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Chapter 1

Introduction

“Our planet is invested with two great oceans; one visible,
the other invisible; one underfoot, the other overhead; one
entirely envelopes it, the other covers about two thirds of its
surface”Matthew F. Maury (1855) The Physical Geography
of the Seas and Its Meteorology.

The oceans play a crucial role in our climate. Because of the high heat capacity
of water (2.5 m of the upper ocean is equivalent to the entire troposphere)and the
oceans’ large extent (they cover over70% of the Earth’s surface), oceans act as a
gigantic thermal flywheel, mitigating the fluctuations of our long-term weather. They
are also huge reservoirs of CO2 (containing about 60 times the amount of CO2 in
the atmosphere) and have a long memory. Oceans therefore play a pivotal role in
determining the climatic conditions on our planet on a largevariety of timescales.
However, we still do not understand well the intricate details of their circulation and
their interaction with the atmosphere. Furthermore, the oceanographers are data-poor
in general. Even today, there are many regions in the southern hemisphere where not
a single in situ observation of ocean properties has ever been made. The tedium and
expense of making in situ measurements placed a severe limiton our ability to explore
oceanic processes. Yet, even if in situ measurements were available throughout the
oceans, models would still be necessary to understand theircomplex functioning, for
the sole knowledge of in situ observations would not suffice to infer the details of
the oceans circulation. For predicting the future state of the oceans, and hence of the
climate, numerical models are indispensable.

1.1 Selected history of numerical ocean modeling

The first ocean general circulation model (OGCM) is creditedto Dr. Kirk Bryan at
the Geophysical Fluid Dynamics Laboratory (Princeton, USA) in the late 60’s (Bryan,
1969). He is regarded by many as the founding father of numerical ocean modeling.
The GFDL model was based upon a discretization of the equations of motions using
low-order finite differences. Many improvements have occurred over the following
years; among them the inclusion of free-surface dynamics (Killworth et al., 1991), the
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development of hybrid vertical coordinates (Bleck, 1978) and state-of-the-art parame-
terizations for unresolved processes such as vertical turbulence (Mellor and Yamada,
1982) and isopycnal mixing (Redi, 1982;Gent and McWilliams, 1990), to name just
a few (thorough reviews are presented byGriffies et al.(2000) andGriffies (2004)).
Some of the emerging models are highly modular, well documented and widely used
such that POM (Princeton Ocean Model), MOM (Modular Ocean Model), MICOM
(Miami Isopycnic Coordinate Ocean Model), HYCOM (HYbrid Coordinate Ocean
Model), OPA (Oćean PAralĺelisé), MITgcm (Massachusetts Institute of Technology
Global Circulation Model). If current operational ocean models can be differenti-
ated by their underlying parameterizations, often directed at better modeling selected
processes, they share a common feature. The geophysical fluid dynamics equations
are solved on structured grids using the finite difference method. Therefore, the dis-
cretization paradigm remains the same as that of Bryan’s model. Some properties of
structured grids, or lack thereof, tend to gradually renderthem out of date for ocean
modeling while, at the same time, so-called second-generation ocean models, based
on unstructured meshes, become increasingly popular.

The intrinsic flexibility of unstructured meshes is indeed compelling for numeri-
cal marine modeling. Unstructured meshes have the potential of circumventing the
pole singularities encountered when using structured grids aligned with converging
meridians. This can be done more elegantly than with structured meshes for which
common tricks to avoid the singularities include using two (north) poles (OPA) or a
spherical cube (MITgcm). Complex topographic features, such as coastlines, islands,
narrow straits and sills, can faithfully be represented by locally increasing the mesh
resolution and because there is no constraint on the mesh topology (e.g.,Legrand
et al., 2006). The resolution can also be altered based upon other criteria such as the
bathymetry (Gorman et al., 2006;Legrand et al., accepted) or the value of a state vari-
able (Legrand et al., 2000). In the latter case, the mesh can be dynamically adapted in
the course of the simulation (Piggott et al., 2005;Power et al., 2006). Given the wide
range in spatial scales of biophysical processes taking place in the ocean (Figure 1.1),
a variable mesh resolution (in time and space) across the flowdomain is of particu-
lar interest. Resolving the mesoscale variability in a large-scale ocean model with-
out having to refine the mesh everywhere is now deemed feasible if mesh adaptivity
is resorted to appropriately. Some illustrations of unstructured meshes are provided
in Figures (1.2)-(1.4). Over the last decade, motivated by these concepts, there has
been increasing effort into the development of marine models based on unstructured
meshes. Three classes of numerical methods can readily handle unstructured meshes:
the finite volume (FV), the spectral element (SE) and the finite element (FE) methods.

To a certain extent, each of these methods has been gaining popularity in the ocean
modeling community. The FV method has been lately generalized to use unstructured
orthogonal grids (Casulli and Walters, 2000;Ham et al., 2005;Fringer et al., 2006;
Stuhne and Peltier, 2006), thereby enhancing its flexibility. It is also much appreciated
for its properties of local conservation in terms of numerical fluxes across the bound-
ary of each control volume, rendering the method well suitedfor transport problems
(Casulli and Zanolli, 2005). The SE method forms the basis of SEOM (Spectral El-
ement Ocean Model) described byIskandarani et al.(1995) andIskandarani et al.
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Figure 1.1: Time and horizontal space scales of some physical and biological processes in the
ocean, fromDickey(2003).

(2003). A variant of SEOM based on a discontinuous representation of scalars and
elevation is described byLevin et al.(2006). In principle, the SE method can han-
dle unstructured meshes. However, using high-order spectral elements for the oceans
with irregular boundaries typically lead to Gibbs oscillations in the numerical solu-
tion. The ocean modeling community is currently moving awayfrom using the SE
method on unstructured meshes. However, the method remainssuccessful in atmo-
spheric modeling, where using structured meshes is more appropriate. The use of
the FE method for coastal, shelf and estuarine areas startedsomewhat earlier (Lynch
and Werner, 1987; Walters and Werner, 1989; Lynch and Werner, 1991). During
the nineties, aside from some results obtained with diagnostic finite element ocean
models (Myers and Weaver, 1995;Greenberg et al., 1998), we did not really see any
revolutionary change. Over the last five years, with the initiation of new projects of
finite element global ocean models, such as FEOM (Finite Element Ocean circulation
Model) from the Alfred Wegener Institute for Polar and Marine Research, ICOM (Im-
perial College Ocean Model) from Imperial College and SLIM (Second-generation
Louvain-la-Neuve Ice-ocean Model) from Université catholique de Louvain, we have
been witnessing a new wave of thriving development (and funding) of prognostic fi-
nite element ocean models. As warranted by the literature, the FE method appears to
be the most promising (e.g.,Pietrzak et al., 2005, 2006). There might be two main
reasons for this. All the methods mentioned can handle unstructured meshes indeed
but the finite element method offers additional flexibility in the choice of interpolation
(it can be of low or high order and continuous or discontinuous) and is sustained by
a rigorous mathematical framework, in which a priori and a posteriori error estimates
can be established and upon which mesh adaptivity takes place.
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Figure 1.2: Mesh of the Great Barrier Reef (northeast Australia) with blowups of theWhith-
sunday area, fromLegrand et al.(2006). The mesh size varies from 1 km to 20 km.

The idea of using the FE method for marine modeling together with unstructured
meshes dates back to the work byFix (1975), who was probably the first in the lit-
erature to recognize the potential of variable mesh resolution for ocean flows. The
first developments of finite element marine models were basedon the wave continuity
equation (Lynch and Gray, 1979), whereby the primitive shallow-water equations are
manipulated to form a wave equation for the free-surface elevation, with a subsequent
harmonic decomposition in time. This formulation does not suffer from spurious os-
cillations occurring when using the primitive equations and the same interpolation for
the velocity and the elevation. The generalization of the original method led to the
generalized wave continuity equation (GWCE), documented byKinnmark(1986) and
Kolar et al.(1994). The GWCE has been extensively used over the past 20 years with
successful applications in coastal regions for tidal predictions (Lynch and Werner,
1987, 1991;Walters and Werner, 1989;Walters, 1992;Lynch and Naimie, 1993;Luet-
tich and Westerink, 1995;Ballantyne et al., 1996;Lynch et al., 1996;Fortunato et al.,
1997;Cushman-Roisin and Naimie, 2002). Despite these encouraging applications
and the ongoing research to improve the method, it remains plagued by two caveats.
(1) GWCE-based models are subject to advective instabilities (Kolar et al., 1994).
(2) The GWCE form sacrifices the primitive continuity equation, thus the primitive
form is no longer satisfied in a discrete sense, which impliescontinuity (or mass) im-
balances (Blain and Massey, 2005;Dawson et al., 2006;Massey and Blain, 2006),
rendering the method less suitable for coupling with transport equations, let alone for
long time integrations (more than several years) in which conservation is crucial.
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Figure 1.3: Mesh of the Northwestern European continental shelf with recursive blowups of
the Hebridean shelf and Anton Dohrn seamount, fromLegrand et al.(accepted).The mesh size
varies from 0.5 km to 5 km.

In the meantime, more efforts have been directed towards finding a mixed finite
element pair for the primitive shallow-water equations that does not support spurious
oscillations (see e.g.,Hua and Thomasset, 1984). Aware of the limitations of the
GWCE and urged to develop primitive equations finite element ocean models, research
towards this goal have intensified since the end of the nineties (Le Roux et al., 1998;Le
Roux, 2001;Hanert et al., 2003;Le Roux, 2005;Le Roux et al., 2005;Walters, 2006;
White et al., 2006b;Le Roux et al., in press). Early issues of the method often cited
as reasons not to use it – such as spurious oscillations, unphysical wave scattering
due to the unstructured character of the mesh and lack of massconservation – are
starting to wither. Nowadays, applications of FE shallow-water models based on the
primitive equations are becoming much less of an exception (Nechaev et al., 2003;
Danilov et al., 2004;Ford et al., 2004a,b;Pain et al., 2004;Danilov et al., 2005;
Hanert et al., 2005;Labeur and Pietrzak, 2005;Walters, 2006;White et al., 2006a;
White and Deleersnijder, in press;White et al., submitted) and this trend is unlikely
to lose its momentum.

Finite element methods based on the primitive equations encompass both the con-
tinuous Galerkin (CG) and discontinuous Galerkin (DG) methods. The latter applied
to the shallow-water equations is newer than the former and has much to offer for solv-
ing hyperbolic systems of equation (Flaherty et al., 2002) and advection-dominated
flows (e.g.,Hanert et al., 2004;Kubatko et al., 2006a) in general. Furthermore, the
method is known to conserve flow properties elementwise in the intuitive meaning
of the FV method (as opposed to the local conservation property of CG methods de-
scribed byHughes et al.(2000)). At least for now, DG methods remain less mature
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Figure 1.4: Mesh of the globe, fromGorman et al.(2006).

than CG methods for ocean modeling. They have nonetheless been gaining popularity
for modeling shallow-water flows as well (Schwanenberg et al., 2000;Aizinger and
Dawson, 2002;Schwanenberg and Harms, 2004;Nair et al., 2005;Remacle et al.,
2005;Dawson et al., 2006;Kubatko et al., 2006a;Remacle et al., 2006;White et al.,
2006b;Bernard et al., accepted) and are particularly well suited for transport problems
(Kubatko et al., 2006b).

1.2 Thesis objectives

This thesis was undertaken under the auspices of the SLIM1 project that aims at
building an unstructured mesh, finite element OGCM based on the primitive equa-
tions. It remains unclear at this stage whether the CG or the DG method is preferable
for simulating shallow-water flows. Both methods have theiradvantages and draw-
backs in terms of accuracy, robustness and efficiency. In this work, we do not intend
to discriminate one method in favor of the other. As it turns out when flipping the
pages of this thesis, each method happens to outperform the other depending on the
application at hand.

1Second-generation Louvain-la-Neuve Ice-ocean Model (http://www.climate.be/SLIM).
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The ultimate objective of this thesis is to provide the prototype of a three-dimensional,
finite-element, marine circulation model, which solves theprimitive equations and in-
cludes the following prominent features.

• The three-dimensional mesh is based on the downard extrusion of a two-dimensional,
triangular, unstructured mesh. The extrusion generates columns that are subse-
quently split into prisms.

• The free-surface dynamics is included and the domain is allowed to move in the
vertical to accomodate the free-surface motions and to respond to freshwater
forcings.

• Mass and tracers are globally conserved up to machine precision. All equations
are solved consistently so that a uniform tracer concentration remains equal to
the initial value at all time, no matter which dynamics is considered but provided
that there is no source term and no boundary flux.

• Stabilization is not required. The numerical solution doesnot support spurious
oscillations.

• The dynamics and the equations are split between the external and internal
modes. The external mode is solved semi-implicitly in time,which allows for
using a unique time step for both modes.

• The computational cost of the solution scales linearly likethe number of two-
dimensional vertices. No system need be solved in three dimensions.

