanced explicitly in time. The model can therefore be
both compatible and consistent. Let us emphasize that solving explicitly the whole three-
dimensional is not an acceptable option as the stability conditions would require to use
1s as typical time step! However, if some terms in the three-dimensional momentum
equation are advanced implicitly in time, such an approach assumes that those implicit
terms have no influence on the barotropic mode (Wang, 2007, p29, last paragraph), and
the solution is not naturally compatible anymore. An efficient strategy to discretize im-
plicitly the free-surface equation is to solve a smaller system corresponding to the Schur
complement of the system. If the linear discrete system corresponding to the horizontal
three-dimensional momentum and free-surface equations reads:[

Mu G
D Mη

][
Xu

Xη

]
=

[
Fu

Fη

]
,

where Mu , Mη and Xu , Xη are the mass matrices and vectors of degrees of freedom for ve-
locities and elevation, respectively, G and D correspond to the elevation gradient term of
the horizontal momentum equation and the velocity divergence term of the free-surface
elevation equation, while Fu and Fη are their right-hand sides. An equivalent smaller
system for the elevation is obtained substituting Xu in the last line of the system:[

Mη−DM−1
u G

]
Xη = Fη−DM−1

u Fu .

Such a methodology was used by Dukowicz and Smith (1994) as well as by Marshall et al.
(1997) for global-scale models, but also by Giraldo et al. (2003) for shallow water prob-
lems on the sphere. For this approach to be efficient, the mass matrix for velocities Mu

must be easily invertible, i.e. diagonal or block-diagonal. For continuous finite elements,
mass lumping must be performed for such a methodology to apply. Discontinuous finite
elements are ideally suited for such a procedure, as the mass matrix is block diagonal.
Such an implicit free-surface procedure is naturally compatible and consistent only if
the three-dimensional mode is time-stepped explicitly. Moreover, the inversion of Mu

may become impracticable if some differential implicit operators have to be incorpo-
rated in this matrix. Unfortunately, vertical diffusion deduced from a turbulence scheme
or used as a convective adjustment algorithm is often large enough for the corresponding
constraint on the time step to be much more severe than the one deduced from internal
gravity waves. Therefore, the vertical diffusion and advection terms must be treated im-
plicitly.

The Finite Element Ocean Model (FEOM) uses a similar approach with an implicit
vertical diffusion (Wang, 2007; Wang et al., 2008b). The momentum equation is split in
two steps and an intermediate velocity is introduced to perform the implicit calculation
of the elevation. Implicit vertical viscosity is neglected in the correction step, meaning
that this term is computed using this intermediate velocity rather than the final corrected
value. This is needed to derive the equation associated with the elevation. Details are
provided in the Appendix B.1. Such a method of substitution is similar to the Schur com-
plement approach used by Dukowicz and Smith (1994), but the substitution is performed
in the continuous space rather than at the discrete level. Working within a continuous
framework, the inverse of the mass matrix M−1

u disappears in what corresponds to the
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Schur complement. Therefore, the discrete operator is not the same and the two-dimen-
sional discrete system for the elevation reads:[

Mη−∆t L
]

Xη = fη−∆tDFu ,

where L is the discrete Laplacian matrix and∆t is the time step. The operator∆tL is used
rather than DM−1

u G and can be viewed as an approximation or an alternative choice. The
same remark applies for ∆tDFu that acts as a substitute of DM−1

u Fu . Here, the compat-
ibility between the vertical velocity and the sea surface elevation cannot be guaranteed
easily.

In this paper, we present an implicit time splitting procedure used for a marine model,
called SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model1) that should be
able to deal with problems ranging from local and regional scales to global scales. In
a first step of the time stepper, the new elevation field is implicitly computed, and after-
wards we use this value and the corresponding two-dimensional velocities in the baro-
clinic mode. The main contribution of the time marching procedure of this three-dimen-
sional free-surface baroclinic model is that a correction term is embedded in the three-
dimensional momentum equation to ensure compatibility between two- and three-di-
mensional velocities. Identity between depth-averaged three-dimensional velocity and
two-dimensional velocity is enforced using Lagrange multipliers in the three-dimen-
sional system It provides an implicit accurate coupling between two- and three-dimen-
sional modes.

To illustrate the accuracy of this time discretization, we consider the simulation of
Taylor caps of a tall seamount . We define the parameters of the simulation to compare
the transient dynamics with results published by Chapman and Haidvogel (1992) and
Ford et al. (2004a). The main reason to analyze this problem is the fact that subgrid-scale
parametrization is not required to generate complex baroclinic phenomena (Chapman
and Haidvogel, 1992). In other popular benchmark problems as the Dynamics of Over-
flow Mixing and Entrainment testcase (DOME), flow features rely heavily on parametriza-
tion: supercritical front, open boundary conditions, vertical mixing, nonhydrostatic ef-
fects (Özgökmen and Chassignet, 2002; Ezer and Mellor, 2004; Ezer, 2005, 2006; Tseng
and Dietrich, 2006; Legg et al., 2006; Wang et al., 2008a). Therefore, using two different
models and comparing the two numerical simulations of a gravity current in an idealized
basin is only relevant if both models strictly rely on the same set of parameterizations.
For unstructured grid models, it is very difficult, as these parameterizations depend on
the grid size, and as we use a variable resolution where common models have fixed grid-
size. Even if these problems are physically fascinating, they involve a too large spectrum
of phenomena to be useful as hydrodynamic kernel benchmarks to ensure the validation
of a three-dimensional baroclinic marine model.

In a companion paper (Blaise et al., 2010a) (reproduced in Chapter 4), we introduced
the detailed description of the space discretization. Equal-order discontinuous inter-
polations for the elevation and velocity fields are used to take advantage of the inher-
ent advantages of the usual Discontinuous Galerkin methods for advection dominated
processes. The model operates on prismatic meshes, obtained by extruding vertically
a triangular surface grid. It relies on approximate Riemann solvers based on the wave
dynamics of the system. The consistency, the accuracy and the stability of the spatial
discretization were analyzed. Herein, the time integration procedure will be provided.

1http://www.climate.be/slim

http://www.climate.be/slim
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Section 5.2 describes the partial differential equations considered. Section 5.3 defines a
new time-splitting procedure with compatible discrete barotropic 2D and the baroclinic
3D problems. Implicit-Explicit (IMEX) Runge-Kutta time integrators used in the three-
dimensional baroclinic marine model are explained in Section 5.4. Finally, in Section 5.5,
a first validation of the dynamics of the model is given. Revisiting a modified version of
the flow over a tall seamount described in Blaise et al. (2010a), we analyze the dynamics
behavior and we compare our results with previous publications. Concluding remarks
are given in Section 5.6.

5.2 Governing equations

Using material parameters and notations defined in Table 5.1, the set of partial differen-
tial equations of the three-dimensional baroclinic free-surface model described in Blaise
et al. (2010a) reads:

∂u

∂t
+∇h · (uu)+ ∂wu

∂z

+ f ez ∧u + p

ρ0
+ g∇hη = ∇h · (νh∇hu)+ ∂

∂z

(
νv
∂u

∂z

)
, (5.1)

∂p

∂z
= −g∇hρ

′(T,S), (5.2)

∇h ·u + ∂w

∂z
= 0, (5.3)

∂η

∂t
+∇h ·

∫ η

−h
ud z = 0, (5.4)

∂c

∂t
+∇h · (uc)+ ∂wc

∂z
= ∇h · (κh∇hc)+ ∂

∂z

(
κv
∂c

∂z

)
. (5.5)

where the unknown fields are the horizontal velocity u(x, y, z, t ), the baroclinic pressure
gradient p(x, y, z, t ) = ∇h p(x, y, z, t ), the vertical velocity w(x, y, z, t ), the sea surface el-
evation η(x, y, t ) and the tracer concentrations c(x, y, z, t ) that can be the temperature
and/or the salinity.

Now, let us define the two-dimensional depth-averaged horizontal mean velocity:

U (x, y, t ) = 1

h(x, y)+η(x, y, t )

∫ η(x,y,t )

−h(x,y)
u(x, y, z, t ) d z. (5.6)

and the corresponding two-dimensional depth-averaged barotropic equations:

∂U

∂t
+ f ez ∧U + g∇η = fU, (5.7)

∂η

∂t
+∇· [(h +η)U

] = 0, (5.8)

where fU includes all the remaining terms resulting from the integration of (5.1). Namely,
it contains the depth-averaged integration of the advection terms, the diffusion terms
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Coordinates and spatial operators

x, y Horizontal coordinates
z Vertical coordinate, pointing upwards with its origin at the sea surface at rest
∇h Horizontal gradient operator
ez Upward unit normal
∧ Cross product symbol

Material parameters and functions

g Gravitational acceleration
ρ0 Reference density
f Coriolis parameter
h Depth at rest
νh Horizontal turbulent viscosity parameter
νt Vertical turbulent viscosity parameter
κh Horizontal turbulent diffusivity parameter
κt Vertical turbulent diffusivity parameter
U Two-dimensional horizontal mean velocity vector

Variables

u Horizontal three-dimensional velocity vector
w Vertical three-dimensional velocity vector
uη Surface horizontal three-dimensional velocity vector
wη Surface vertical three-dimensional velocity vector
u−h Bottom horizontal three-dimensional velocity vector
w−h Bottom vertical three-dimensional velocity vector
η Sea surface elevation
p Baroclinic pressure
p Baroclinic pressure gradient
c Three-dimensional tracer, can be S of T
S Salinity
T Temperature

Table 5.1: Notations for the three-dimensional baroclinic free-surface marine model

and the baroclinic pressure gradient. Theoretically, it should also contain some addi-
tional terms ensuing from the commutation of the depth-averaged integration operator
and the time derivative operator in the first term. As the free-surface evolution only de-
pends on the depth-integrated horizontal velocity U , and not on the details of the three-
dimensional velocity field u, a mode-splitting procedure is often introduced, in which
the two-dimensional depth-integrated barotropic equations and the three-dimensional
baroclinic equations are advanced in time with different schemes and/or steps. The the-
oretical underpinning is that the surface gravity waves propagate roughly two orders of
magnitude faster than internal gravity waves: therefore, the baroclinic time step could be
quite a lot larger than the barotropic time step required by the CFL stability condition.
It would also appear attractive to have an implicit time-splitting approach where the el-
evation is obtained by solving a two-dimensional barotropic problem independently of
the three-dimensional baroclinic mode.