• Earlier studies within the research team have been fully taken into account. The
two-dimensional structure of the current model relies on the work byHanert
et al. (2005).

In essence, the model that we present is fully operational tosimulate three-dimensional
flows in planar geometry without baroclinic forcing. Yet, itis conceived in such a way
that any tracer can readily be added and will evolve in a conservative fashion.

1.3 Thesis synopsis

The free-surface dynamics is included in the model via the solution to the external
mode (i.e., barotropic mode), for which an effective technique must be devised. In
Chapter 2, we assess the accuracy and robustness of some finite elementmethods in
solving the one-dimensional linearized shallow-water equations. The problem has a
known analytical solution that includes a discontinuity inthe elevation. The hyper-
bolic nature of the system of equations is emphasized by using the method of charac-
teristics. While the continuous Galerkin method is shown to perform quite poorly, the
discontinuous Galerkin method proves to be very accurate and robust, provided that
the adequate numerical fluxes be enforced. In particular, itis shown that computing
the right numerical fluxes comes down to weakly enforcing thecontinuity of the char-
acteristic variables. This is the so-called Riemann solverused in higher dimensions
for which a local change of variables allows to reduce the problem dimensions to one
in the direction normal to the element boundary (edge or face).
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An ocean model should be built with the physics in mind. We must not expect that
any all-purpose computational fluid dynamics code will be able to decently model
oceanic flows if it is not tailored to do so in the first place. Here, we opt for a step-
by-step approach in which validation of each physical component is a key aspect.
Since we not only aim at resolving the large-scale circulation but also most energetic
mesoscale processes, it is of paramount importance to represent the mesoscale vari-
ability with as much accuracy as possible. Mesoscale variability partly originates from
baroclinic instabilities and, to a lesser extent, from barotropic instabilities. InChapter
3, we concentrate on the latter and evaluate three finite-element formulations in their
ability to accurately represent geophysical fluid flow instabilities. Physical dissipation
is absent from the equations, making it a challenging test case for numerical methods
where any numerical dissipation is likely to produce erroneous results.

Large-scale free-surface ocean models designed to run overclimatic timescales are
required to globally conserve the volume and any tracer up tomachine precision. In
addition, the following property is critical. Setting a tracer to a uniform value through-
out the closed domain and letting the free surface undulate,we must recover the same
tracer concentration at any later time if there is no tracer source. This property of
consistency, together with monotonicity, will ensure thatno spurious tracer extrema
occur. InChapter 4, it is shown that achieving consistency requires a discretecom-
patibility between the tracer and continuity equations. Inaddition, to ensure global
tracer conservation in a consistent way, a discrete compatibility between the tracer,
continuity and free-surface equations must be fulfilled. Itis suggested that this com-
patibility constraint, together with the use of a numerically stable scheme, severely
restricts the choice of three-dimensional spatial discretizations.

In Chapter 5, the full three-dimensional model is presented. Since all but the mo-
mentum equations are treated in the previous chapter, only the momentum equations
are considered in detail in this last chapter. The time-stepping algorithm is fully de-
scribed. The model is validated against a realistic flow around a shallow-water island
for which field measurements are available. A convergence analysis is carried out and
we show that, as the mesh resolution is increased, the model is able to predict the
correct velocity field in the island’s wake. Very intense upwelling is also predicted off
the northern island’s tip during ebb and flood. We suggest that this upwelling might
be the main cause for the presence of mud at the surface, rather than the much weaker
upwelling predicted near the center of the eddies.

Marine flows are intrinsically complex and appropriate interpretation techniques
ought to be used to fully exploit the results of a given model.A few two-dimensional
cuts within the three-dimensional computational domain atsome times gives a poor
rendition of otherwise multidimensional processes involving several variables. Holis-
tic tools, which take into account all processes and their history, are more appropriate.
Among those tools are timescales such as the age and the residence time. InChapter
6, the concept of age is used to devise two diagnoses of vertical transport in the vicin-
ity of a shallow-water island, subject to tidal flow. The results confirm the presence of
strong upwelling off the island’s tip, suggested in the previous chapter.
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Conclusions and perspectives are given inChapter 7.
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Chapter 2

Finite element methods for the
external mode

Summary
Some finite element methods are employed to solve the linear
shallow-water equations describing the propagation of Poincaré
waves within a one-dimensional finite domain. An analytical solu-
tion to the problem, set off by a discontinuous steplike elevation,
is known and allows for assessing the accuracy and robustness of
each method. We evaluate the method of characteristics, the con-
tinuous Galerkin method and the discontinuous Galerkin method
with two ways of computing the numerical fluxes.

Motion in the ocean spans a very wide range of timescales. While the large-scale
circulation is characterized by velocities on the order of up to one meter per second
and timescales that can be as large as hundreds of years, the fast-propagating inertia-
gravity waves exhibit phase velocities on the order of hundreds of meters per second
and much smaller timescales. Internal gravity waves propagate with velocities on the
order of one meter per second or less. The vast disparity of ocean processes timescales
poses a challenge in numerical ocean modeling. If an explicit time step is used, it is
limited by the so-called Courant-Friedrichs-Lewy (CFL) condition, which states that
the time step should not be larger than the travel time of the fastest physical process
over the smallest space increment. In free-surface ocean models that allow for the
existence of external inertia-gravity (Poincaré) waves, the upper bound on the time
step is far smaller than more practical time steps that wouldpermit time integration
over thousands of years on today’s computers. The first attempt at circumventing this
problem by replacing the free surface by a rigid lid – therebyeliminating external
inertia-gravity waves – has been widely dismissed. Among the rationales for such
a design are that a rigid lid distorts the properties of large-scale barotropic Rossby
waves, does not permit tidal modeling and complicates the inclusion of surface fresh-
water fluxes (Killworth et al., 1991;Dukowicz and Smith, 1994;Deleersnijder and
Campin, 1995;Hallberg, 1997;Higdon and Szoeke, 1997;Griffies et al., 2000).
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A common alternative no longer relies on the rigid-lid approximation. The ocean
surface is free and remains a prognostic variable but the governing equations are split
into subsystems that model the fast and slow motions separately. These subsystems
are generally referred to as the barotropic and baroclinic systems, respectively, or the
external and internal modes, respectively. Fast motions are approximately indepen-
dent of the vertical coordinatez so that the external mode is two-dimensional and is
well represented by the shallow-water equations that modelthe motion of fluid layers
of constant density. Slow motions are fully three-dimensional, however, but the re-
striction on the time step is dictated by the internal dynamics, of which timescales are
several orders of magnitude larger than that of the externalmode. The latter can be
solved explicitely with small time steps or implicitely with larger time steps. Choosing
an implicit treatment eliminates the constraint imposed bythe CFL condition but leads
to large systems to be solved at each time step. This choice can be made for tidal and
tsunami calculations provided that a reduced time step be used. If an explicit approach
is considered for the barotropic mode, the number of small barotropic time steps for
each large baroclinic time step is roughly the ratio of barotropic inertia-gravity wave
speed to baroclinic internal gravity wave speed (Killworth et al., 1991). Details on
mode splitting implementations can be found inBlumberg and Mellor(1987),Hall-
berg(1997),Higdon and Szoeke(1997) andHigdon(2002).

Large-scale oceanic motions roughly obey the geostrophic equilibrium. When im-
balances occur, the geostrophic balance is restored by means of Poincaŕe waves. In
strongly stratified seas, internal inertia-gravity waves are generated when displace-
ment of density surfaces occurs. Those waves respond to the same physical mecha-
nism as external Poincaré waves (Gill , 1982). In models allowing for the existence
of inertia-gravity waves, it is of paramount importance to represent those waves ac-
curately. In that respect, the coupled issues of time and space discretization ought to
be focused on. Time stepping is beyond the scope of this chapter (see e.g.,Beckers
and Deleersnijder, 1993) as we mainly concentrate on spatial discretization.A one-
dimensional benchmark for the propagation of Poincaré waves is proposed. This prob-
lem bears many similarities with the classical geostrophicadjustment initially studied
by Rossby and further investigated byGill (1976) for the linear part andKuo and
Polvani (1996) for its nonlinear counterpart. In this chapter, the linearized shallow-
water equations, in which homogeneity is assumed in they-direction, are solved in a
domain of finite length with an initial discontinuous elevation field. The design differ-
ence with adjustment problems lies in the finiteness of the domain in thex-direction.
Whereas in adjustment problems, an infinite domain in thex-direction is considered,
we study the case of Poincaré waves propagation in a finite domain. In so doing, no
end state is ever reached and, in the absence of friction, wave propagation goes on
forever within the domain. The persistence of the discontinuities is the prominent fea-
ture of the time-dependent solution presented byGill (1976). It also appears in the
solution to our benchmark, thereby posing a challenge for classical numerical meth-
ods to solve the problem. A numerical method will be appraised based upon its ability
to capture the traveling discontinuity without generatingspurious oscillations. The
following methods are considered: the method of characteristics, the Galerkin finite
element method (FEM) and the discontinuous Galerkin FEM with two different ways
of computing the numerical fluxes.
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2.1 A one-dimensional benchmark

The linearized governing equations for a single, inviscid,homogeneous shallow
layer of fluid on anf -plane are the shallow-water equations, given by

∂u

∂t
− fv = − g

∂η

∂x
,

∂v

∂t
+ fu = − g

∂η

∂y
,

∂η

∂t
+ h

∂u

∂x
+ h

∂v

∂y
= 0,

(2.1)

whereu andv are the vertically-averaged horizontal velocity components in thex- and
y-directions, respectively. The reference layer thicknessis constant and denoted byh
while η represents the free surface elevation. The Coriolis parameter f is taken to be
constant under thef -plane approximation. Finally,g is the gravitational acceleration.

Linearization implies getting rid of advective terms and assuming that the free sur-
face elevation be much smaller than the constant reference depth (i.e.,η ≪ h). The
disposal of advective terms is legitimate as long as the Rossby number is much smaller
than1, in which case inertial terms are not dominant. We decide to focus on a set of
linear equations, mainly for the sake of simplicity and because we will be able to
interpret the results in the best way.

Within the frame of this work, we will further assume homogeneity in they-direction
so that all derivatives with respect toy vanish. The domain is thus infinite in they-
direction, which reduces the problem to a one-dimensional case. The domain remains
finite in thex-direction. It should be noted that the problem we propose tosolve does
not consist of an adjustment problem as inGill (1976) in which the domain is infinite
– or large enough so that it can be deemed so numerically, as explained inKuo and
Polvani(1996). In that respect, we do not focus on the final state, which does not exist
for finite domains. Instead, we study the wave propagation phenomenon. Reducing
the system (2.1) to the unique x-direction yields

∂u

∂t
− fv = − g

∂η

∂x
,

∂v

∂t
+ fu = 0,

∂η

∂t
+ h

∂u

∂x
= 0,

(2.2)

wherex ∈ [−L/2, L/2] andt ≥ 0. The boundary conditions areu(x = ±L/2, t) =
0, which merely consists of boundary impermeability. We study the time evolution of
an initially motionless fluid layer with a discontinuity in the elevation field. Thus, at
t = 0

u(x, 0) = v(x, 0) = 0,

η(x, 0) = ηosign(x) =

{

−ηo if −L/2 ≤ x < 0

ηo if 0 < x ≤ L/2.
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Nondimensionalization of (2.2) is obtained by introducingthe following characteristic
scales:f−1, L, ηo, Lh−1fηo, for the time, the space, the elevation and the velocities,
respectively. Using the same symbols, the nondimensional equations become

∂u

∂t
− v = −α2 ∂η

∂x
, (2.3)

∂v

∂t
+ u = 0, (2.4)

∂η

∂t
+
∂u

∂x
= 0. (2.5)

We have definedα =
√
gh
fL , which is the ratio of the Rossby radius of deformation to

the length scale, or a nondimensional Rossby radius of deformation. Note that (2.3)-
(2.5) is now defined fort ≥ 0 andx ∈ [−1/2, 1/2]. Boundary and initial conditions
are adapted accordingly.

2.1.1 Analytical solution

As a first step, we present the analytical solution to (2.3)-(2.5). Differentiation of
(2.3) and (2.5) with respect tot andx, respectively, gives rise to

∂2u

∂t2
− ∂v

∂t
= −α2 ∂

2η

∂t∂x
,

∂2η

∂x∂t
+
∂2u

∂x2
= 0.