The mode-splitting procedure consists in integrating the two-dimensional barotropic
equations with many time steps or an implicit scheme while the three-dimensional baro-
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clinic equations are solved with a single step. When performing a mode-splitting, the
three-dimensional velocities must be computed in such a way that their average matches
the velocities of the barotropic mode to obtain compatibility. Indeed, two essentials con-
ditions must be fulfilled:

• The two-dimensional U and three-dimensional u discrete representations of the
velocities must be compatible. In other words, using the discrete version of equa-
tion (5.4) or (5.8) must produce exactly the same result. It means that U must be
recovered by performing at a discrete level the depth-average of u. The basic idea
is that the equivalence properties that exist in the continuous realm must be pre-
served in the discrete realm. It is the so-called compatibility condition.

• The discrete numerical mode must be consistent by being able to advect a constant
concentration of a given tracer exactly, up to machine accuracy. To achieve this, the
advection term of the tracer equation must degenerate to the continuity equation
when a constant tracer concentration is considered (White et al., 2008b). As the
compatibility of u and U is needed to obtain the compatibility of w and η, ensuring
impermeability at the sea surface, the compatibility can be viewed as a mandatory
requirement to ensure this consistency condition.

5.3 Compatible discrete barotropic and baroclinic problems

In our model, we wish to use an implicit time splitting procedure. First, the new eleva-
tion field is implicitly computed, and afterwards we use this value and the corresponding
two-dimensional velocities in the baroclinic mode. The first step is the barotropic mode
and the second one is the baroclinic mode. The major novelty of the implemented ap-
proach of this three-dimensional free-surface baroclinic model is that a correction term
is embedded in the three-dimensional momentum equation to ensure compatibility be-
tween two- and three-dimensional velocities. Identity between depth-averaged three-di-
mensional velocity and two-dimensional velocity is enforced using Lagrange multipliers
in the three-dimensional system. The use of Lagrange multipliers enables an implicit
coupling between two- and three-dimensional modes. Indeed, the implicit terms in the
momentum equation are computed using a three-dimensional velocity in agreement
with the two-dimensional mode. This ensures for instance that, if the Coriolis term is
treated semi-implicitly, it behaves in the same way in both modes.

To describe the methodology, let us first define both compatible modes.

• The barotropic problem consists in finding (U ,η) such that:

∂U

∂t
+ f ez ∧U + g∇η = fU, (5.9)

∂η

∂t
+∇· [(h +η)U

] = 0, (5.10)

• The baroclinic problem consists in finding (u,λ) such that:

∂u

∂t
+ f ez ∧u + ∂wu

∂z
− ∂

∂z

(
νv
∂u

∂z

)
+λ, = fu, (5.11)∫ η

−h
u d z = U , (5.12)
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Field Finite element space

Free surface elevation η P DG
1

Lagrange multiplier λ P DG
1

Horizontal two-dimensional velocity vector U P DG
1

Horizontal three-dimensional velocity vector u P DG
1 ×LDG

1

Figure 5.1: Summary of the finite element spaces used for each field. Triangular linear elements
are noted P1 while vertical linear elements are noted L1. Indices indicated on the mesh
correspond to the nodal discrete values. The global indices i (k,m) and j (k,m) are a
function of the horizontal position and the vertical position.

where all terms explicitly time-integrated are included in the right-hand side fU and fu

respectively. In the three-dimensional momentum equation, we add a volume force λ.
This force will act to ensure compatibility between both velocity representations. Equa-
tions (5.11)-(5.12) are the usual Euler-Lagrange equations of the saddle-point problem.

Now, we introduce the finite element mesh and the discrete discontinuous approx-
imations of the field variables of the model (η, u, U , λ) involved in the barotropic and
the baroclinic modes. The three-dimensional mesh is made up of prismatic elements,
as illustrated in Figure 5.1, and is obtained from the extrusion of triangular two-dimen-
sional elements. The vertical length scale is typically much smaller than the horizontal
length scale. In other words, the prisms are thin. We choose prismatic elements to ob-
tain a mesh unstructured in the horizontal direction, and structured in the vertical direc-
tion. The two-dimensional fields η, U and λ are discretized with P DG

1 elements onto the
two-dimensional mesh of triangles. The three-dimensional fields (u) are discretized on
the mesh of prisms and the corresponding shape functions are obtained as the tensorial
product of the linear discontinuous triangle P DG

1 an the linear one-dimensional element
LDG

1 .
In the space discretization of the three-dimensional baroclinic model (Blaise et al.,

2010a), the discrete free-surface equation is obtained as the aggregation of the discrete
horizontal divergence of the three-dimensional horizontal velocity with a bottom bound-
ary term. A similar approach can be done for the barotropic and baroclinic momentum
equations. The three-dimensional horizontal momentum equation (5.11) can be depth
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integrated to obtain equation (5.9), which is close to the non-conservative form of the
momentum equation of the shallow water equations. To achieve this, the test function
of the three-dimensional momentum equation is divided by the depth so that the depth-
integrated discrete equations are exactly similar to a non-conservative formulation of
the shallow water equations. This depth-integration can be obtained by summing the
lines and columns of the three-dimensional discrete system matrix and vector whose
corresponding nodes share the same vertical. We derive the barotropic equations by dis-
cretely adding all three-dimensional contributions onto the corresponding two-dimen-
sional degree of freedom. We neglect terms in the barotropic mode, that introduce a
small horizontal coupling due to the nondiagonal mass matrix. Indeed, if the depth in-
tegration is performed at the continuous level, those terms naturally disappear, as they
introduce momentum fluxes between layers that are subsequently aggregated. We there-
fore introduce a slight gap between the two- and three-dimensional discretization. This
is also possible to treat these terms explicitly in the barotropic mode, and obtain an ap-
proximation similar to Wang (2007).

Then we add to the linear system corresponding to the horizontal three-dimensional
momentum equation for the degrees of freedom of a column of prisms, six lines and
columns corresponding to the two Lagrange multipliers for each of the three surface
nodes (considering linear shape functions). The lines correspond to the compatibility
constraint:

Ne∑
e=1

< λ̂ · (u −U ) >e= 0, (5.13)

while the columns correspond to the fictitious force:

Ne∑
e=1

[
< û · ∂u

∂t
>e +·· ·+< û ·λ>e

]
= 0, (5.14)

with λ the Lagrange multiplier field, and λ̂ the corresponding test functions. The baro-
clinic mode is compatible with the barotropic mode, and mass conservation is ensured.
The inconsistency is only due to the commutation between spatial discretization and
depth integration needed to make the vertical dynamics terms disappear in the two-di-
mensional momentum equation.

Both discrete barotropic and baroclinic problems can be then written with matrix
notations.

• The two-dimensional discrete barotropic problem reads:[
MU G
D Mη

][
XU

Xη

]
=

[
FU

0

]
, (5.15)

• The three-dimensional discrete baroclinic problem reads:[
Mu E T

E 0

][
Xu

Xλ

]
=

[
Fu

Fλ

]
, (5.16)

where E is the matrix associated with the discrete compatibility constraint. The effect of
these Lagrange multipliers is to correct the discrepancy due to the different treatment of
vertical terms in the baroclinic and barotropic modes.
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The global time stepping algorithm can be described in details as follows. For the mo-
mentum and free-surface equations, the terms related to surface gravity waves, vertical
advection, vertical diffusion, and Coriolis are treated (semi-)implicitly, while horizontal
advection and diffusion are explicit. We build the global matrix for the two-dimensional
barotropic mode, and solve the corresponding linear system with a preconditioned it-
erative solver, using for instance as preconditioner a block factorization combined with
additive-Schwartz coupling, and a GMRES iterative solver. For the three-dimensional
momentum equation, the linear system does not need to be assembled. Indeed, the
mass matrix for Discontinuous Galerkin methods is block-diagonal per element, and the
terms treated implicitly either are local, i.e. Coriolis, or only couple vertically aligned
prisms. Therefore, the linear system is block-diagonal, each block corresponding to a
column of prisms. Each block is then solved locally using a sparse direct solver. The
memory usage is not larger than for an explicit method, and this solution strategy is in-
trinsically scalable. The continuity equation is an implicit problem, but as for the mo-
mentum equation, only stacked prisms are coupled together, and therefore, the system
can be solved locally. Further, the information only goes from bottom to top, as we treat
this equation as a steady advection equation, so that block per element Gauss-Seidel
sweeping from bottom to top gives the exact result in a single iteration, i.e. the matrix for
a column of prisms is block triangular. The equation for the pressure gradient force can
also be solved for each column of prisms independently. Different equations are solved
at each time step in an order defined as follows:

1. Evaluate the terms common for both 2D and 3D problems

2. Solve the 2D barotropic problem to obtain U and η

3. For each column of prisms, solve the 3D baroclinic problem

a) Evaluate the implicit terms for the momentum equation

b) Evaluate the terms for the compatibility constraint

c) Solve the local linear system to obtain u and λ

4. Integrate the continuity equation to obtain w

5. For each column of prisms, solve the tracer equations

a) Evaluate the implicit terms

b) Solve the local linear system to obtain T and/or S

6. Calculate the density ρ

7. Integrate the baroclinic pressure gradient p
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Finally, we only need to select the time-integration scheme. In a large number of appli-
cations, the time step of an explicit method is constrained by some stiff linear term. It
is also the case for the barotropic and baroclinc problems. In the barotropic mode, the
surface gravity waves are essentially linear, and are much faster than advection. It seems
therefore natural to treat implicitly the linear terms corresponding to gravity waves, while
treating explicitly the nonlinear terms corresponding to advection. In the baroclinic
mode, there is a similar separation: vertical diffusion and advection can be stiff, and
must therefore be treated implicitly, while horizontal diffusion and advection is a much
slower phenomena that can be treated explicitly. An efficient approach consists then to
use implicit-explicit (IMEX) methods.

5.4 Implicit-explicit Runge-Kutta methods

In IMEX methods (Ascher et al., 1995, 1997), only the most critical terms are integrated
implicitly. In our three-dimensional baroclinic free-surface model, we use Runge-Kutta
IMEX methods. Those methods are self-starting. Moreover, the combination of Discon-
tinuous Galerkin methods with Runge-Kutta methods is known to be efficient (Cockburn
and Shu, 2001).

The spatial discretization of the three-dimensional baroclinic problem and the two-
dimensional barotropic problem leads to systems of ordinary differential equations of
the form:

y ′(t ) = f (y(t ), t ), (5.17)

where y(t ) denotes the vector of all discrete degrees of freedom of a step (barotropic,
baroclinic or tracer problems) of the time marching algorithm. To integrate such an or-
dinary differential equation, explicit Runge-Kutta methods are quite popular. As a typical
example, the second order explicit method of Heun consists of calculating y n+1 ≈ y(tn+1)
from y n = y(tn) with the following sequence:

K 1 = f (y n , tn),

K 2 = f (y n +∆t K 1, tn +∆t ),

y n+1 = y n +∆t (K 1 +K 2)/2,

(5.18)

where ∆t is the time interval. The accuracy of the discrete time integration performed
with the Heun scheme is O (∆t )2 . Typically, the accuracy is often directly related to the
number of stages (the number of K i to be computed). In a more general way, a explicit
or implicit Runge-Kutta method with k stages is defined by the following procedure:

K i = f

(
y n +

k∑
j=1

ai j∆t K j , tn + ci∆t

)
, i = 1. . .k,

y n+1 = y n +∆t

(
k∑

j=1
b j K j

)
.

(5.19)
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A very convenient and compact way to define a Runge-Kutta method consists in
having recourse to the three arrays ai j , b j , and ci , usually represented as the so-called
Butcher tableau defined by:

[
ci ai j

b j

]
(5.20)

In explicit Runge-Kutta schemes, the non-vanishing entries of the array a are only
located in the left lower triangular part of the matrix with zeros on the diagonal and the
right upper triangular part. As an example, the Butcher tableau of the Heun explicit me-
thod (5.18) is given by:

[
ci ai j

b j

]
=

 0 0 0
1 1 0

1
2

1
2



In implicit Runge-Kutta methods, the upper triangular of the array a contains non-zero
entries. In these implicit schemes, it is possible to consider two classes: implicit Runge-
Kutta methods (IRK) and diagonally implicit Runge-Kutta (DIRK). For IRK schemes, the
array a is full and it is required to solve all the stages at the same time. Obviously, it can
be extremely expensive and it is not very popular. In general, Diagonal Implicit Runge-
Kutta (DIRK) schemes are usually resorted to, where the upper right triangular part of the
array a is empty. In this case, each stage can be solved in an independent way. Moreover,
Single Diagonally Implicit Runge-Kutta (SDIRK) are often used when the diagonal coeffi-
cients are equal. Accordingly for a linear problem, the matrix of the corresponding linear
system will be the same for all stages.

Implicit-Explicit Runge Kutta (IMEX) schemes simply requires the splitting of the
function f into a part to be integrated explicitly and a part that will be handled by an
implicit scheme. We decompose the ordinary differential equation (5.17) in the follow-
ing way:

y ′(t ) =
f (y(t ), t )︷ ︸︸ ︷

f expl(y(t ), t )+ f impl(y(t ), t ), (5.21)

where f expl and f impl represent the terms treated explicitly and implicitly, respectively.
The explicit part of the three-dimensional baroclinic model are typically the nonlinear
advection and the horizontal diffusion terms, while the terms corresponding to the grav-
ity waves, the Coriolis force and the vertical diffusion are solved with the (semi-)implicit
method.

The IMEX method of order k consists to use a SDIRK method with k −1 stages com-
bined with a explicit RK scheme with k stages. This time stepper scheme is defined by:
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K expl
1 = f expl(y n , tn)

For i = 2. . .k

K impl
i = f impl(y n +∆t

(
i∑

j=1
aimpl

i j K impl
j +

i−1∑
j=1

aexpl
i j K expl

j

)
︸ ︷︷ ︸

ŷ i

, tn + ci∆t ),

K expl
i = f expl(ŷ i , tn + ci∆t ),

y n+1 = y n +∆t

(
k∑

j=1
bimpl

j K impl
j +bexpl

j K expl
j

)
.

(5.22)

IMEX schemes can also be defined with two Butcher tableau corresponding to the im-
plicit and the explicit part respectively. In order to synchronize the stages, a unique c
array applies to both methods and an initial empty stage is added to the implicit scheme
and the corresponding arrays are padded with zeros.

To obtain a suitable discretization for linear finite elements, it seems logical to have
the same accuracy in time and space and to consider a second order scheme in time.
Spatial and temporal discretization errors will then converge at the same rate when the
mesh is refined, the time step being adapted in accordance with the CFL condition. The
implicit explicit Runge-Kutta methods used in the three-dimensional baroclinic model
were derived in Ascher et al. (1997) and his Butcher tableaux read:

[
ci aimpl

i j

bimpl
j

]
=


0 0 0 0
γ 0 γ 0
1 0 1−γ γ

0 1−γ γ

 , (5.23)

[
ci aexpl

i j

bexpl
j

]
=


0 0 0 0
γ γ 0 0
1 δ 1−δ 0

δ 1−δ 0

 , (5.24)

with γ= (2−p
2)/2 and δ= 1−1/(2γ). The IMEX method consists in using a SDIRK me-

thod with 2 stages combined with a explicit RK scheme with 3 stages. Some simplifica-
tions in the calculation can be deduced from those Butcher tableau. As the last line of the
matrix a exactly corresponds to the line b, the final update can be obtained directly from
the last estimate ŷ 3 obtained for the vector y . Finally the last entry of bexpl is zero and the
last explicit stage is not needed. In short, we only need to calculate two times the explicit
part f expl and to solve two times the implicit system associated with f impl. This systems
has the same matrix but a different right-hand side. In a systematic way, the IMEX pro-
cedure for the three-dimensional baroclinic model can be cast in the following sequence:
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1. Calculate K expl
1 = f expl(y n , tn)

2. Obtain K impl
2 and ŷ 2 by solving:

K impl
2 = f impl(y n +∆t (γ b f K expl

1 +γK impl
2 )︸ ︷︷ ︸

ŷ 2

, tn +∆tγ)

3. Calculate K expl
2 = f expl(ŷ 2, tn +∆tγ)

4. Obtain K impl
3 and ŷ 3 by solving:

K impl
3 = f impl( y n +∆t (δK expl

1 + (1−δ)K expl
2

+(1−γ)K impl
2 +γK impl

3 )︸ ︷︷ ︸
ŷ 3

, tn +∆t )

5. Set y n+1 = ŷ 3

5.5 Numerical results

Internal waves in the lee of a moderately tall seamount were simulated in Blaise et al.
(2010a). In this paper, we consider a similar set-up to compare the transient dynamics
with results published by Chapman and Haidvogel (1992) and in Section 3c of Ford et al.
(2004a). This set-up is selected because there is no need for subgrid-scale parametriza-
tion to create complex baroclinic phenomena. The flow is stratified, but subcritical:
there is no internal wave break-up. No boundary layer appears, as a slip condition at
the seabed is prescribed. In the first part of this work (Blaise et al., 2010a), the height of
the seamount was 30% of the total depth, and a complicated internal wave structure de-
veloped in the wake of the seamount. Now, we consider that the height of the seamount
is 90% of the total depth in order to observe some recirculation patterns in the wake of
the seamount.