Elimination of the mixed derivative and substitution of−∂v
∂t by u from (2.4) leads to

a single equation for the zonal velocityu:

∂2u

∂t2
+ u = α2 ∂

2u

∂x2
. (2.6)

Equation (2.6) can be analytically solved using the separation of variables method.
This is shown in details in appendix A.1. Solution to (2.3)-(2.5) is

u(x, t) =

∞∑

n=1

Hn(−1)n+1α
2kn
ωn

sin (ωnt) cos (knx),

v(x, t) =

∞∑

n=1

Hn(−1)n+1α
2kn
ω2
n

[cos (ωnt) − 1] cos (knx),

η(x, t) =

∞∑

n=1

Hn(−1)n sin (knx)

{

1 − α2k2
n

ω2
n

[1 − cos (ωnt)]

}

,

(2.7)

where coefficientsHn amount toHn = 4(−1)n

kn
. In Figure (2.1), we show the solution

(2.7) for the elevation at different times and compare it with Gill’s analytical solution
to the adjustment problem (Gill , 1976). Solutions were computed withα =

√
10/10.

Left panels of Figure (2.1) show the solution within the leftpart of thefinite domain
(x < 0). Right panels show the solution within the right part of theinfinite domain
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(x > 0). Thus, the panels separation is the axisx = 0. In both situations, the front
moves at a speed equal toα, to the left and to the right, for the left and right panels,
respectively. As long as the front does not hit the boundary of the finite domain, both
solutions are the same (although antisymmetric). After reflection at the boundary,
Poincaŕe waves evolve within the finite domain. For the adjustment problem, the front
keeps moving to the right, trailing a wake of Poincaré waves behind it.

2.1.2 A hyperbolic problem

Because (2.3)-(2.5) is a system of first-order hyperbolic equations, there exist three
real characteristics. We can write the system in compact form:

A
∂u

∂t
+ B

∂u

∂x
= d,

whereA, B, u andd are defined to obtain the following expression:




1 0 0
0 1 0
0 0 1




∂

∂t





η
u
v



+





0 1 0
α2 0 0
0 0 0




∂

∂x





η
u
v



 =





0
v
−u



 .

In order to reduce (2.3)-(2.5) to a system of three ordinary differential equations
(ODEs), we now compute the eigenvalues and eigenvectors of the generalized prob-
lem:

zTi (B − λiA) = 0

det(B − λiA) = 0

for which we have

λ1 = 0 z1 = [0 0 1]T ,

λ2 = α z2 = [α 1 0]T ,

λ3 = −α z3 = [α − 1 0]T .

For each eigenvectorzi, an ODE is obtained by computing the following expression:

zTi
d

dt
u = zTi d.

The system of ODEs then is






d

dt
v = −u on

dx

dt
= 0,

d

dt
(αη + u) = v on

dx

dt
= α,

d

dt
(αη − u) = −v on

dx

dt
= −α.

(2.8)

The foregoing procedure has allowed for transforming the system of partial differential
equations (2.3)-(2.5) into the system of ODEs (2.8) in the characteristic variablesv,
αη + u andαη − u. Each ordinary differential equation is written on a characteristic
curve(x(t), t) defined bydxdt = λi, whereλ1 = 0, λ2 = α andλ3 = −α, for the
first, second and third ODE. Because the position is dependent on time, only time
integration needs be performed to compute the characteristic variables, as long as we
remain located on the associated characteristic curve.
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x < 0

η

x > 0

η

Finite
domain

Infinite domain

The discontinuity has not yet reached the boundary in the finite domain

Reflection at the boundary occurred in the finite domain while the discontinuity
keeps traveling to the right in the infinite domain

The discontinuity travels out of the shown portion of the infinite domain

Adjustment proceeds in the infinite domain...

... while repeated reflections in the finite domain yield a more complex solution

Figure 2.1: Exact solution for the elevationη. Left panels show solutions for the finite domain
(x < 0) and right panels show solutions for the adjustment problem (x > 0), as provided by
Gill (1976). The axisx = 0 separates left and right panels. Left panels are 0.5-unit long and
right panels are 3-unit long. The ticks on they-axis are one unit of elevation apart, the middle
one being0. From top to bottom, solutions are shown att = 1, t = 5, t = 10 t = 100 and
t = 1000. The parameterα is

√
10/10.
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2.2 Analysis of some numerical methods

From our standpoint, the main interest of this problem lies in its ability to be a
benchmark for numerical methods. Therefore, we may comparethe accuracy and
robustness between several numerical techniques to solve (2.3)-(2.5). The difficulty
in solving these equations lies in the presence of the discontinuity. Any numerical
scheme ought to be assessed based upon its ability to capturethis discontinuity with-
out generating spurious oscillations. In this section, we present the following methods:
the method of characteristics, the galerkin finite element method (FEM), the discon-
tinuous Galerkin FEM and the discontinuous Riemann-Galerkin FEM. All numerical
experiments were conducted withf = 10−4 s−1, g = 10 m s−2, h = 100 m,L = 106

m, ηo = 1 m, leading toα =
√

10/10.

2.2.1 Method of characteristics

Classical finite difference schemes may now be employed to solve (2.8), for which
we are constrained to use a time step and a spatial increment satisfying ∆x

∆t = α,
as suggested in Figure (2.2). For the sake of clarity, let us define the characteristic
variablesw

.
= αη+u andq

.
= αη−u. A forward Euler stencil applied to (2.8) yields







vn+1
k − vnk

∆t
= unk ,

wn+1
k − wnk−1

∆t
= vnk−1,

qn+1
k − qnk+1

∆t
= −vnk+1,

(2.9)

where all information at time stepn has been taken along appropriate characteristics.

n

n+ 1
k

k − 1 k k + 1∆x

∆t
dx
dt = 0

dx
dt = −αdx

dt = α

Figure 2.2: Time integration must be performed along characteristics. Indicesk andn identify
space and time discretization points, respectively.

The essence of the method of characteristics resides in its ability to carry the infor-
mation along characteristics, which allows to focus solelyon time integration. There-
fore, we expect the method to be able to capture the travelingdiscontinuity at any time
step provided that the time integration be sufficiently accurate. This issue is illustrated
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in Figure (2.3), where the forward Euler and the second-order Runge-Kutta stencils
have been used with∆t = 0.01. The solution for the elevationη is compared with the
exact solution at dimensionless timet = 200. Notice how the approximate solution
obtained with the first-order Euler scheme captures the discontinuity at the right loca-
tion but is highly inaccurate overall. The second-order Runge-Kutta method performs
much better, with anL2-norm that is more than 20 times smaller. To assess the extra
computational cost incurred by the use of the second-order Runge-Kutta method, a
run with 400,000 time steps (∆t = 0.001) has been carried out with both methods.
The forward Euler integration yields the solution after 54 swhile the second-order
Runge-Kutta integration does so after 83 s. Hence, there is roughly a fifty percent
extra computational cost in using the latter method. It should be borne in mind that,
however efficient the method of characteristics may be for this benchmark, a major
drawback lies in the fact that such an approach cannot be straightforwardly extended
to two-dimensional computations.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2
Method of characteristics
Second-order Runge Kutta

Method of characteristics
First order forward Euler

Figure 2.3: Approximate and exact solutions forη at dimensionless timet = 200 for the first-
order forward Euler method (top) and the second-order Runge-Kuttamethod (bottom) with a
time step of∆t = 0.01. The solid line represents the exact solution. The circles represent the
approximate solution at grid points.

2.2.2 Continuous Galerkin

The continuous Galerkin method is the simplest of the considered methods to im-
plement in two and three dimensions. A variational formulation can be derived by first
time-discretizing (2.3)-(2.5). Each resulting equation is then mutliplied by a test func-
tion (symbolized by a hat) and integrated over the entire domainΩ = [−1/2, 1/2]. If
a so-calledθ-scheme is employed for time discretization, the variational formulation
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consists in findingun+1 = (un+1, vn+1, ηn+1) ∈ U = (U ,V, E) such that
∫

Ω

(
un+1 − un

∆t
û− vn+θû+ α2 ∂η

n+θ

∂x
û

)

dx = 0 ∀û ∈ Û ,
∫

Ω

(
vn+1 − vn

∆t
v̂ + un+θv̂

)

dx = 0 ∀v̂ ∈ V̂,
∫

Ω

(
ηn+1 − ηn

∆t
η̂ +

∂un+θ

∂x
η̂

)

dx = 0 ∀η̂ ∈ Ê ,

(2.10)

wherean+θ = θan+1 + (1 − θ)an andθ is an adjustable parameter that allows for
choosing between time schemes. The so-called Crank-Nicolson scheme is obtained
with θ = 0.5. Note thatun, vn andηn denote the functions evaluated at the previous
time step and live in the same functional spaces as the unknowns. That is to say, a
finite element problem is solved at each time step. We may alsoconsider using the
following alternative scheme that likens the classical forward-backward scheme, in
which case a variational formulation consists in findingun+1 ∈ U such that
∫

Ω

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û+ α2 ∂η

n+1

∂x
û

)

dx = 0 ∀û ∈ Û ,
∫

Ω

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0 ∀v̂ ∈ V̂,
∫

Ω

(
ηn+1 − ηn

∆t
η̂ +

∂un

∂x
η̂

)

dx = 0 ∀η̂ ∈ Ê ,

(2.11)

whereηn+1 is first computed from the continuity equation and used in thesubsequent
calculation of(un+1, vn+1). The Coriolis term is treated semi-implicitely in both for-
mulations so as to not artificially generate nor dissipate energy, which complies with
the fact that no work is done by the Coriolis force. In formulations (2.10) and (2.11),
un+1 andû = (û, v̂, η̂) belong to suitable infinite-dimensional function spaces. Each
variablean+1 is approximated as follows

an+1 ≃ an+1
h =

N∑

j=1

An+1
j φj (x) ,

whereAn+1
j are the nodal values andφj are the polynomial basis functions. The

approximationun+1
h = (un+1

h , vn+1
h , ηn+1

h ) ∈ U
c
h = (Uch,Vch, Ech), which are finite-

dimensional subspaces of(U ,V, E). Note that the superscriptc stands forcontinuous.
Following the notation byHughes et al.(2000), the test functionŝu are similarly ap-
proximated bŷuh = (ûh, v̂h, η̂h) ∈ Û

c

h = (Ûch, V̂ch, Êch), which are finite-dimensional
subspaces of̂U = (Û , V̂, Ê). Linear approximations are used for the test functions
and for all variables for the sake of simplicity and for an easier interpretation. Hence,
un+1
h andûh are continuous acrossΩ and piecewise linear over each elementΩe. We

bear in mind, however, that pressure modes may appear in two and three dimensions
when the same interpolant order is used for the velocity and the elevation. Experi-
ments with quadratic elements for the velocity and linear elements for the elevation,
as well as linear elements for the velocity and constant elements for the elevation, have
been conducted. The conclusions are the same as those presented hereafter.
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In Figure (2.4), we show the elevation field obtained at timet = 2 using the
forward-backward scheme. Spurious oscillations pollute the 100-element and the 400-
element approximations. Experiments with finer meshes havebeen carried out and no
improvment is brought about by the use of smaller element sizes. Nevertheless, if
we set off the time integration with a smoother initial condition, the use of smaller
elements eliminates spurious oscillations. In that respect, a hyperbolic tangent profile
has been chosen for the initial elevation field, that is,

η(x, 0) = tanh(Rx), (2.12)

whereR, the steepness parameter, controls how steep the transition is between -1
and 1. The larger R, the closer this initial condition will beto the sign function. The
foregoing experiments have been repeated with the hyperbolic tangent initial condition
(2.12), with a steepness parameterR = 100, and results are shown in Figure (2.5).
Note that in the case of a hyperbolic tangent initial elevation field, coefficientsHn that
appear in the exact solution (2.7) must be numerically evaluated.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1 Continuous Galerkin (400 elements)

Continuous Galerkin (100 elements)

Figure 2.4: The Galerkin finite-element approximations at dimensionless timet = 2 with 100
elements (top) and 400 elements (bottom) when the steplike initial elevation fieldis used. The
time step is 0.001. The solid line is the exact solution.

The assessment of the finite-element scheme is not trivial because it includes both
time and space discretizations. We do not wish to go into details regarding time
discretization techniques here and for the convergence analysis only the forward-
backward (FB) scheme has been explored. A comparison between approximate and
exact solutions at dimensionless timet = 1 was performed on gradually-refined uni-
form meshes. It is reported in Section 2.2.5.
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Figure 2.5: The Galerkin finite-element approximations at dimensionless timet = 2 with 100
elements (top) and 400 elements (bottom) when a hyperbolic tangent profile is used for the
initial elevation field (R = 100). The time step is 0.001. The solid line is the exact solution.

2.2.3 Discontinuous Galerkin

The Discontinuous Galerkin method (DGM) provides an appealing approach to ad-
dress problems having discontinuities. Another advantageof the DGM is that it is
inherently locally conservative while continuous Galerkin methods are locally conser-
vative provided that subsequent postprocessing be carriedout (Hughes et al., 2000).
A broad review may be found inCockburn et al.(2000). In the DGM, the solution is
a piecewise-continuous function relative to a mesh (Flaherty et al., 2002). As such,
it is not required that the sought solution assume the same value at each physical
mesh node because two computational nodes belong to the samephysical node (in
a one-dimensional mesh – see Figure 2.6). This property provides more flexibility
in representing steep gradients and discontinuities. A steplike initial condition for
the elevation field will be exactly represented, which is notthe case with continuous
methods.

In continuous finite element methods, two neighboring elements share a common
computational node. This common node allows information tobe conveyed from one
element to its neighbor. In discontinuous methods, all the nodes lie in their respec-
tive element so that, a priori, there is no transfer of information between neighboring
elements. One has to keep that in mind when deriving the weak formulation. In
that respect, the weak formulation (2.11) will be altered insuch a way that neighbor-
ing elements are able to exchange information between them.As for the continuous
case, a variational formulation is obtained from the time-discretized equations. For
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Xi Xi+1

U−
i

U+
i

U−
i+1

U+
i+1

Ωi−1 Ωi Ωi+1

Figure 2.6: One-dimensional mesh for the discontinuous Galerkin method: there aretwo com-
putational nodes (i.e., two nodal values,U−

i andU+

i ) at each physical node,Xi.

the forward-backward scheme, the problem consists in finding un+1 in U such that

Ne∑

e=1

∫

Ωe

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û+ α2 ∂η

n+1

∂x
û

)

dx

+

Ne∑

e=1

∣
∣a(û)

[
α2ηn+1

]∣
∣
∂Ωe

︸ ︷︷ ︸

S1

= 0 ∀û ∈ Û ,

Ne∑

e=1

∫

Ωe

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0 ∀v̂ ∈ V̂,

Ne∑

e=1

∫

Ωe

(
ηn+1 − ηn

∆t
η̂ +

∂un

∂x
η̂

)

dx+

Ne∑

e=1

|a(η̂) [un]|∂Ωe

︸ ︷︷ ︸

S2

= 0 ∀η̂ ∈ Ê .

(2.13)
whereNe is the number of elements. An approximationun+1

h = (un+1
h , vn+1

h , ηn+1
h )

is sought withinU
d
h = (Udh ,Vdh, Edh), which are finite-dimensional subspaces ofU .

Thed superscript stands fordiscontinuous. Similarly, the test functionŝu are approx-

imated byûh = (ûh, v̂h, η̂h) ∈ Û
d

h = (Ûdh , V̂dh, Êdh), which are finite-dimensional
subspaces of̂U . As for the Galerkin method, a linear approximation is used for the
test functions and all variables. However, because the discontinuous Galerkin method

is employed here, the finite-dimensional subspacesU
d
h andÛ

d

h allow discontinuities
across elements:

U
d
h = Û

d

h =
{
v ∈ L2(Ω) | v|Ωe

∈ P 1 (Ωe)
}3
,

whereP 1 (Ωe) is the set of linear polynomials on elementΩe. Note that the following
relationships hold for finite-dimensional subspaces of theGalerkin and discontinuous

Galerkin methods:Uc
h ⊂ U

d
h ⊂ U and Û

c

h ⊂ Û
d

h ⊂ Û . The role ofS1 andS2

in the first and third equations is to weakly enforce continuity of ηn+1 andun+1,
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respectively. The vertical bars indicate that expressionsmust be evaluated along the
boundary of elementΩe, that is at the extremities of elementΩe for one-dimensional
problems. The functiona(û) is defined as

a(û)
.
=

(

λ− 1

2
sign(n̂)

)

û

wheren̂ is the outward-pointing normal at each element boundary∂Ω. The interele-
ment jump in the nodal values at a given physical node is defined as [un(Xi)] =
U−
i − U+

i . The parameterλ ∈ [−1/2, 1/2] is tunable in the sense that it allows for
the interelement jump to be weighted. For example, the jump[un] evaluated at the
physical nodeXi in Figure (2.6) is weighted by(λ − 1/2) on computational node
i− and by(λ + 1/2) on computational nodei+, given that the signs of the normaln̂
at nodesi− andi+, are+1 and−1, respectively. A centered scheme is obtained by
choosingλ = 0, in which case no preference is given to any of the nodesi− or i+.
For transport problems, it is common to give more weight to node i+ (or nodei−) if
the advective flux is known to travel from left to right (respectively from right to left).
As in Hanert et al.(2004), an alternative formulation can be derived by integrating the
spatial derivatives by parts. In so doing, (2.13) expands to

Ne∑

e=1

∫

Ωe

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û− α2ηn+1 ∂û

∂x

)

dx

+ α2
Nv∑

i=1

{〈
ηn+1(Xi)

〉
[û(Xi)] +

[
ηn+1(Xi)

]
〈û(Xi)〉

}

+ α2
Nv∑

i=1

[a(û(Xi))]
[
ηn+1(Xi)

]
= 0,

Ne∑

e=1

∫

Ωe

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0,

Ne∑

e=1

∫

Ωe

(
ηn+1 − ηn

∆t
η̂ − un

∂η̂

∂x

)

dx

+

Nv∑

i=1

{〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] 〈η̂(Xi)〉}

+

Nv∑

i=1

[a(η̂(Xi))] [u
n(Xi)] = 0,

(2.14)

whereNv is the number of physical nodes and〈f(Xi)〉 denotes the average off at
Xi, that is

〈f(Xi)〉 =
1

2
(f(X−

i ) + f(X+
i )).

23



By combining all the terms involved in the summations, the foregoing formulation
reduces to

Ne∑

e=1

∫

Ωe

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û− α2ηn+1 ∂û

∂x

)

dx

+ α2
Nv∑

i=1

〈
ηn+1(Xi)

〉

λ
[û(Xi)] = 0,

Ne∑

e=1

∫

Ωe

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0,

Ne∑

e=1

∫

Ωe

(
ηn+1 − ηn

∆t
η̂ − un

∂η̂

∂x

)

dx+

Nv∑

i=1

〈un(Xi)〉λ [η̂(Xi)] = 0,

(2.15)

where〈f(Xi)〉λ is the weighted average off atXi, defined as

〈f(Xi)〉λ = (
1

2
+ λ)f(X−

i ) + (
1

2
− λ)f(X+

i ).

In appendix A.2, we show how formulations (2.14) and (2.15) are derived.

The discontinuous finite element formulation (2.13) has been used to solve our
benchmark problem with 100 and 400 elements. Results are shown in Figure (2.7)
where approximate and exact solutions are compared att = 2. A centered scheme
is employed here (λ = 0). Severe oscillations pollute the solutions. The classi-
cal forward-backward time scheme is employed for better stability properties when
boundary termsS1 andS2 are involved. In Figure (2.8), the top panel reproduces the
400-element solution withλ = 0 while the bottom panel shows the solution obtained
with λ = 0.001. Hence, Figure (2.8) permits to compare a centered and a slightly
off-centered scheme. The aim of these numerical experiments is twofold. Firstly, we
wish to verify whether weakly enforcing continuity onuh andηh ensures stability of
the formulation (2.13). Secondly, we would like to lower thelevel of arbitrariness as-
sociated with the weak enforcement of continuity by appraising the sensitivity of the
parameterλ. Looking at Figure (2.8), we see that both choices forλ – the centered
and the slightly off-centered schemes – do no prevent spurious oscillations. Moreover,
the off-centered scheme makes it even worse, suggesting theimportance of symme-
try in the problem. Other experiments have been performed totest higher values (as
well as negative values) ofλ, only to further conclude thatλ = 0.0 gives rise to the
least severe oscillations. In Figure (2.9), we show how the solution behaves when the
hyperbolic tangent (2.12) is used as initial condition (withR = 100). The same exper-
iment as with the continuous Galerkin method has been conducted here. Figure (2.9)
is to be compared with Figure (2.5) showing the solution obtained with the continuous
Galerkin method. The latter clearly outperforms the DGM. The presence of spurious
oscillations for all values ofλ suggests that the wrong field is upwinded. The fol-
lowing question thus arises: What variables should we weaklyenforce the continuity
of ?
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Figure 2.7: Discontinuous Galerkin finite-element approximation with 100 elements (top)and
400 elements (bottom) at dimensionless timet = 2 with a steplike initial condition. The time
step is 0.001. Continuity is weakly enforced usingλ = 0.0.
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Figure 2.8: Discontinuous Galerkin finite-element approximation with 400 elements at dimen-
sionless timet = 2 with a steplike initial condition. The time step is 0.001. Continuity is
weakly enforced usingλ = 0.0 (top) andλ = 0.001 (bottom).
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Figure 2.9: The discontinuous Galerkin finite-element approximations at dimensionless time
t = 20 with 100 elements (top) and 400 elements (bottom) when a hyperbolic tangent profile is
used for the initial elevation field (R = 100). The time step is 0.001 and continuity is weakly
enforced withλ = 0. The solid line is the exact solution.

2.2.4 Discontinuous Riemann - Galerkin

To answer the previous question, a closer look at the way information is propagating
is advisable. Since information is carried along characteristic curves by characteristic
variables, a better approach would be to enforce continuityof those very variables
that transport information. In addition, we know the direction of propagation of those
variables so that weighting can adequately be adapted. Thisapproach is commonly
referred to as a Riemann solver (Roe, 1981;Aizinger and Dawson, 2002;Schwanen-
berg and Harms, 2004;Remacle et al., 2005). A variational formulation similar to
(2.13) may be derived. The difference will lie in the way continuity is enforced. The
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problem consists in findinguh in U such that

Ne∑

e=1

∫

Ωe

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û+ α2 ∂η

n+1

∂x
û

)

dx

+

Ne∑

e=1

∣
∣a(û)

[
αun + α2ηn+1

]∣
∣
∂Ωe

+

Ne∑

e=1

∣
∣b(û)

[
αun − α2ηn+1

]∣
∣
∂Ωe

= 0 ∀û ∈ Û ,

Ne∑

e=1

∫

Ωe

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0 ∀v̂ ∈ V̂,

Ne∑

e=1

∫

Ωe

(
ηn+1 − ηn

∆t
η̂ +

∂un

∂x
η̂

)

dx

+

Ne∑

e=1

|a(η̂) [αηn + un]|∂Ωe
+

Ne∑

e=1

|b(η̂) [αηn − un]|∂Ωe
= 0 ∀η̂ ∈ Ê .

(2.16)
where functionsa(û) andb(û) are defined as follows:

a(û)
.
=

1

2

(
1

2
− λ sign(n̂)

)

û,

b(û)
.
=

1

2

(
1

2
+ λ sign(n̂)

)

û,

where we usually takeλ = 1/2. Again, an alternative formulation can be obtained
by integrating the spatial derivatives by parts and combining the sums, as we have
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achieved for the previous DG formulation. It can be shown that (2.16) is equivalent to

Ne∑

e=1

∫

Ωe

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û− α2ηn+1 ∂û

∂x

)

dx

+
1

2
α

Nv∑

i=1

[û(Xi)]
{(
αηn+1(X−

i ) + un(X−
i )
)

+
(
αηn+1(X+

i ) − un(X+
i )
)}

+ (1 − 2λ)

Nv∑

i=1

[
α2ηn+1(Xi)

]
〈û(Xi)〉 = 0,

Ne∑

e=1

∫

Ωe

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0,

Ne∑

e=1

∫

Ωe

(
ηn+1 − ηn

∆t
η̂ − un

∂η̂

∂x

)

dx

+
1

2

Nv∑

i=1

[η̂(Xi)]
{(
αηn(X−

i ) + un(X−
i )
)

−
(
αηn(X+

i ) − un(X+
i )
)}

+ (1 − 2λ)

Nv∑

i=1

[un(Xi)] 〈η̂(Xi)〉 = 0.

(2.17)

Settingλ = 1/2 further reduces the foregoing formulation and we obtain

Ne∑

e=1

∫

Ωe

(
un+1 − un

∆t
û− 1

2
(vn+1 + vn)û− α2ηn+1 ∂û

∂x

)

dx

+
1

2
α

Nv∑

i=1

[û(Xi)]
{(
αηn+1(X−

i ) + un(X−
i )
)

+
(
αηn+1(X+

i ) − un(X+
i )
)}

= 0,

Ne∑

e=1

∫

Ωe

(
vn+1 − vn

∆t
v̂ +

1

2
(un+1 + un)v̂

)

dx = 0,

Ne∑

e=1

∫

Ωe

(
ηn+1 − ηn

∆t
η̂ − un

∂η̂

∂x

)

dx

+
1

2

Nv∑

i=1

[η̂(Xi)]
{(
αηn(X−

i ) + un(X−
i )
)

−
(
αηn(X+

i ) − un(X+
i )
)}

= 0.

(2.18)

Formulation (2.18) is elegant. In the first equation, the summation involves an aver-
age of characteristic variables at each physical nodeXi. In particular, the average is
computed by taking the characteristic variablesαη + u andαη − u at nodesX−

i and
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X+
i , which merely reflects the way information propagates. A similar comment can

be made on the third equation where jumps of characteristic variables make up the
summation.