The first computation of a three-dimensional linearly stratified flow over a Gaussian
seamount was done Huppert and Bryan (1976) with the model of Bryan (1969). A de-
tailed numerical study of flows past Gaussian seamounts can be found in Chapman and
Haidvogel (1992, 1993). The strengths and weaknesses of a few other models have been
assessed by simulating flow past seamounts: mitGCM (Adcroft et al., 1997), ICOM (Ford
et al., 2004a) and FEOM (Wang et al., 2008b). Our numerical simulations will be per-
formed in order to draw some comparisons with previous computations.

The computational domain is an aquaplanet, as it allows us to avoid open boundary
conditions. Figure 5.2 shows a close-up view of the mesh and the bathymetry near the
seamount. The mesh resolution is refined in the lee of the seamount, to allow for an ac-
curate representation of the shedded vortex described in Chapman and Haidvogel (1992)
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450 m bathymetry scale 4500 m

Figure 5.2: Close-up view on the mesh and the bathymetry around the seamount. The mesh is
refined in the lee of the seamount.

and Ford et al. (2004a). The edge-length in the most refined zone is 2 km. This mesh is
made up of 13836 triangles extruded into 20 σ layers.

The geometry of the problem is defined by a Gaussian seamount located at 45 de-
grees North. The bathymetry reads:

1− h(x, y)

H
= δexp


(
x − R

2

)2 + (
y − R

2

)2 +
(
z − Rp

2

)2

−L2

 , (5.25)

where H = 4.5 km is the total depth, δ = 0.9 is the relative height of the seamount,
R = 6 372 km is Earth radius and L = 25 km is the length scale of the seamount. The
coordinates x, y and z are relative to the global Cartesian reference coordinates axis lo-
cated in the center of the sphere. The flow simulation is initiated with a global zonal
geostrophic equilibrium ignoring the seamount. In other words, the initial guess of the
calculation is the same as in the Testcase 5 of Williamson where the velocity field only
exhibits a non vanishing East component ue . In this testcase (Williamson et al., 1992),
the elevation and velocity fields are respectively given by

η

U 2/g
= − z2

R2

(
1+

p
2

RΩ

U

)
, (5.26)

ue

U
=

√
x2 + y2

R2 , (5.27)
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where U = 0.258 m s−1 is the velocity scale at 45 degree North, Ω = 7.292× 10−5 s−1 is
Earth rotation rate, and g = 9.81 ms−2 is the gravitational acceleration. We only con-
sider the density deviation ρ′ as the unique tracer of the model and the initial value
of the density deviation is a linear function of the vertical coordinate, with vanishing
mean. The derivative of the density with respect to the vertical coordinate is given by
∂ρ/∂z =−3.43×10−5 kg m−4 and the reference density is selected as ρ0 = 1025 kg m−3.
The turbulent viscosities and diffusivities are given by: νh = κh = 6.45 m2 s−1, νv =
0.0001 m2 s−1 and κv = 0. With those parameters, we consider that the flow is character-
ized by the same four dimensionless numbers as that in Section 3.c of Ford et al. (2004a).
These dimensionless number are defined as follows:

- Seamount ratio δ= 0.9

- Rossby number Ro = U

f L
= 0.1

- Reynolds number Re = U L

νh
= 1000

- Burger number Bu = N H

f L
=

√
−g

ρ0

∂ρ

∂z

H

f L
= 1

where N is the Brunt-Väisälä frequency.
The critical numerical parameter in the three-dimensional baroclinic model is the

jump penalty coefficient γ of the Lax-Friedrichs solver. For this problem, we select γ =
6 m s−1. Here, we select a slightly higher γ than for the simulations presented in Blaise
et al. (2010a), because the height of the seamount is quite larger. Above the seamount,
the density profile may be significantly altered and this parameter must be an upper
bound of the phase speed of the fastest wave. For discontinuous linear elements com-
bined with the second order explicit Runge-Kutta time stepper (Chevaugeon et al., 2007)
used in this simulation, the relevant CFL conditions reads:

∆t < ∆x

3γ
(5.28)

The smallest edge length is 2 km and the relevant length is the inradius of this smallest
triangle. Therefore, ∆x = 0.29×2 km and the greatest time step to avoid instabilities is
32 s. In this simulation, we use a time step of 20 s.

The two-dimensional dynamics of flows past isolated obstacles is already compli-
cated. Verron and Le Provost (1985) give a detailed analysis of the flows that occurs
over an isolated seamount, using a two-dimensional model of the quasi-geostrophic
equations. A clockwise vortex is always trapped over the seamount, but several tran-
sient regimes can occur. For strong flows, such as the configuration given in Blaise et al.
(2010a), the counter-clockwise vortex generated in the initiation flow phase is directly
advected downstream. For weak flows, such as the current configuration, a stronger in-
teraction between the two eddies occurs and the counter-clockwise vortex is shifted to
the right and trapped in the vicinity of the seamount, leading to a double vortex struc-
ture.
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Day 3 Day 4
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Day 7 Day 8

−0.15 m elevation deviation scale 0.15 m

Figure 5.3: Two-dimensional flow (δ= 0.9). Colors denotes sea surface deviation with respect to
initial geostrophic equilibrium. Glyphs represents two-dimensional mean velocities.
The black continuous lines are the instantaneous streamlines.
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Two-dimensional daily depth-averaged velocities and the sea surface deviation are
shown in Figure 5.3. The sea surface deviation is defined as the difference between the
sea-surface elevation and initial elevation corresponding to the geostrophic elevation.
As the flow is impulsively started, the free-surface is raised in front of the seamount,
and lowered behind it. Geostrophic adjustment induces two counter-rotating eddies,
the one in front of the seamount being clockwise. Under a rigid-lid approximation, this
adjustment can be interpreted in terms of vortex compression and stretching (Verron
and Le Provost, 1985). These two vortices progress clockwise around the seamount, with
a timescale much smaller than the advective one. In Figure 5.3, we see that at day one,
the two vortices have already rotated almost half a turn clockwise. The rotation of this
vortex pair can be explained in terms of topographic Rossby waves. Depth variation in-
duces effects similar to Coriolis parameter variation, i.e. the β effect. These waves prop-
agate with the shallowest area on their right (Cushman-Roisin, 1994, Section 6.5). This
leads to a clockwise progression of the vortex pair. The phase speed aligned with iso-
baths is proportional to the bottomslope. For a Gaussian shaped bathymetry, the max-
imum speed will therefore occur at a radius corresponding to the inflexion point of the
Gaussian, which in this case is L/

p
2. The initially circularly shaped vortices tend to be-

come spiral shaped, as explained in Johnson (1984). These phenomena are essentially
two-dimensional, and have been modeled with two-dimensional approximations such
as quasi-geostrophic equations (Johnson, 1984; Verron and Le Provost, 1985).

The vertical structure of the flow can be observed from the isosurfaces of the den-
sity perturbation given in Figure 5.4. The density perturbation is defined as the differ-
ence between density deviation field ρ′ and the initial density deviation. As the flow is
quasi-geostrophic, the density perturbation is an image of the vorticity, as the elevation
deviation. In fact, a complex interaction takes place, where the counter-clockwise vortex
undergoes a stretching and breaking sequence that generates internal waves upstream of
the seamount. This can be observed in Figure 5.5 where a horizontal slice in the density
perturbation at a depth of 400 m is displayed.

Using the quasi-geostrophic equations, Johnson (1984) shows that the starting flow
over a smooth obstacle leads to topographic Rossby waves that rotate clockwise around
the obstacle. For a parabolic obstacle, spiral waves are observed. These internal topo-
graphic Rossby waves are progressing as spirals between days 2 and 3. These waves can
be clearly detected from the density perturbation isovalues at a depth of 4000 m in Fig-
ure 5.6. The counter-clockwise vortex then breaks into two well separated parts. The first
one is trapped on the right side of the seamount (looking downstream), while the second
one is ejected and transported at the mean speed of the flow. Indeed, two recirculation
cells exist. One is trapped over the seamount, and the other one is located on the right
side of the seamount.

Finally, it is instructive to perform some comparisons between our numerical sim-
ulations and some previous calculations. A quite similar flow in a rectangular domain
with constant Coriolis parameter was simulated by several authors:

• Chapman and Haidvogel (1992) use a rigid lid model with finite-difference hor-
izontal discretization and spectral vertical discretization, and along sigma levels
hyperviscous dissipation.