Now, to understand the seemingly complicated formulation (2.16), let us evaluate
the expressions that weakly enforce continuity of the characteristic variables. We
focus on the first equation and assumeû = φ−i , that is the shape function associated
with computational nodei−. We further assume that the shape function is evaluated
at nodeX−

i .The outward-pointing normal is+1 so that the functionsa andb take on
the following expressions

a(φ−i ) =
1

2
(1/2 − λ) ,

b(φ−i ) =
1

2
(1/2 + λ) ,

and the expression associated with nodei− is

1

2
(1/2 − λ) [αun + α2ηn+1] +

1

2
(1/2 + λ) [αun − α2ηn+1].

If we takeλ = 1/2, the latter expression simply becomes1
2 [αun − α2ηn+1]. Con-

cretely, this is what has to be added to rowi− of the linear system. The same reasoning
applied to nodei+ (i.e., shape functionφ+

i ) gives rise to1
2 [αun + α2ηn+1]. One can

see that in both expressions, a linear combination of one of the characteristic variables
is involved. The jump ofα(u − αη) is associated with nodei− while the jump of
α(u+αη) is associated with nodei+. This pattern consistently translates the way in-
formation is conveyed. So as to compare with the previous discontinuous method, the
same experiment has been performed (a 400-element mesh and asolution analyzed at
t = 2) with the Riemann-Galerkin formulation (2.16). Results are shown in Figure
(2.10), where the superiority of the Riemann-Galerkin formulation is manifest when
compared with Figure (2.7). Let us emphasize that the quality of the approximate so-
lution suffers from numerical dissipation when long time integration is performed, a
trend already observed byKuo and Polvani(1996) with their shock-capturing numeri-
cal methods. This effect is illustrated in Figure (2.11) where the approximate solution
is unable to capture higher-frequency features that make upthe exact solution. Higher-
order time discretization schemes should be able to tackle this problem, though, and
it is indispensable to investigate the effect of such techniques on the accuracy.

2.2.5 Comparison between methods

Before comparing methods, it is of interest to assess the convergence rate of each of
them by computing theL2-norm of the error on gradually-refined meshes. The time
step used in the following experiments is very small in orderfor the time discretiza-
tion error to be negligible in contrast to the space discretization error. A time step
of ∆t = 10−5 is used and the error at timet = 1 is computed. Meshes containing
25, 50, 100, 200 and 400 elements are used. The results of the convergence analysis
are reported in Figure (2.12). The hyperbolic-tangent initial condition may be used to
compare the three methods for different values of the steepness parameter. Results are
shown on the top graph of Figure (2.13) where we can observe that for smooth initial
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Figure 2.10: Discontinuous Riemann-Galerkin finite-element approximation with 100 ele-
ments (top) and 400 elements (bottom) at dimensionless timet = 2 with a steplike initial
condition. The time step is 0.001.
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Figure 2.11: Discontinuous Riemann-Galerkin finite-element approximation with 300 ele-
ments at dimensionless timet = 200 with a steplike initial condition. The time step is 0.002.
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conditions, the Galerkin method performs the best while forsharp initial conditions,
the discontinuous Riemann-Galerkin method yields the bestapproximation. It should
be pointed out, though, that the errors remain close to one another and that none of the
methods could be immediately ruled out based upon this quantitative analysis. More-
over, the gap between the errors obtained for sharp initial conditions does not increase
when using higher-resolution meshes. The bottom graph of Figure (2.13) shows the
L2-norm of the error computed on the restricted domainΩr = [−0.25, 0.25] that does
not contain any of the discontinuities, as can be seen in Figure (2.4). In so doing,
the error for the discontinuous Riemann-Galerkin method remains very close to10−4

while it increases up to10−2 for the two other methods. This behavior is caused by
the spreading of spurious oscillations toward the inner part of the domain, where the
solution should remain smooth. These oscillations do not exist for the discontinuous
Riemann-Galerkin method, thereby leading to an error that is two orders of magnitude
smaller for sharp initial conditions. A last comment may be made regarding the use
of theL2-norm. The latter may be misleading in the sense that, by examining the top
graph of Figure (2.13), we are tempted to conclude that all methods are equivalent for
sharp initial conditions. This is untrue and the problem is that the error is closely con-
centrated around the discontinuities for the discontinuous Riemann-Galerkin method
(and reaches about10−2) while it remains as low as10−4 away from the disconti-
nuities. By contrast, as we can observe on the bottom graph ofFigure (2.13), the
error reaches10−2 away from the discontinuities for the Galerkin and discontinuous
Galerkin methods.

In Figure (2.14), the Galerkin and the discontinuous Riemann-Galerkin FEM are
compared when solving the same problem with different mesh resolutions, starting
at 0.1 and increasing it to 0.02 and 0.005. For the discontinuous Riemann-Galerkin
method, using a coarse mesh does not produce spurious oscillations, even though
high-frequency features are filtered out due to numerical dissipation. The same exper-
iment has been carried out with the continuous Galerkin FEM,only to conclude that
oscillations that characterize the method amplify when theresolution decreases. They
do, however, remain finite. Note that no stabilization whatsoever has been used for
the continuous Galerkin method so that care must be taken when comparing the latter
with the Riemann-Galerkin method where characteristic variables are upwinded. As a
final note, it must be stressed that such high resolutions as those previously employed
are never used in large-scale ocean models. This is why the last experiment, carried
out on low-resolution meshes, was presented. Namely to highlight the usability of the
discontinuous Riemann-Galerkin method on low-resolutionmeshes. Nevertheless, it
must be stressed that the use of discontinuous methods implies increasing the number
of unknowns compared with continuous methods on meshes having the same resolu-
tion.

Finally, another way of comparing the three finite element methods is to determine
the CFL condition for each of them. A von Neumann stability analysis allows to find
– after quite tedious and lengthy computations – the maximumCourant numberC =
α∆t/∆x that guarantees numerical stability. For the continuous Galerkin method, we
haveC ≤ 2

√
3/3 ≃ 1.15. For the discontinuous Galerkin method – that involves

the determinant of a 6-by-6 matrix –, we haveC ≤ 0.5. Finally, the discontinuous

31



Riemann-Galerkin method yields the following condition:C ≤ 0.2564. The latter
was determined numerically while the first two were determined analytically.
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Figure 2.12: L2-norm (||e||Ω) of the error in the elevationη on gradually-refined meshes
for the three FEM with the hyperbolic-tangent initial condition (R = 10) at t = 1. Notice
the second-order rate of convergence obtained with the Galerkin and discontinuous Riemann-
Galerkin methods while the discontinuous Galerkin method yields a first-order rate. The dotted
lines represent least-square approximations to experimental errors.The error is plotted versus
the number of elements.

2.3 Conclusions

A benchmark for the propagation of Poincaré waves within a one-dimensional fi-
nite domain has been proposed and a comparison between four numerical methods
to resolve it has been accomplished. The use of a steplike – and thus discontinuous
– initial elevation field makes it challenging for numericaltechniques to capture the
traveling discontinuity without spawning spurious oscillations. Because the equations
describing the physics of the problem are hyperbolic, the method of characteristics
is a suitable way of solving for the wave propagation. If a sufficiently accurate time
scheme is employed, this technique is able to solve the benchmark very satisfyingly.

More commonly used numerical methods were then presented. In the considera-
tions that follow, we bear in mind that the issue of time discretization must be thor-
oughly investigated as well. As we already said it, this was not the subject of this
chapter. The classical continuous Galerkin FEM has difficulties capturing steep gra-
dients, let alone discontinuities. This was revealed by theexperiment carried out with
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Figure 2.13: The top graph shows theL2-norm of the error in the elevationη on a mesh con-
taining 100 uniform elements for increasing steepness parameterR with the hyperbolic-tangent
initial condition att = 2. The bottom graph differs from the top graph in the calculation of the
error: the error is computed on the restricted domainΩr = [−0.25, 0.25] that does not con-
tain any of the discontinuities. The same symbols are used for both graphs. The bottom graph
shows that for the Galerkin and discontinuous Galerkin methods, oscillations spread out to reach
the inner region while the latter remains devoid of spurious oscillations for thediscontinuous
Riemann-Galerkin method.
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Exact solution

Continuous Galerkin for h = 0.1

Continuous Galerkin for h = 0.02

Continuous Galerkin for h = 0.005

Disc. Riemann-Galerkin for h = 0.1

Disc. Riemann-Galerkin for h = 0.02

Disc. Riemann-Galerkin for h = 0.005

Figure 2.14: Comparison of the Galerkin and the discontinuous Riemann-Galerkin FEM at
time t = 20 for a time step of0.001. Left and right panels are the solutions for the Galerkin
and the discontinuous Riemann-Galerkin method, respectively. The first, second and third rows
show results for meshes containing 10(h = 0.1), 50 (h = 0.02) and 200(h = 0.005)
elements. The bottom graph is the exact solution.
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the hyperbolic tangent initial elevation field. Increasingthe number of elements is not
really a solution by itself, for an infinite number is necessary to resolve the discon-
tinuity. In that respect, the discontinuous Galerkin (DG) method is appealing for its
ability to exactly represent discontinuities. However, this may constitute an asset as
much as a drawback in the sense that one has to carefully choose the variable of which
continuity is weakly enforced. That statement is illustrated by comparing the classi-
cal DG method and the so-called discontinuous Riemann-Galerkin (DRG) method. In
the former, we enforce continuity of the variables whose spatial derivatives appear in
the formulation. Usual DG schemes where upwind weighting isnaively applied to
the primitive variables (velocity and elevation) appear topoorly perform for all val-
ues ofλ. It is then mandatory to impose the continuity of suitable combinations of
the primitive variables. It is well known that enforcing theweak continuity of the
so-called Riemann variables would perform quite better. Such an approach is known
as the DG method with a Riemann solver and its numerical performances have been
well documented in the literature (Roe, 1981;Schwanenberg et al., 2000;Cockburn
et al., 2001;Aizinger and Dawson, 2002;Flaherty et al., 2002;Schwanenberg and
Harms, 2004;Kubatko et al., 2006a;Remacle et al., 2006). In the one-dimensional
framework, this established method is presented as the DG formulation expressed in
terms of Riemann variables. The main contribution of this benchmark is to show that
the one-dimensional counterpart of the DGM with a Riemann solver is the optimal
technique. It is hardly feasible to extend the method of characteristics to 2D and
3D cases and the definition of Riemann variables in higher dimensions is not obvi-
ous. Hence, the classical approach consists in consideringa simplified version of the
one-dimensional Riemann problem along the normal direction of each segment, the
functioning of which has been detailed in this chapter.

The continuous Galerkin and the discontinuous Galerkin methods can be both eas-
ily extended in higher dimensions without too much effort and the extensions of our
results can be immediately derived. This benchmark appearsto be very illustrative
of the numerical behavior of wave propagation problems thatmodel the barotropic
systems of ocean models.
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Chapter 3

Finite element methods for
geophysical fluid flow
instabilities

Summary
The mesoscale variability in the ocean originates from baroclinic
and, to a lesser extent, barotropic instabilities. The equations de-
scribing those instabilities are inviscid, rendering their numerical
modeling particularly challenging. In this chapter, some finite ele-
ment formulations to model these instabilities are presented.

The numerical modeling of physical instabilities is prone to many difficulties and
constitutes an interesting candidate for evaluating the performance of a method. Both
space and time discretizations must be performed with greatcare to avoid any artificial
amplification or damping of physical instabilities. In thiskind of problems where
physical dissipation is absent from the equations, this becomes challenging. Among
physical instabilities observed in ocean flows, barotropic, baroclinic and a mixture of
both are the most commonly encountered in the literature (Pedlosky, 1964;Kuo, 1973;
Hart, 1974;Killworth, 1980).

The study of barotropic shear flow instabilities dates back to Kuo (1949). Kuo took
one step further from the classical Rayleigh stability problem by incorporating the
effect of latitude variation in the Coriolis parameter, theβ-effect, whereby necessary
conditions for instabilities are altered as compared with those derived for flows on
an f -plane. These necessary conditions can be found inKuo (1973) andCushman-
Roisin(1994) and are recalled in Appendix B. When a flow is unstable, the question
that comes to mind is how fast perturbations grow. As growth rates are generally not
derivable for arbitrary zonal currents – only bounds can be extracted (Pedlosky, 1979)
–, many authors have investigated specific basic flows in the past with the aim of eval-
uating growth rates. The zonal currents generally considered serve as an idealization
of observed oceanic and atmospheric patterns. In that respect, the hyperbolic-tangent
profile has been used quite often.Michalke(1964) studied this profile on anf -plane
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(no β-effect) system whileDickinson and Clare(1973) andKuo (1973) computed
perturbations growth rate and phase speed dependent on wavenumber and a dimen-
sionlessβ parameter. Another typical basic state is a jet-type velocity profile, usually
represented by a cosine squared or hyperbolic-secant squared (Kuo, 1973, 1978;Kill-
worth, 1980). Further idealization of the hyperbolic-tangent profile as a piecewise
linear profile is of interest for two reasons. First, as shownin Cushman-Roisin(1994),
an analytical solution exists for the growth rate on anf -plane. Second, it is more
amenable to numerical resolution, insofar as the profile is exactly represented – i.e.,
there is no truncation error – by low-order polynomial interpolation.