• Adcroft et al. (1997) use a rigid lid non-hydrostatic finite-volume model, but only
provide results after 10 days. Therefore, comparison cannot be performed with
this model.
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Figure 5.4: Time evolution of the isosurfaces of the density perturbation. Isovalues of density
perturbation of −0.001kg m−3 are in green. Isovalues of density perturbation of
0.001kg m−3 are in red. The two-dimensional mesh is given on the sea bottom.
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−0.018 kg m−3 density perturbation scale 0.018 kg m−3

Figure 5.5: Density perturbation for a horizontal cut at 400 m depth.
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−0.018 kg m−3 density perturbation scale 0.018 kg m−3

Figure 5.6: Density perturbation for a horizontal cut at 4000 m depth.
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• Ford et al. (2004a) use a finite-element non-hydrostatic model, with rigid-lid ap-
proximation and Laplacian dissipation.

The problem is not exactly the same as we introduce the full Coriolis term on the sphere,
while the f -plane approximation is considered in those previous calculations. However,
this should not induce significant flow discrepancy, as we focus on the small scale, where
the variations of the Coriolis parameter are negligible compared to other effects, such as
the influence of the bathymetry.

For the early stages of the flow, our model exhibits numerous wave phenomena. In
Figures 5.7 and 5.8, we show a detailed comparison with the results obtained by Chap-
man and Haidvogel (1992). Both simulations produce a quite similar behavior during
the first two days. However, our calculation exhibits significant internal spiral waves that
do not appear in Chapman and Haidvogel (1992) and Ford et al. (2004a). This observa-
tion could be explained by the rather smaller dissipation introduced by our numerical
scheme. Those waves could also be due to an interaction with the free-surface, while
Chapman and Haidvogel (1992) and Ford et al. (2004a) use the rigid lid approximation. In
Figures 5.9 and 5.10, we observe that the counterclockwise eddy is stretched and breaks
up, one part being trapped near the seamount while the other is shedded. In our compu-
tation, the break up of the eddy happens much faster. The trapped eddy is much larger,
and the shedded eddy tends to become much more circular. This difference can be ex-
plained easily: Ford et al. (2004a) and Chapman and Haidvogel (1992) carry out their
computation in a box domain, with lateral walls. Indeed, these walls are too close to the
seamount for their influence to be negligible. Figure 5.11 sketches the elevation devia-
tion after 3 and 7 days, along with black lines located where the lateral walls are found
in Ford et al. (2004a). It can be seen that the flow clearly varies along those boundaries.
When those boundaries are present, the counterclockwise vortex cannot develop later-
ally, and this prevents its breakup.
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Figure 5.7: Comparison of density perturbation field at 400 m depth with results obtained by
Chapman and Haidvogel (1992), during the start-up of the calculations. The dashed
circle in the reference data is the 4000 m isobath. For t = 0.1, isolines range from -
0.0039 to 0.0051. For t = 0.2, isolines range from -0.0059 to 0.0101. For t = 0.3, isolines
range from -0.0069 to 0.0161. Isolines interval is 0.001 kg m−3. The same values are
used for both models.
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12 Hours

Day 1
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−0.018 kg m−3 density perturbation scale 0.018 kg m−3

Figure 5.8: Comparison of density perturbation field at 400 m depth with results obtained by
Chapman and Haidvogel (1992) during the two first days. The dashed circle in the
reference data is the 4000 m isobath. For t = 0.5, isolines range from -0.0069 to 0.0191.
For t = 1.0, isolines range from -0.0049 to 0.0211. For t = 2.0, isolines range from -
0.0009 to 0.0231. Isolines interval is 0.002 kg m−3. The same values are used for both
models.
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Figure 5.9: Comparison of density perturbation field at 4000 m depth with results obtained by
Chapman and Haidvogel (1992) during the eight first days. Isolevels are the same for
both models, ranging from −0.0212 to 0.0088 with a interval of 0.0025 kg m−3.
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−0.013 kg m−3 density perturbation scale of Ford et al. (2004a) 0.016 kg m−3

Figure 5.10: Comparison of density perturbation field at 4000 m depth with results of Chapman
and Haidvogel (1992) (left) and of Ford et al. (2004a) (middle) during the first eight
days. Isolevels are the same for the left and right sides, and range from -0.0212 to
0.0088 with a interval of 0.0025 kg m−3.
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−0.15 m elevation deviation scale 0.15 m

Figure 5.11: Sea surface elevation deviation after three days (top) and seven days (bottom).. The
black lines denotes the location of lateral boundary in Ford et al. (2004a). It can be
observed that the flow significantly varies outside of the domain denoted by the black
lines.
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5.6 Conclusions

An implicit-explicit time discretization for the three-dimensional free-surface baroclinic
marine model described in Blaise et al. (2010a) is proposed. The major contribution
consists in the definition of a new implicit mode-splitting procedure with compatible
barotropic and baroclinic problems. To achieve this, the two-dimensional barotropic
problem is discretely obtained from the three-dimensional baroclinic problem. Compat-
ibility between the two modes is enforced in a weak way by introducing Lagrange mul-
tipliers. The transports in the two- and three-dimensional problems are constrained by
explicitly incorporating this compatibility constraint in the three-dimensional horizon-
tal momentum equation. Combined with implicit-explicit Runge-Kutta (IMEX) meth-
ods, such an approach sounds very attractive. The order of accuracy can be selected as
required. On the one hand, we take advantage of the stability of the implicit method
that will damp the unresolved or poorly resolved modes. On the other hand, we could
also benefit from the Total Variation Diminishing property of the explicit part of some
methods.

Revisiting the benchmark flow over an isolated seamount of Blaise et al. (2010a), we
simulate the complex spiral wave dynamics that previous calculations were not able to
capture, either because of the rigid-lid assumption or their numerical methods. Thanks
to the unstructured nature of the mesh, the resolution is refined in the lee of the sea-
mount, enabling a detailed representation of the wave dynamics in this region. Further,
vortex shedding is observed. The early stages of the simulation compare well with the
two previous calculations.

For such an implicit/explicit approach to be interesting, the discrete operators for the
dynamics handled implicitly must be significantly stiffer than those for the explicit dy-
namics. Indeed, the time-step allowed by the IMEX scheme must be significantly larger
than the time-step of a purely explicit discretization. It is definitely the case when the
vertical mixing parameters are deduced from a turbulence closure. For the simulation
of the internal waves in the lee of a moderately tall seamount, it is not really the case as
the stratification is rather strong. The internal waves are fast, and the vertical viscosity is
still reasonable. The time steps are only 20 times larger than the explicit time step, and
are much more expensive, as local linear systems are solved. In our opinion, the way
to faster computations is twofold. On one hand, the computation of the discrete terms
can still be improved, by recasting most of the operations into efficient matrix-matrix
products computed with highly optimized linear algebra subroutines. It is the classical
optimization procedure of a numerical model. On the other hand, the time-stepping
strategy can itself be improved. Indeed, most ocean models have resorted to a mode
splitting approach to avoid solving three-dimensional linear systems. It may be neces-
sary to go beyond this paradigm and investigate a full implicit approach. To be efficient,
it must be scalable. Multigrid methods have the potential to provide scalable solutions
to large-scale discrete problems. Further such multigrid methods do not need the ma-
trix of the linear system to be assembled, significantly reducing the memory footprint of
the algorithm. However, the design of an efficient multigrid algorithm is in itself a whole
domain of research and goes much beyond the scope of this work.
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6
CONCLUSION AND PERSPECTIVES

This thesis has been conducted under the auspices of the SLIM project. The goal of this
project is to build an efficient and accurate model for the ocean general circulation, using
finite element methods on unstructured meshes.

In Chapter 2, we have provided a detailed description of the weak formulation and
Riemann solvers used to deduce a finite element discretization of the shallow water equa-
tions where stabilization is induced by interface terms. Further, we have carried out an
evaluation of five finite element pairs using this formulation for various flow regimes.
This work clearly discards the P NC

1 −P1 pair, that provides accurate results if and only if
diffusion is dominant.

The previous three-dimensional version of SLIM, developed by Laurent White (White
et al., 2008a,b), was based on this P NC

1 −P1 pair. Therefore, a complete rewriting of the
software was needed, to integrate flexibility in the choice of the interpolation and in the
choice of the time-stepping scheme, for the model to be parallel, to integrate iterative
solvers and to operate on the sphere.

In the last two chapters of this manuscript, we have presented a prototype three-di-
mensional baroclinic model based on the discontinuous Galerkin method. The three-di-
mensional mesh is made up of prisms and is obtained by extruding a two-dimensional
triangular surface mesh. The model solves the hydrostatic primitive equations relying
on an implicit mode splitting procedure and implicit/explicit Runge-Kutta time inte-
gration. The interface terms are deduced using a Lax-Friedrichs approximate Riemann
solver taking into account internal waves dynamics. We have provided the first stages of
a validation using benchmark problems. These benchmarks consider flows over an iso-
lated Gaussian seamount on the sphere. The complexity of the dynamics is accurately
represented.

This model operates naturally in spherical geometry, thanks to the algorithm de-
scribed in Chapter 3, based on local coordinate systems. This algorithm is now used in
the latest version of FEOM, the finite element ocean model developed in Bremerhaven.

109
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SLIM: a multi-purpose modeling tool

In parallel with the development of the three-dimensional component of the model, I
have participated in the development of a two-dimensional depth-integrated compo-
nent, based on the discrete formulation described in Chapter 2. This 2d component in-
cludes the shallow water equations and reactive tracer equations, with explicit (Gourgue
et al., 2009) and implicit (Kärnä et al., 2010) wetting and drying algorithms. It features
diagonally implicit Runge-Kutta iterators, using a Newton-Raphson method with the Ja-
cobian computed with finite differences. This 2d component is implicitly coupled to a
1d river network solver (de Brye et al., 2010). This model is used in our research group
for three main domains of interest:

• The Great Barrier Reef, off Queensland (Australia), where the ecosystems are chang-
ing fast. For instance, Lambrechts et al. (2010) performed a study of sediment dy-
namics using SLIM, and Munday et al. (2009) studied the impact of climate change
on coral reef connectivity. Figure 6.1 shows that the displacement of the bifurca-
tion point of the South-Equatorial Current due to climate change can dramatically
change the propagation of passive tracers such as larvae.

• The Scheldt Estuary, modeled with its tidal river system upstream and the North-
western European continental shelf downstream, down to the shelf break. The
model has been validated for this domain (de Brye et al., 2010), optimal design of
sampling strategy has been formulated (de Brauwere et al., 2009) and residence
time computations have been carried out (Blaise et al., 2010b). Figure 6.2 shows
the amplitude of the residence time associated with the spring-neap component
of the tide.

• The Mahakam river system, located in Borneo Island, East Kalimantan Province,
Indonesia. This tropical land-sea continuum includes peat swamps, lakes, the
river itself, with its tributaries, the delta and the Makassar Strait. Figure 6.3 illus-
trates a typical mesh used for preliminary computations.

This two-dimensional model can use all the finite element pairs described in Chap-
ter 2. Among these pairs, P DG

1 −P DG
1 is not the best in terms of accuracy, the Coriolis

term inducing a lack of convergence, as explained in Chapter 2. However, the discontin-
uous approach is compelling and mostly resorted to for practical applications of SLIM.
From the implicit point of view, DG problems are easier to solve with iterative solvers
than mixed formulation using P NC

1 −P1 or P DG
1 −P2. From the explicit point of view, the

elements are only coupled by fluxes, enabling easy to implement flux or solution limiting
strategies.

For now, the most constraining drawback is the relative slowness of the model. SLIM
users want to compute long term simulations, and the faster the better. Therefore, we
are now working on ways to increase the model efficiency.

Perspectives for two-dimensional modeling

As explained above, the most useful finite element pair for the shallow water equations is
P DG

1 −P DG
1 . The discontinuous approach as many advantages. From my personal experi-

ence, iterative solvers are more efficient than for other discretization, limiting strategies
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Figure 6.1: Simulated advection of passive particles around Lizard Island , Great Barrier Reef,
Northeastern Australia, as computed by SLIM. Panel (a) and (b) compares two compu-
tation where the bifurcation point of the South Equatorial Current, forcing the mean
flow in this region, is either in its position of December 1995, or shifted by 2 ◦to the
South. Picture from Munday et al. (2009).

Figure 6.2: Amplitude of the residence time variations associated with the MSF (spring-neap)
component of the tide. Figure from Blaise et al. (2010b).



112 Conclusion and perspectives

Figure 6.3: Mesh of the Mahakam river system, courtesy of Sébastien Schellen.

are similar as for finite volume methods and p- and h-adaptivity can be integrated natu-
rally (Burbeau and Sagaut, 2005; Remacle et al., 2003, 2006; Bernard et al., 2007).

I see two main goals in the future development of the 2d shallow water model in
SLIM. First, the quality of the solution must be increased. Second, the efficiency, i.e. the
speed, of the model must be increased.

A better space discretization

The study of Chapter 2 did not include variable bathymetry. It appears that discontinu-
ous Galerkin discretizations of the shallow water equations exhibit significant inter-ele-
ment jumps when the gradient of the bathymetry is important. Indeed, this set of equa-
tions contains source terms that are not balanced by interface terms. In the conservative
formulation, where the variables are total height and transports, the discretization pro-
vide a smooth solution for total height, in the sense that the jumps are small compared
to the variation of the field inside an element. However, for geophysical flows, where the
gradient of the bathymetry is much larger than the gradient of the sea-surface elevation,
there is no warranty that the elevation field will be smooth. However, the gradient of
this elevation field is a source term in the momentum equation. A similar behavior is
observed when considering the non-conservative formulation described in Chapter 2. A
possible solution to circumvent this issue would be to rely on Riemann solvers adapted
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to equations with source terms, such as the one described in Murillo and García-Navarro
(2010).

Discontinuous Galerkin methods are especially compelling when high order shape
functions are used. However, typical solution limiting strategies are designed for linear
shape functions, satisfying the pleasant property that the extrema of the solution occurs
at the nodes. If an efficient limiting strategy is designed for second order shape functions,
as it is the case for structured finite volume methods (Colella and Woodward, 1984), then
a DG discretization using such second order shape functions would be extremely effi-
cient and accurate.

Wetting drying procedures are mandatory for coastal and estuarine modeling. Such
methods have been developed for P DG

1 discretizations combined with either explicit (Gour-
gue et al., 2009; Bunya et al., 2009) or implicit (Kärnä et al., 2010) time-stepping schemes.
These methods should be further improved, to increase their robustness and accuracy.

A faster implementation

In the current implementation of SLIM, the focus has been put on implicit time-stepping
strategies. Such an approach enables time steps as large as thirty minutes for modeling
of zones influenced by tides such as the Scheldt estuary, where elements are as small as
a few hundred meters, while classical explicit discretizations would induce time steps as
small as a fraction of a second. The drawbacks of such an approach is twofold. On the
one hand, the parallel scalability of the model strongly depends on the strategy for solv-
ing the linear systems arising from the Newton-Raphson linearization. For now, incom-
plete factorization combined with additive-Schwartz domain decomposition method is
used as preconditioner for a GMRES iterative solver. Convergence to the solution is en-
sured as soon as the time step is not incredibly large. However, the parallel scaling is not
optimal, and is strongly related to the efficiency of the communication between proces-
sors. On the other hand, limiting strategies becomes overcomplicated, and properties
such as monotonicity cannot be ensured in a simple manner. Therefore, the explicit ap-
proach cannot be discarded definitely.

Recently, multirate Runge-Kutta time-stepping strategies have been proposed (Con-
stantinescu and Sandu, 2007; Schlegel et al., 2009). Using such methods, the computa-
tional domain is partitioned, each partition progressing in time with its own time step
2n∆t . Buffer layers are needed to allow communication between zones with different
time-steps. These methods allow two kinds of benefits. First, the scheme is robust to
ill-shaped elements. Indeed, for explicit computations on unstructured meshes of com-
plicated geometries, the time step is usually constrained by a few ill-shaped elements,
while most of the elements allow much bigger time steps. This constraint is removed with
multirate time-stepping schemes. Second, the scheme is optimally suited for multiscale
problems, where several zones of interest are considered, with various corresponding
timescales.

Coworkers have shown that discontinuous Galerkin methods can be implemented
in such a way that most of the operations can be realized using highly optimized BLAS3
matrix-matrix products (Lambrechts and Remacle, 2010). Such an optimized implemen-
tation allows for a speed-up factor as high as three, for P DG

1 −P DG
1 explicit computations

of the shallow water equations, compared with usual implementation with loops. Higher
speed-ups are observed for discretizations where there are more degrees of freedom per
element, i.e. for quadrilateral elements, 3d elements or higher order elements.
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A preliminary study shows that using a multirate Runge-Kutta time-stepping strategy,
combined with a BLAS optimized implementation of discontinuous Galerkin methods,
explicit computations of tidal flows in the Great Barrier Reef are only three times slower
than the best implicit solution available within SLIM, running on a single processor. Ex-
plicit methods have an optimal scaling on parallel computers. Such a property is hard to
obtain with implicit methods. Therefore, for computationally more expensive problems,
the explicit approach can win.

Perspectives for three-dimensional modeling

Which time-stepping procedure ?

While designing our 3d model, we chose to discretize implicitly as many operators as
possible. It appears that this is not the best approach. Indeed, the overhead of an implicit
vertical dynamics is not always balanced with an significant increase in the stable time-
step, especially if internal wave propagation is the constraining process. The Lagrange
multipliers approach for coupling barotropic and baroclinic modes is elegant but when
only vertical diffusion and Coriolis are treated implicitly, its overhead compared to the
"compute and correct afterwards" approach is significant. Indeed, solving a symmetric
linear system arising from the discretization of a diffusion operator and solving a saddle-
point linear system arising from a Lagrange multipliers problem does not have the same
cost. Further, if the two-dimensional baroclinic mode is solved implicitly, it must be
done in a scalable way. Otherwise, for fine two-dimensional meshes with few layers, the
computation of the 2d mode will become the limiting aspect of the algorithm. Such a
scalable algorithm is available if the 2d problem is similar to an Helmholtz problem as in
Dukowicz and Smith (1994), but not yet for the whole 2d shallow water system.