In this chapter, both the hyperbolic-tangent profile and itslinear simplification are
employed to investigate the behavior of a free-surface and of two rigid-lid finite-
element formulations. The free-surface formulation solves the primitive shallow-
water equations. The rigid-lid formulations are the standard vorticity-stream func-
tion and velocity-pressure formulations. Even though the ocean modeling community
seems to depart from rigid-lid ocean models (seeKillworth et al., 1991;Griffies et al.,
2000, for discussions about rigid-lid and free-surface ocean models), this formulation
is used here to compare our results with those theoreticallypredicted using the same
set of equations. By doing so, all differences with theoretical results come from the
numerical treatment of the equations and not the physics. The main goal of this chapter
is to appraise the finite element method in the way it represents barotropic and baro-
clinic instabilities. To that end, it is first tested that allthree finite element formulations
are capable of maintaining the steady-state geostrophic equilibrium without artificial
generation or dissipation of energy, nor distortion of the flow. We then compare all
three methods within the scope of small pertubations so thatlinear stability analysis
remains valid and, aside from intercomparison, a referenceanalytical solution exists.
In particular, the influence of the free-surface is to be numerically assessed, since all
theoretical results have been derived for the rigid-lid vorticity - stream function for-
mulation. We finally extend the investigation to timescalesthat allow for nonlinear
advective terms to play a more significant role, permitting the development of ed-
dies. In that respect, the way advection is numerically treated is pivotal because the
quest for numerical stability more often than not precludesthe unfolding of physical
instabilities.

3.1 Problem formulation

Since we will limit ourselves to motions whose scale is on theorder of a few hun-
dreds kilometers, the problem can be formulated in a cartesian coordinate system
rather than in a spherical system. That is, the so-called annulus approximation will
be made (Pedlosky, 1964): the two-dimensional domain of interest is deemed zonally
infinite while the meridional extension remains finite. Theβ-effect is retained and
flow occurs over a flat bottom. The unboundedness of the domainin the zonal direc-
tion is tackled by imposing periodicity in that direction. This design choice is mostly
dictated by numerical feasability but hardly constrains our framework: the basic flows
only vary non-periodically in the meridional direction andwavy disturbances are, by
nature, periodic. To further set out the framework, we definethe coordinates(x, y)
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to be positive eastward and northward, respectively, while(u, v) are the correspond-
ing velocity components. The system is assumed to be devoid of viscosity and all
frictional effects at the bottom and the surface are neglected. Lateral boundaries are
impermeable. The inviscid nonlinear shallow-water equations will be used to model
the system:

∂u

∂t
+ u · ∇u− fv = −g ∂η

∂x
, (3.1)

∂v

∂t
+ u · ∇v + fu = −g ∂η

∂y
, (3.2)

∂η

∂t
+ ∇ · (Hu) = 0, (3.3)

whereη is the free-surface elevation with respect to an undisturbed reference level,f is
the Coriolis parameter and is linearized about a reference latitude so thatf = f0+β0y,
g is the acceleration due to gravity andH(x, y, t) = h+η(x, y, t) is the total fluid layer
thickness withh being the constant undisturbed fluid thickness. In most barotropic
shallow-water models, it is generally assumed thatη ≪ h so that the divergence of
the transportHu in (3.3) can be linearized to become∇ · (Hu) ≃ h∇ · u, assuming
also that the depthh is constant, as indicated above. LettingL be a characteristic
length scale, the nondimensional form of (3.1)-(3.3) is

∂u

∂t
+ u · ∇u− (1 + βy)v = −∂η

∂x
, (3.4)

∂v

∂t
+ u · ∇v + (1 + βy)u = −∂η

∂y
, (3.5)

∂η

∂t
+ α2

∇ · u = 0, (3.6)

where the velocity scale isU = Lf0, the time scale isT = L/U and the elevation
scaleE = L2f2

0 /g is defined so that the Coriolis force and the elevation gradient are
both on the same order of magnitude. Finally,α is the ratio of the external deformation
radius to the length scale

α =

√
hg

Lf0
.

The dimensionless beta parameter isβ = β0L
2/U . Note that all variables are now

dimensionless. Under typical oceanic shear flow conditions, we have
√
hg ≃ 102

m s−1, L ≃ 104 − 105 m andf0 ≃ 10−5 − 10−4 s−1 so thatα ranges from10 to
1000 andβ ranges from10−3 to 10−1. We see that under such conditions, a valid
approximation to the continuity equation is that of a divergence-free velocity, also
known as the rigid-lid approximation. Within that scope, (3.4)-(3.6) become

∂u

∂t
+ u · ∇u− (1 + βy)v = −∂p

∂x
, (3.7)

∂v

∂t
+ u · ∇v + (1 + βy)u = −∂p

∂y
, (3.8)

∇ · u = 0, (3.9)

wherep is the pressure to be applied on top of the fluid layer to keep the surface flat
and it has been nondimensionalized with a pressure scaleP = ρ0L

2f2
0 , whereρ0
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is the fluid density. The continuity equation now acts as a constraint, effecting the
velocity to be divergence-free. In that respect, the surface pressure is a diagnostic
variable.

From (3.7)-(3.9), the vorticity-stream function formulation is derived by first defin-
ing the stream functionψ(x, y) so thatu = −∂ψ

∂y and v = ∂ψ
∂x while the relative

vorticity ω = ∂v
∂x − ∂u

∂y = ∇2ψ. In so doing, the continuity equation is identically sat-
isfied and both velocity components are derivable from a unique scalar variable – the
stream function –, which permits to reduce the number of direct unknowns from three
to one. The vorticity equation is obtained by computing∂∂x (3.8) - ∂

∂y (3.7), which
gives rise to

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= −βv.

Now, the two-equation system, whose vorticity equation is written in terms of the
stream function, is

∂ω

∂t
− ∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
= −β ∂ψ

∂x
, (3.10)

∇2ψ = ω. (3.11)

Notice that this system could be collapsed onto a single equation for the stream func-
tion, without resorting to the substitution variableω. However, advective terms would
then take on third-order spatial derivatives, which would require undesirable, high-
order interpolants. Furthermore, using the relative vorticity permits to treat the non-
linear terms more easily as ifω were simply be advected by the velocity field, derived
from the stream function. We must bear in mind, though, that (3.10) isnota traditional
advection equation, for the stream function depends on the vorticity. Hence, although
it seems like we do away with the nonlinearity, it is concealed and entrenched within
the problem. The stream function needs be specified at the southern and northern
boundaries, where it has to be set to a constant that depends on the problem under
consideration. It is also worth unveiling what looks like a paradox in (3.10). As far
as the Coriolis term is concerned, only theβ-effect remains. If only thef -plane ap-
proximation were made, the right-hand side of (3.10) would vanish and it would not
be possible to say whether or not flow occurs within a rotatingframework. In fact,
any solution to (3.10) – withβ = 0 – in a rotating framework or in an inertial frame-
work would be the same because both would obey the same equation. The vorticity
equation (3.10) is identical to the one derived within the scope of the geostrophic ap-
proximation inPedlosky(1979), where the author concludes that the sole effect of the
earth’s sphericity on the geostrophic solution is due entirely to the variation off with
latitude but not onf itself.

Considering the rigid-lid approximation (3.7)-(3.9) again, another formulation can
be had by taking the divergence of the momentum equations to derive a Poisson equa-
tion for the pressure. We first write the momentum equations (3.7)-(3.8) in vectorial
form

∂u

∂t
+ (u · ∇)u + Fc = −∇p, (3.12)
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whereFc = (1 + βy)êz ∧ u is the Coriolis force, witĥez being the upward-pointing
unit vector. To derive the continuous pressure Poisson equation (PPE), we take the
divergence of (3.12), giving rise to

−∇2p = ∇ · [(u · ∇)u] + ∇ · Fc. (3.13)

In deriving (3.13), the divergence and time differentiation have been interchanged so
that use could be made of the continuity equation. The issue of Neumann pressure
boundary conditions has been settled byGresho and Sani(1987): take the normal
projection of (3.12) ontoΓ, namely

∂p

∂n
= −n̂ · g onΓ, (3.14)

where the conditionu · n̂ = 0 onΓ was called on and whereg regroups the advection
and Coriolis terms of (3.12). Note thatn̂ is the outward-pointing normal to the bound-
ary. The pressure computed from (3.13) is known up to an arbitrary additive constant.
To summarize, the velocity-pressure formulation is given by

∂u

∂t
+ u · ∇u− (1 + βy)v = −∂p

∂x
, (3.15)

∂v

∂t
+ u · ∇v + (1 + βy)u = −∂p

∂y
, (3.16)

−∇2p = ∇ · [(u · ∇)u] + ∇ · Fc. (3.17)

Any given zonal flow(ū(y), 0) – henceforth called basic state – is solution to the
steady-statenonlinear system of equations (3.4)-(3.6), provided that the elevation be in
geostrophic equilibrium. For the vorticity-stream function formulation (3.10)-(3.11),
a zonal flow is obtained by requiring that the stream functiononly depend ony. For
the velocity-pressure formulation (3.15)-(3.17), a zonalflow is solution to the steady-
state equations if the pressure satisfies the geostrophic equilibrium, as was the role
of the elevation in the free-surface formulation. Depending on its structure, a zonal
flow may be unstable to small perturbations. Necessary conditions for instability are
recalled in Appendix B.

The problem we wish to solve may be stated as follows:given an unstable ba-
sic state and a disturbance of given wavenumberk, track the evolution of the dis-
turbance and evaluate its growth ratekci. Two benchmark shear flows, whose un-
stable modes have been studied in the past (Dickinson and Clare, 1973;Kuo, 1978;
Cushman-Roisin, 1994), will be presented and will serve as comparative tools between
the three finite element formulations that are outlined below.

3.2 Three finite element models

We now proceed with the presentation of three different manners of wielding the
problem laid out in the foregoing section. The first finite element formulation deals
with the free-surface elevation as a prognostic variable while the last two assume that
a rigid lid is applied onto the top of the fluid layer. The threeformulations follow the
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same order as that used to introduce the equations in Section2. That is, we present
the free-surface, vorticity-stream function and velocity-pressure formulations, in that
order. Even though for large-scale barotropic systems, thedifference between free-
surface and rigid-lid flows is marginal, as we will see, the differences bewteen the
corresponding finite element formulations are quite striking and prone to comparative
analysis. Ironically, the formulations that are analytically more obedient – the rigid-
lid formulations – bring about numerical challenges. Our objective is definitely not
to offer an overview of existing finite element formulationsfor the incompressible
Navier-Stokes equations (see e.g.,Gresho and Sani, 1998), but we thought it would
be interesting to linger on two common formulations, not theleast because the Coriolis
term does not appear in the classical Navier-Stokes equations considered by Gresho
and Sani and because the computation of the pressure sometimes remains subject to
difficulties.

P1 PNC1

Figure 3.1: Nodes location for theP1 andP NC
1 discretizations.

Because we essentially have to solve an initial-value problem, and because distur-
bances might not grow as fast as one expect them to, all formulations presented below
must be able to preserve a geostrophic equilibrium (given asinitial state) with neither
dissipation nor distortion, at least until roundoff errorskick in and destabilize the flow,
if the latter is physically unstable. Any violation of this statement would render the as-
sociated formulation questionable, for any numerically-generated deviation – that is,
not generated by forced disturbances – from this initial state would most likely falsify
the analysis. Prior to presenting the finite element formulations, it is worth saying a
few words about the elements that are used to approximate thevarious variables – the
velocity, the pressure, the elevation, the vorticity and the stream function, depending
upon which formulation is under scrutiny. Linear conforming and non-conforming el-
ements will be used throughout the remainder of this section. As illustrated in Figure
(3.1), the linear conforming element (the so-calledP1 element) has its nodal values
located at each vertex while the linear non-conforming element (the so-calledPNC1

element) has its nodal values located at the middle of each edge (see e.g.,Hua and
Thomasset, 1984;Hanert et al., 2004). Their linear basis functions will be denoted by
φpi andφui , respectively, as a reminder that the pressure and elevation are conforming
while the velocity is non-conforming. Conforming interpolation requires interpolated
variables to be continuous across inter-element boundaries while non-conforming in-
terpolation does not so; continuity is only ensured at the middle of each inter-element
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boundary. Finally, we abide by the following conventions: for a given mesh, it is as-
sumed that there areM vertices andN edges. An-subscript indicates that the variable
is time-discretized and evaluated at timetn. The domain of interest is denoted byΩ
and its lateral boundary is notedΓ.