I see two ways to obtain a consistent and fast algorithm for free-surface large scale
ocean modeling. Either the 3d component is treated completely explicitly, and the "cor-
rect afterwards" approach can be consistent, but the time step will be constrained by ver-
tical diffusion, and such a solution will be unaffordable when vertical diffusion is signif-
icant (unless operator splitting is resorted to for this operator), or the whole coupled 2d
and 3d system is advanced implicitly using a multigrid approach aware of the anisotropy
of the problem. Such a multigrid algorithm requires the design of adapted coarsening
strategies and the use of smoothers taking into account the physics of the problem. The
main advantage of a multigrid algorithm compared to other implicit methods is that
the Jacobian matrix of the system is never needed, as opposed to standard ILU New-
ton-Krylov methods, where the matrix is needed for preconditioning. Therefore, limiting
tricks can be applied in a more or less straightforward manner.

A better discretization

To naturally incorporate surface water fluxes due to precipitation or evaporation, the
computational domain must evolve following the free-surface, as explained in White
et al. (2008b). Such a scheme must be adapted to work with multistage time stepping
schemes such as the Runge-Kutta integrators we have presented.

A main concern is about internally supercritical flows. For large scale oceanography,
the barotropic mode is always subcritical. It is not the case for the three-dimensional
mode. Indeed, in many cases, steep density gradients are observed, due to interaction
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of the ocean system with sea-ice, or caused by inflow of freshwater. Such configurations
may induce dam-break like problems for the internal waves. Such phenomena will not
be handled efficiently by the scheme described in Chapter 4. As for all supercritical flows,
a specific limiting strategy is needed, that will reduce the accuracy of the scheme to first
order. The limiting strategies are well known on structured grids. Such limiters must be
studied for discontinuous Galerkin discretizations. Indeed, the standard solution limiter,
that limits uniformly the slope of an element to avoid overshoots compared to the aver-
ages of neighboring cells, may not be applied as it. Indeed, ocean flows are stratified, and
this stratification should not be destroyed by the limiter.

Lateral boundary conditions implementation are also a main issue. In its inviscid
limit, the hydrostatic system of equations is ill-posed for any set of boundary condi-
tions of local type (Rousseau et al., 2004). Impermeability condition generates a viscous
boundary layer for horizontal velocity, as well as for vertical velocity. This boundary layer
is never resolved, and induces significantly larger vertical velocities than anywhere else
in the domain. We chose to discretize implicitly vertical advection with this problem in
mind. In most models, this boundary layer problem is overcome thanks to limiting. A
better solution should be deduced.

More physics

Once a robust model is obtained, physically relevant problems can be considered. There-
fore, relevant parameterizations must be added, such as a turbulence model for vertical
eddy viscosity. Parameterizations for mesoscale eddies are also needed. Isopycnal dif-
fusion and Gent-McWilliams stirring are now viewed as standard models. Griffies et al.
(1998) proposed an isoneutral diffusion scheme for finite difference models, based on a
functional formalism. Indeed, finite element are naturally based on such a functional
formalism. We show in appendix C that the natural discretization of the isopycnal dif-
fusion operator with continuous finite elements is naturally variance diminishing and
guarantees a vanishing isoneutral flux of the density, if a linear equation of state is used.
The latter property cannot be ensured using interior penalty methods for discontinuous
finite elements. Indeed, the isoneutral direction cannot be defined at inter-element in-
terfaces, where the density is discontinuous. A possible way would be to apply diffusion
operators on the continuous component of the tracer fields, with a consistent definition
of restriction and prolongation operators, that can be used to obtain the continuous or
the discontinuous representation from the other.

The ocean system is essentially a forced system. It is forced by momentum fluxes
(i.e. wind), energy and mass fluxes at sea-surface. In polar regions, there is a strong in-
teraction between the ocean and the covering sea-ice layer. Indeed, energy fluxes are
strongly decreased, the albedo of the sea-ice being much larger than the albedo of sea
water. Mass and salt fluxes generate unstable water columns, leading to convective ad-
justment. These zones are especially important for climate modeling, as much of the
ocean deep water is formed in a few polar zones. A climate model couples at least an
atmosphere component, an ocean component, and a sea-ice component. It is therefore
mandatory to couple the sea-ice module developed by Lietaer et al. (2008) with a robust
baroclinic model.

For coastal applications, wetting and drying procedures are mandatory. For instance,
in the Scheldt Estuary, over a tidal cycle, sand banks are alternatively submerged and
emerged. Such zones cannot be excluded of the domain, because at high water, a signif-



116 Conclusion and perspectives

icant amount of water flows over them. These wetting and drying procedures are usually
developed for the two-dimensional shallow water equations (Gourgue et al., 2009; Bunya
et al., 2009; Kärnä et al., 2010). However, in the regions of freshwater influence (ROFI),
a three-dimensional model is required to model the effects of density gradients. There-
fore, wetting and drying algorithms must be adapted for a 3d discretization. A solution
could be to coarsen dynamically the vertical discretization so that where drying occurs,
the 3d model reduces to a classical 2d shallow water model, and usual techniques can be
applied.

Long term perspectives

As I have explained above, many improvements are needed to be able to solve a realistic
problem. On the one hand, more physics must be added in the model, that for now only
deals with highly idealized benchmarks. On the other hand, the numerical tools must be
improved, to obtain a stable and accurate solution of the considered problems, with a
method as fast as possible.

We will not be able to deal with realistic problems without a fast solver, and this solver
won’t be useful if realistic problems are not tackled.

The two-dimensional version of SLIM is already operational and used for scientifi-
cally relevant applications. The three-dimensional problem involves much more com-
plicated dynamics. For instance, supercritical features must be handled in a stable man-
ner and implementation of boundary conditions is far from being straightforward.

In my opinion, two versions of the model should be developed concurrently. The
first one should rely on a low order discretization, i.e. linear shape functions, and focus
on robustness and efficiency. Limiting strategies, even if decreasing the accuracy of the
scheme in the regions where the flow is smooth, must be considered to ensure that the
model always produces a result. In a first time, this model should rely on an essentially
explicit time integration procedures, where only vertical diffusion would be treated im-
plicitly, for instance using an operator splitting approach. Such an explicit limited model
would be able to handle complicated flows in a robust manner, even if not always accu-
rate. To increase the stable time step, a simple implicit mode splitting procedure, using
the solve and correct afterwards approach could be implemented, relying for instance
on pseudo-time stepping to solve the two-dimensional mode.

The second version of the model would be focused on novelty in the numerical meth-
ods. In particular, high order implicit discretizations should be considered. p- and non-
nested h-multigrid methods should be the preferred linear solver/preconditioner. Such
a state of the art model won’t be able to solve practical applications as is. Indeed, for
a high order model to be efficient, there must not exist noise neither in the solution
nor in the forcings and bathymetry. This means that on the one hand subgrid scale
parametrizations must completely filter subgrid scale phenomena, i.e. the user cannot
rely on the model to be robust to unresolved features. On the other hand, the forcings
and bathymetry must be smoothed beforehand, so that they do not introduce spurious
noise at the subgrid size level, which is much smaller than the element size for high order
methods.

Unstructured grid marine models will become mainstream when they will be able
to deal with problems that are out of scope of current mainstream structured models.
For instance, it is well known that continental shelves play a crucial role in the carbon
cycle. Structured models can hardly incorporate these shelf seas in the same compu-
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tational framework as the general circulation module. Unstructured grid models have
this potential. We must proof that our models are able to tackle such problems to con-
vince the ocean modeling community that it is worth paying the price to take the step to
unstructured modeling.

It will take years to reach such an objective, but such methods will sooner or later
induce a revolution in marine modeling, with a new generation of researchers using a
new generation of models.
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SUPPLEMENTARY MATERIAL FOR CHAPTER 3

A.1 Scaling of second kind Christoffel symbols

Consider a sphere of radius r . For each flat triangle, we define a local cartesian basis eξ,
eη, eζ, with eξ and eη parallel to the plane of the triangle. To make the derivation of metric
terms easier, the origin of this cartesian basis is the center of the sphere. There exists an
isomorphism x(ξ) transforming the flat triangle into the spherical triangle (as illustrated
in figure A.1):

x(ξ) = r

‖ξ‖ξ. (A.1)

Using this isomorphism, we can deduce the covariant basis of the spherical triangle:

gξ =
∂x(ξ)

∂ξ
= r

‖ξ‖
(

eξ−ξ
ξ

‖ξ‖2

)
,

gη = ∂x(ξ)

∂η
= r

‖ξ‖
(

eη−η ξ

‖ξ‖2

)
,

gζ =
ξ

‖ξ‖ .

In the case of a curved surface embedded into the three-dimensional space, the sec-
ond kind Christoffel symbols Γγ

αβ
(with α, β, and γ being ξ or η) can be computed from:

∂gα
∂β

= ∑
γ=ξ,η

Γ
γ

αβ
gγ+nαβgζ, (A.2)

where nαβ are coefficient that need not to be computed, as they are related to the
component normal to the surface. For our specific application, this leads to:
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Figure A.1: The isomorphism turning a flat triangle into a spherical one.

Γ
ξ
ξξ

=−2
ξ

‖ξ‖2 , Γ
ξ
ξη

= Γξ
ηξ

= η

‖ξ‖2 , Γ
ξ
ηη = 0,

Γ
η

ξξ
= 0, Γ

η

ξη
= Γη

ηξ
=− ξ

‖ξ‖2 , Γ
η
ηη =−2

η

‖ξ‖2 .

Therefore, the estimation of the order of magnitude for these symbols is straightfor-
ward:

ξ ∈ [0;h],

‖ξ‖ =
√

(r ′)2 +ξ2 ≈ r,

Γ
γ

αβ
≈ h

r 2 ,

for α, β and γ being ξ or η. Of course, the asymptotic assumption h ¿ r is always valid
in ocean modeling.
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Figure A.2: A one-dimensional illustration of the different terms involved in the calculation of
Christoffel symbols.
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SUPPLEMENTARY MATERIAL FOR CHAPTER 5

B.1 Time-stepping algorithms of FEOM

To get rid of the a posteriori correction step of the three-dimensional velocities, the
barotropic mode could be time-stepped implicitly, using the same time-step as the baro-
clinic mode. No correction step is needed, when all three-dimensional terms are ad-
vanced explicitly in time. In this case, the calculation could be both compatible and
consistent. However, if some terms in the three-dimensional momentum equation are
advanced implicitly in time, such an approach assumes that those implicit terms have no
influence on the barotropic mode (Wang, 2007, p29, last paragraph), and the solution is
not naturally compatible anymore. An efficient strategy to discretize implicitly the free-
surface equation is to solve a smaller system corresponding to the Schur complement of
the system. The finite element ocean model FEOM uses a similar approach but performs
directly the equivalent algebra in the continuous framework (Wang, 2007).

Let us consider first that all terms in the three-dimensional mode are time-stepped
explicitly The semi-discrete implicit form of the linearized free-surface equation (5.4) is

ηn+1 −ηn

∆t
+∇h ·

∫ 0

−h
un+1d z = 0. (B.1)

As in the horizontal momentum equation, only the elevation gradient is implicitly inte-
grated, the new velocity un+1 is obtained by:

un+1 −un

∆t
=−g∇hη

n+1 + f expl, (B.2)

where f expl includes explicit terms. This expression can be substituted into equation
(B.1) to obtain an implicit two-dimensional free-surface problem:

ηn+1 −ηn

∆t
+∇h ·

∫ 0

−h

[
un +∆t

(
−g∇hη

n+1 + f expl
)]

d z = 0. (B.3)
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The time marching procedure of FEOM consists then in calculating ηn+1 by solving the
two-dimensional equation (B.3) and then deriving un+1 with equation (B.2).

Now, let us consider an implicit integration for the vertical diffusion in order to re-
duce time step limitations. An intermediate velocity u∗ is obtained by solving:

u∗−un

∆t
− ∂

∂z

(
νv
∂u∗

∂z

)
=−g∇h(ηn)+ f expl. (B.4)

Then, ηn+1 is calculated by solving the two-dimensional problem:

ηn+1 −ηn

∆t
+∇h ·

∫ 0

−h

[
u∗−∆t g∇h

(
ηn+1 −ηn)]

d z = 0. (B.5)

Finally, the new velocity un+1, is obtained by solving the correction problem:

un+1 −u∗

∆t
=−g∇h(ηn+1 −ηn), (B.6)

The two-dimensional problem (B.5) is also obtained by substituting the new velocity
from the correction step into equation (B.1). Implicit vertical viscosity is neglected in
the correction step, meaning that this term is computed using u∗ rather than un+1. That
was needed to be able to perform the substitution and obtain (B.5), but it renders the me-
thod incompatible and inconsistent a priori. The method of substitution is similar to the
Schur complement approach used by Dukowicz and Smith (1994), but the substitution
is performed in the continuous space rather than at the discrete level. In the continuous
world, the inverse of the mass matrix M−1

u does not appear in what corresponds to the
Schur complement. The discrete system for the elevation reads:[

Mη−∆t L
]

Xη = fη−∆t DFu ,

where L is the discrete Laplacian matrix and ∆t is the time step.
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C
PROPERTIES OF THE ISOPYCNAL DIFFUSION

OPERATOR FOR CONTINUOUS FINITE

ELEMENTS

Abstract

Griffies et al. (1998) proposed a scheme for isoneutral diffusion that respect
both the variance diminishing properties and vanishing isoneutral flux of the den-
sity. We show here that both properties are naturally satisfied by the classical finite
element discretization of the isopycnal diffusion as defined by Redi (1982).

C.1 Variance diminishing property is guaranteed

The finite element semi-discrete formulation is the following:∫
ψi

∂c

∂t
dΩ=−

∫
∇ψi ·κ ·∇c dΩ ∀ i , (C.1)

with
∫

dΩ representing the integral over the whole domain, ψi the usual test func-

tion and c the discrete tracer field, κ the diffusivity tensor, that is diagonal in a frame of
reference aligned with the isopycnal.

The diffusivity is defined by the Redi tensor (Redi, 1982) as:

κ= AH

ρ2
x +ρ2

y +ρ2
z

 ρ2
z +ρ2

y +ερ2
x (ε−1)ρxρy (ε−1)ρxρz

(ε−1)ρxρy ρ2
z +ρ2

x +ερ2
y (ε−1)ρyρz

(ε−1)ρxρz (ε−1)ρyρz ρ2
x +ρ2

y +ερ2
z

 , (C.2)

where ρx , ρy and ρz are shortcuts for ∂ρ
∂x , ∂ρ

∂y and ∂ρ
∂z , AH is the value of isopycnal diffu-

sivity and ε is so that εAH is the diapycnal diffusivity.
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The discrete tracer field is related to the nodal values Ci using the following relation:

c =∑
i

Ciψi . (C.3)

To ensure variance diminishing property, as the integral of the tracer is conserved,
the formulation must discretely satisfy the following property:

d

d t

∫
c2 dΩ≤ 0, (C.4)

⇔
∫
∂c2

∂t
dΩ≤ 0, (C.5)

⇔
∫

2c
∂c

∂t
dΩ≤ 0, (C.6)

⇔
∫

c
∂c

∂t
dΩ≤ 0. (C.7)

The left-hand-side can be computed using definition C.3:∫
c
∂c

∂t
dΩ =

∫ ∑
i

[
Ciψi

] ∂c

∂t
dΩ (C.8)

= ∑
i

[
Ci

∫
ψi

∂c

∂t
dΩ

]
(C.9)

= −∑
i

[
Ci

∫
∇ψi ·κ ·∇c dΩ

]
(C.10)

= −
∫ ∑

i

[
Ci∇ψi

] ·κ ·∇c dΩ (C.11)

= −
∫

∇c ·κ ·∇c dΩ (C.12)

The right-hand-side term of equation (C.12) is less or equal to zero for the Redi dif-
fusion tensor, because the Redi tensor is positive semidefinite.

Therefore, the natural finite element discretization of the isopycnal diffusion opera-
tor satisfies the diminishing variance property.

C.2 Vanishing isoneutral flux of the density is guaranteed

Finite element methods use the exact operator on a finite dimensional discretization
of the field, while finite difference methods use approximation of the operators at grid
points. We will now show that using the finite element method for the isopycnal diffu-
sion operator, we satisfy the vanishing isoneutral flux of density.

Let us recall equation C.1:∫
ψi

∂c

∂t
dΩ=−

∫
∇ψi ·κ ·∇c dΩ ∀ i .

If the tracer c is the density used to deduce the Redi diffusivity tensorκ, the isopycnal
diffusion should not modify the density field at all. This property is naturally satisfied by
finite element formulation. Indeed, the isopycnal diffusion flux

κ ·∇c
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Initial condition After 106 s

After 6×106 s After 2×107 s

Figure C.1: Illustration of the vanishing isoneutral fluxes on a toy problem. Left panels: density,
center panels: salinity, right panels: temperature. Salinity and temperature evolve ac-
cording to an isopycnal diffusion equation, where the Redi tensor is computed using
the density field. The density field is simply the sum of salinity and temperature fields.
The domain is 1000km×1000km×1000m, the isopycnal diffusion is 104m2s−1 and no
diapycnal diffusion is used.

can be expressed in a frame of reference aligned with the isopycnal as:

 κi 0 0
0 κi 0
0 0 0




∂c
∂i0
∂c
∂i1
∂c
∂d

 , (C.13)

where i0 and i1 are local isopycnal axes and d is the local diapycnal axis. By definition of
the isopycnal and diapycnal, ∂c

∂i0
and ∂c

∂i1
are exactly nil, and therefore the product is zero.

This is true for any continuous finite element interpolation.
As the diffusion equation is linear, solving the isopycnal diffusion equation for both

temperature and salinity and deducing the density as a diagnostic is exactly equivalent
as iterating the isopycnal diffusion on the density itself, for linear equation of state. We
have shown just above that the finite element discretization of the isopycnal diffusion
preserve the field used to deduce the Redi tensor. Therefore, if a linear equation of state
is used, temperature and salinity can be diffused strongly while preserving density at
rounding errors. This is highlighted in Figure C.1 on a toy example problem. A square box
domain is considered. Complex initial conditions are given for temperature and salinity.
The density is deduced from temperature and salinity using a linear equation of state.
Both temperature and salinity evolve due to isopycnal diffusion (there is no diapycnal
diffusion), while the density, deduced from these varying temperature and salinity, is
held constant in time to rounding errors.
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