3.2.1 The free-surface formulation

Space-discretization of (3.4)-(3.6) is conducted by usingthePNC1 element for each
velocity component and theP1 element for the elevation (see e.g.,Le Roux et al., 1998;
Hanert et al., 2003, 2005, for studies on finite elements for shallow-water flows).
Opting for the Galerkin finite element method, where test functions in the variational
formulation are taken to be basis functions, the system (3.4)-(3.6) mutates to the fol-
lowing system of2N +M ordinary differential equations:

Mu dR
dt

+ AR + CR = −GH, (3.18)

Mp dH
dt

− α2DR = 0. (3.19)

In the above equations,Mu is the non-conforming mass matrix,A is the advection
matrix, C is the Coriolis matrix,G is the gradient matrix andMp is the conforming
mass matrix. The divergence matrixD is obtained after integration by parts (the con-
tour integral vanishes becauseuh ·n̂ = 0 onΓ, whereuh is the discrete velocity field).
Those matrices are written out below.

Mu =

[
< φui φ

u
j > 0

0 < φui φ
u
j >

]

∈ R
2N×2N ,

A =

[
< φui uh · ∇φuj > 0

0 < φui uh · ∇φuj >

]

∈ R
2N×2N ,

C =

[
0 − < (1 + βy)φui φ

u
j >

< (1 + βy)φui φ
u
j > 0

]

∈ R
2N×2N ,

G =

[

< φui
∂φp

j

∂x >

< φui
∂φp

j

∂y >

]

∈ R
2N×M ,

D =
[

<
∂φp

i

∂x φ
u
j ><

∂φp
i

∂y φ
u
j >

]

∈ R
M×2N ,

Mp =
[
< φpi φ

p
j >
]

∈ R
M×M ,

where< > indicates integration overΩ. It is conspicuous that the gradient matrix
is the transpose of the divergence matrix, because integration by parts was carried
out in the continuity equation. The classical treatment of the Navier-Stokes equa-
tions, though, usually implies integrating the pressure gradient by parts but not the
divergence of the velocity, which leads to the same result whatsoever. Our choice
is justified by the fact that we use non-conforming velocity elements. The vector R
contains the nodal values of both velocity components, thatis

R =

[
U
V

]

,
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where U and V denote the nodal values of each velocity component. The vector H
contains the elevation nodal values. Note that the advection matrixA depends upon
the velocity, All three variables of the free-surface formulation – both components of
the velocity and the elevation – are solved for in a coupled fashion. This allows for
varying the degree of implicitness of the elevation gradient and the divergence of the
velocity in the continuity equation. Time-discretizationof (3.18) and (3.19) leads to

Mu Rn+1 − Rn

∆t
+ ARn +

1

2
C
(
Rn+1 + Rn

)
= −G

(
1

2
Hn+1 +

1

2
Hn

)

,

Mp Hn+1 − Hn

∆t
− α2D

(
1

2
Rn+1 +

1

2
Rn
)

= 0.

Rearranging the above expressions so that all nodal values at time steptn+1 appear in
the left-hand side while all nodal values at time steptn appear in the right-hand side,
we arrive at the following coupled linear system in the2N +M nodal values:






(
Mu

∆t
+

1

2
C

)

Rn+1 +
1

2
GHn+1 =

(
Mu

∆t
− A − 1

2
C

)

Rn − 1

2
GHn,

−1

2
α2DRn+1 +

Mp

∆t
Hn+1 =

1

2
α2DRn +

Mp

∆t
Hn.

(3.20)
The Coriolis term is always treated semi-implicitely so as to not artificially generate
nor dissipate energy, complying with the fact that the Coriolis force does not physi-
cally do work. The free-surface formulation allows for the propagation of fast surface
waves (e.g., Poincaré waves) whose phase speed is on the order of

√
gh and can there-

fore reach up to hundreds of m s−1. If an explicit, foward-backward time scheme is
used (see e.g.,Beckers and Deleersnijder, 1993), the CFL condition imposes too strin-
gent of a time step, as compared with climatic timescales. A semi-implicit treatment
of the terms governing the propagation of those surface waves relaxes the constraint
on the time step – the scheme becomes unconditionally stable– and serves the purpose
of modeling large-scale features without resolving fast-propagating smaller-scale fea-
tures. There is nevertheless a cost to unconditional stability: the system (3.20) is fully
coupled and all variables must be solved for together. Note that advection is explicit.
An alternative consists in treating the advected field implicitely while the advecting
field remains explicit, which imposes the reconstruction ofthe full system left-hand
side at each time step. Another alternative is to treat both the advecting and advected
fields implicitely, a method that implies solving a nonlinear system at each time step.
Both these alternatives are beyond the scope of the present chapter.

3.2.2 The vorticity - stream function formulation

Both the vorticity and the stream function are discretized using theP1 element so
that (3.10)-(3.11) is converted to the following system of2M ordinary differential
equations

Mp dW
dt

+ NW = Bω, (3.21)

LS = Bψ, (3.22)
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where W and S are vectors of vorticity and stream function nodal values, respectively.
The matricesN andL and the vectors Bω and Bψ take on the following form:

N =

[

< φpi

(

−∂ψh
∂y

∂φpj
∂x

+
∂ψh
∂x

∂φpj
∂y

)

>

]

∈ R
M×M ,

L =
[
< ∇φpi · ∇φpj >

]
∈ R

M×M ,

Bω =

[

−β < φpi
∂ψh
∂x

>

]

∈ R
M ,

Bψ = [− < φpiωh >] ∈ R
M ,

whereωh andψh are the discrete vorticity and stream function fields. Note that the
contour integral emanating from integration by parts of theLaplacian vanishes because
only Dirichlet boundary conditions are enforced onψh. Time-discretization of (3.21)
yields

Mp Wn+1 − Wn

∆t
+

1

2
NWn+1 +

1

2
NWn = Bnω. (3.23)

Rearranging (3.23), the full system is






LSn = Bnψ,
[
Mp

∆t
+

1

2
N

]

Wn+1 =

[
Mp

∆t
− 1

2
N

]

Wn + Bnω,
(3.24)

and is set off by an initial condition on the vorticity. Notice that the advection matrix
N is always evaluated at time steptn because decision was made to first solve for the
stream function and then, for the new vorticity in terms of the stream function. In
other words, the system is sequential in time. This procedure allows for a convenient
way of handling the nonlinear advection term.

3.2.3 The velocity-pressure formulation

Discretization in space of (3.15)-(3.17) must be done carefully. A naive approach
is to start with the continuous pressure Poisson equation (3.17) and discretize it. In
so doing, the discretized Laplacian takes on the same expression as that obtained in
the previous vorticity-stream function formulation. Thatis, the matrixL is used to ap-
proximate−∇2. This, however, yields an inconsistent – and unstable – discretization
in the sense that the discrete pressure and velocity fields are incompatible with one
another, for the velocity boundary conditions are not consistently incorporated within
the discrete Laplacian operator. In fact, as shown inGresho et al.(1984), the issue
of deriving the discrete consistent pressure Poisson equation (PPE) must be addressed
the other way around by working on the space-discretized form of the momentum
and continuity equations to extract the discrete Laplacianoperator. Both components
of the velocity are discretized using thePNC1 element while the pressure is interpo-
lated with theP1 element. Space-discretization of (3.12), together with the continuity
equation (3.9), lead to

Mu dR
dt

+ AR + CR = −GP, (3.25)

DR = 0, (3.26)
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which consists of a system of2N ODEs in the nodal values R, subject to the constraint
that the velocity field be discretely divergence-free. All matrices and vectors used in
this formulation were defined earlier when dealing with the free-surface formulation.
We shall now proceed with the derivation of the so-calledconsistentPPE or CPPE.
From (3.26), we may write

D
dR
dt

= 0,

and deduce that the discrete acceleration is divergence-free. Because the mass matrix
Mu is non-singular, we may isolatedR/dt in (3.25) and substitute it into the newly-
derived statement of divergence-free acceleration, leading to the following equation:

D
dR
dt

= DMu−1 (−AR− CR− GP) ,

whose left-hand side may be time-discretized, which, usingthe fact that we set the
velocity at time steptn+1 to be discretely divergence-free, produces the following
equation

− 1

∆t
DRn = DMu−1 (−ARn − CRn − GPn) ,

whereupon Pn is to be solved for and is the discrete pressure corresponding to the
discrete velocity field at time steptn. Hence, the linear system is

DMu−1
GPn = DMu−1

(
1

∆t
MuRn − ARn − CRn

)

, (3.27)

where−∇2 is now approximated byDMu−1G, which automatically incorporates the
appropriate boundary conditions for the pressure (Gresho et al., 1984). The previous
expression loses its effectiveness if the matrixMu is not diagonal beacauseMu−1

will, in general, be dense. It is common practice to lump the mass when this occurs.
This is where one of the key properties of thePNC1 element comes into play: its
basis functions are orthogonal to one another, which renders the matrixMu diagonal
without having to resort to mass-lumping. Once the pressureis known at time steptn,
we may march in time and use (3.25) to compute the velocity at the next time step.
Time-discretization of (3.25), together with (3.27), yields the full consistent velocity-
pressure formulation:







DMu−1
GPn = DMu−1

(
1

∆t
MuRn − ARn − CRn

)

,

(
Mu

∆t
+

1

2
C

)

Rn+1 =

(
Mu

∆t
− A − 1

2
C

)

Rn − GPn.

(3.28)

The algorithm is started by specifying an initial velocity field, from which the initial
pressure may be computed.

3.3 Two benchmark shear flows

The first basic state is a shear-zone type flow, consisting of two parallel and uniform
currents on both sides of the shear layer, one oriented eastward and the other westward.
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Both currents have the same magnitude and the dimensionlessanalytical expression
to represent this first basic state is

ū(y) = − tanh(y), (3.29)

The zonal flow (3.29) is represented on top panels of Figure (3.2). The second basic
state is a piecewise linear function, whose expression is

ū(y) =







1 if y > 1

y if −1 < y < 1

−1 if y < −1

(3.30)

and is featured on bottom panels of Figure (3.2). Panels on the left of Figure (3.2)
show the meridional extent of the domain used in numerical experiments. In that
particular case, the extension is 10 times larger than the shear layer width so as to
emulate the absence of boundaries. Care will have to be takento ensure sufficient
mesh resolution within the shear layer. The basic flow (3.30)is less realistic than the
hyperbolic-tangent (3.29) – the first derivative is discontinuous – but this simplifica-
tion presents two advantages. First, an analytical expression for the dispersion relation
of perturbations exists when the problem is formulated on anf -plane in a zonal chan-
nel of infinite width. Therefore, the growth rate of any wavelike disturbance of a given
wavenumber if known. Second, because the profile is linear, it can be interpolated with
low-order elements without any truncation errors. This ensures that no spurious sur-
face waves propagate due to the inexact representation of the initial state. For such a
profile, the issue of determining whether or not those spurious surface waves have an
influence on the growth rate is obviated.

3.4 Numerical experiments

As already mentioned, any of the presented finite element formulations is to be
ruled out, were it not able to preserve the unperturbed steady-state basic flow (in
geostrophic equilibrium). The three methods, together with theinconsistentvelocity-
pressure formulation, are hereafter tested for their capacity in maintaining the steady
state without artificial generation or dissipation of energy, nor distortion of the flow. It
should be borne in mind that, since the free-surface formulation allows for the prop-
agation of surface waves, distortion may occur but it ought to be energy-preserving.
In Figure (3.3), the relative deviation of the total energy is shown for a 140-day run
starting with an unperturbed hyperbolic-tangent basic flow. The mesh contains 8192
triangles and the time step is 2500 s. Whereas the rigid-lid vorticity-stream function
formulation is energy-preserving (up to roundoff errors),the free-surface and con-
sistent velocity-pressure formulations yield coincidingcurves and feature maximum
deviations of about0.01%. The inconsistent velocity-pressure formulation is shown
for illustrative purposes an is found to lose about30% of the initial total energy and
is thus highly dissipative. It must be eliminated on that ground. The fact that the
free-surface and consistent velocity-pressure formulations are not as accurate as the
vorticity-stream function formulation is caused by a treatment of advective terms that
is explicit in time. In what follows, wavenumbersκ, wavelengthsλ and growth rates
δ are always dimensionless, unless otherwise specified.
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Figure 3.2: Top and bottom panels show the hyperbolic-tangent and piecewise linear basic
shear flows, respectively. Panels on the right are blowups of those onthe left, where focus is on
the sheared zone.
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Figure 3.3: Relative energy deviation with respect to the total initial energy (E0) for the four
formulations, starting with an unperturbed hyperbolic-tangent profile (En is the total energy
at stepn). Whereas the vorticity-stream function formulation exactly conserves energy (solid
line), the deviation for the free-surface and consistent velocity-pressure formulations reaches
about0.01% (dashed line). The inconsistent velocity-pressure formulation sees its deviation
attain an unacceptable level of30% (dash-dotted line), and keeps increasing.

3.4.1 The hyperbolic-tangent shear flow

The hyperbolic-tangent profile has been investigated by many authors in the past.
For example,Michalke(1964) has determined the unstable eigenvalues on anf -plane
(β = 0) while Dickinson and Clare(1973) considered theβ-plane system. All these
studies are based on the rigid-lid, inviscid, equations (3.7)-(3.9) in an infinitely-wide,
zonally periodic channel. Without delving into details – seeKuo (1973, 1978) instead
–, we now give some key features. The hyperbolic-tangent velocity profile (3.29)
is unstable to long waves, with a cutoff dimensionless wavenumber ofκ = 1 when
β = 0. That is, the basic state will not grow unstable with a disturbance whose
wavenumber exceedsκ = 1. On aβ-plane, asβ increases, the instability region
narrows and forβ > 4

3
√

3
= 0.7698, the flow is stable. The wavenumber of the

most favored disturbance – i.e., the disturbance whose growth rateδ is the largest –
is 0.4449 whenβ = 0 and shifts to higher values asβ increases. On anf -plane, the
dimensionless growth rate of the gravest mode isδ = 0.188. On aβ-plane, the growth
rate of the most favored disturbance diminishes down to 0 asβ increases.

Whenβ = 0, instability may occur with disturbances characterized bywavenum-
bers ranging from 0 to 1. The basic state is disturbed with a wave of the form

{
u′ = 0,

v′ = Ae−ry
2

sin(κx),
(3.31)

whereA is the perturbation amplitude andκ is the wavenumber. The exponential func-
tion multiplying the sine wave confines the perturbation aroundy = 0. Wavenumbers
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Figure 3.4: Evolution of perturbations kinetic energy for the vorticity-stream function (dashed
line) and free-surface (solid line) formulations when the hyperbolic-tangent profile is perturbed
with (3.31), whereκ = 0.4. Note the presence of oscillations on the free-surface curve, caused
by propagating truncation errors. The theoretical growth rate is that computed byKuo (1978)
for the vorticity-stream function formulation in an infinitely-wide channel.

ranging from 0.1 to 0.8, with an 0.1-increment, are chosen and, for each of them,
the growth rate is determined by computing the perturbationkinetic energy. This
procedure is repeated for each formulation, namely the vorticity-stream function, the
velocity-pressure and the free-surface formulations. Whenthe former is employed,
the vorticity is to be perturbed. We do so by taking thecurl of (3.31). The am-
plitude is taken to be one percent of the maximum value of the basic-state speed.
Finally, the length of the numerical domain isLx = nλ, wheren is an integer and
λ = 2π/κ is the wavelength to ensure that the perturbations be consistent with the
periodic boundary conditions. In Figure (3.4), the evolution of perturbations kinetic
energy is shown for the vorticity-stream function and the free-surface formulations
when the hyperbolic-tangent profile is perturbed with (3.31), whereκ = 0.4. A log-
arithmicy-scale emphasizes the exponential growth rate. The oscillations visible on
the free-surface curve are spawned by the propagation of truncation errors. These are
dominant until perturbations overcome them, which occurs around time 9.

To directly compare all three formulations, an initial hyperbolic-tangent velocity
profile is prescribed, for which the shear layer occupies onetenth of the total do-
main width. The structured mesh used in this experiment and most subsequent ones
is shown in Figure (3.9). It will be shown below that the same experiments carried
out on meridionally extended meshes hardly alter the computed growth rates. Hence,
a shear layer filling one tenth of the domain suffices to emulate the absence of north-
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Figure 3.5: Growth rates for the three formulations on the same structured mesh resolving the
shear layer with about 6 elements (see meshM1 in Figure 3.9). The shear-layer width is a tenth
of the domain width and the basic state is the hyperbolic-tangent profile. Thesolid line is the
theoretical growth rate for the vorticity-stream function formulation.

ern and southern boundaries. This modeling aspect need not draw our attention as
of now. The shear layer is resolved with about 6 elements. Results are shown in
Figure (3.5), where it clearly appears that both the velocity-pressure and free-surface
formulations yield growth rates that are smaller than that obtained with the vorticity-
stream function formulation. The latter gives rise to growth rates that are very close to
theoretical ones. The mean relative deviation amounts to less than 1 percent of theo-
retical growth rates while the mean relative deviation for the free-surface formulation
is about 10 percent. The influence of the free surface and truncation errors can be fur-
ther appraised by conducting the same experiment with the free-surface formulation
on gradually-refined meshes. In particular, meshes resolving the shear layer with 5,
6 and 10 elements are employed and growth rates are reported in Figure (3.6). Con-
vergence towards theoretical growth rates is achieved as resolution increases and we
obtain mean relative deviations of 18, 10 and 5 percent, respectively. With increased
resolution, truncation errors decrease and do not have as much ability of altering the
linear unfolding of instabilities. Nonetheless, it shouldbe kept in mind that, however
high the resolution might be, the free-surface formulationremains intrinsically differ-
ent from rigid-lid formulations and should not be expected to behave identically. The
time derivative of the elevation is present and only can we hope to converge to theo-
retical growth rates in the limit of an infiniteα, multiplying the velocity divergence in
the continuity equation (3.6).
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Figure 3.6: Growth rates for the free-surface formulation with gradually-refinedstructured
meshes. In all experiments, the shear layer width is a tenth of that of the domain. As the
mesh is refined, convergence towards theoretical growth rates is observed. Truncation errors
associated with the initial basic state decrease with refinement. The value forκ = 0.1 with
the highest resolution is missing because the model grew numerically unstable (because of
advection) before physical instabilities had time to develop. The basic state isthe hyperbolic-
tangent profile.
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As already mentioned, theoretical results are valid for infinitely-wide zonal chan-
nels but the numerical domain contains northern and southern boundaries. Those,
however, should be located far enough from the shear layer sothat their presence is
hardly felt by the shear flow. An extended mesh is used to carryout the same ex-
periments as those reported in Figure (3.5). That is, the shear-layer width remains the
same but the meridional extent of the domain is three times that of the original domain.
The domain extension uses a coarser resolution. In Figure (3.7), growth rates com-
puted within the original and extended domains are reportedfor the vorticity-stream
function and free-surface formulations. No significant difference can be brought to
light between both domains. Thus, taking the shear-layer width to be one tenth of the
computational domain width ensures that the boundaries have very little influence on
the shear flow behavior. In our quest for the appraisal of the boundaries influence, a se-
ries of runs are now performed with shear flows contained within variable-width shear
layers. Concretely, the shear-layer width increases whilethe computational domain
remains unchanged. The vorticity-stream function formulation is employed for three
different shear-layer widths: one tenth, one fifth and one third of the domain width.
A shear-layer width of one third is depicted on the top right panel of Figure (3.2). As
can be seen in Figure (3.8), the general trend is a gradual stabilization as the domain
is more and more restricted by the presence of solid boudaries. This observation is
in agreement with theoretical results presented byHoward (1964), where it is shown
that the restriction of the domain raises the eigenvalues ofthe Sturm-Liouville prob-
lem associated with the Rayleigh equation (B.4). Unstable modes correspond to neg-
ative eigenvalues, which in turn correspond to positive wavenumbers. When the solid
boundaries get closer to each other, the eigenvalues increase and the wavenumbers
decrease, leading to slower growth until boundaries get close enough to completely
stabilize the flow.

Unstructured meshes are inherent to the use of the finite element method. They are
very attractive for their flexibility in representing complex boundaries and in refining
regions of interest. We first consider the uniform, unstructured meshM2 in Figure
(3.9) containing roughly the same number of elements as the structured meshM1.
However, since the dynamics of instabilities takes place within the shear layer, this
is where the mesh should be refined. MeshesM3 andM4 in Figure (3.10) both have
their resolution increased within the shear layer butM3 contains much fewer elements.
Now, the experiment with the hyperbolic-tangent profile is repeated by using the un-
structured meshesM2, M3 andM4. The shear-layer width is a tenth of that of the
domain. Results obtained with the vorticity-stream function formulation are depicted
in Figure (3.11). The mean relative deviations for meshesM2, M3 andM4 amount
to 9, 7 and 5 percent, respectively. It should be stressed that we get more accurate re-
sults with the meshM3 than the meshM2, even though the latter contains 60 % more
elements. However, the uniformity of meshM2 also implies that the same amount of
computation is done within the dynamically-active shear layer and in the outer part of
the domain, where the flow remains almost uniform. Refined meshes elegantly avoid
this drawback. The same experiment was performed with the free-surface formulation
but for all three unstructured meshes, growth rates for all wavenumbers were crudely
overestimated and were close to that of the gravest mode (about 0.18). The reason
might be the following. As the basic flow is perturbed, interferences between wave
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Figure 3.7: Experiments conducted on an extended mesh are compared with the sameex-
periments conducted on the original mesh. No significant difference between the use of both
domains can be reported. The shear-layer width is one tenth of the original domain width (hence
30 times thinner than the extended domain). The basic state is the hyperbolic-tangent profile.

troughs and peaks that occur by propagating truncation errors may do so in random
directions, unlike structured meshes for which propagation mostly takes place along
they-axis. When this occurs, the perturbation wavenumber is not as definite and the
system is free to grow unstable with a mode that is closer to the gravest one. Results re-
garding these experiments are not shown. This is a by-product of unstructured meshes
but should in no way discredit them. So far, no special treatment of advection terms
has been done (only surface integrals were performed). If werepeat the computations
with an enhanced advection scheme based upon streamline upwind weighting – whose
details of implementation can be found inHanert et al.(2004), we obtain the results
shown in Figure (3.12). Overall, growth rates are too low by about 20 %. In spite of
this, not only do they respect the trend of the theoretical curve, but they are also more
accurate with meshesM3 andM4, as expected. Therefore, the new advection scheme
improves the results but is clearly too numerically dissipative compared with, e.g.,
Figure (3.6). The effect of including streamline upwindingfilters out high-frequency
oscillations, hence damping out the scattering of fast-propagating waves but also has
the undesirable consequence of slowing down the growth of physical instabilities.

3.4.2 The piecewise linear shear flow

We push further the idealization of the zonal flow by using thepiecewise linear shear
flow. As in the case of the hyperbolic-tangent shear flow, the domain is a periodic,
infinitely wide zonal channel. As shown inCushman-Roisin(1994), the dispersion
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Figure 3.8: Growth rates computed with the vorticity-stream function formulation for varying
shear-layer widths. Gradual stabilization is observed as the domain is more and more restricted
by the presence of solid boudaries, which agrees with the theoretical results byHoward(1964).
The basic state is the hyperbolic-tangent profile.

M1 M2

Figure 3.9: The structured mesh on the left (M1) contains 8192 triangles and the unstructured
mesh on the right (M2) contains 8124 triangles. Both meshes have a resolution of about 0.020.
Note that the aspect ratio of length to width is 1:1 in the illustration but other aspect ratios are
used for computations to ensure periodicity of perturbations (e.g.,π:1). In that case, anisotropic
elements are used.
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Figure 3.10: The unstructured, non-uniform mesh on the left (M3) contains 4984 triangles and
is locally refined within the shear layer. The mesh on the right (M4) contains 8150 triangles
and should be compared with the unstructured uniform mesh (M2) in Figure (3.9) containing
roughly the same number of elements. The resolution in the outer part of the domain is about
0.050 for both meshes but within the shear layer, the resolution is approximately 0.015 forM3

and 0.010 forM4.
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Figure 3.11: Growth rates for the vorticity-stream function formulations on the unstructured
meshesM2, M3 andM4 shown in Figures (3.9) and (3.10). The shear-layer width is a tenth of
the total domain width and the basic state is the hyperbolic-tangent profile. The solid line is the
theoretical growth rate for the vorticity-stream function formulation.
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Figure 3.12: Growth rates for the free-surface formulation on the unstructured meshesM2, M3

andM4 shown in Figures (3.9) and (3.10). The shear-layer width is a tenth of the total domain
width and the basic state is the hyperbolic-tangent profile. The solid line is the theoretical
growth rate for the vorticity-stream function formulation. The growth ratesfor κ = 0.1 fall
below 0.05.
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Figure 3.13: Evolution of perturbations kinetic energy for the vorticity-stream function (dashed
line) and free-surface (solid line) formulations when the piecewise linearprofile is perturbed
with (3.31), whereκ = 0.4. This should be compared with Figure (3.4) where oscillations
made up the onset of the free-surface curve.

relation for perturbations, providing the wave velocityc in terms of the wavenumber
κ, may be derived. The growth rateδ = κc is then given by

δ(κ) =
1

2

[
e−4κ − (1 − 2κ)2

]1/2
.

Besides the possibility of deriving an analytical expression for the growth rate, the ve-
locity is exactly interpolated with linear elements. A severe drawback of such a profile,
though, is its lack of realism. However, the aim is here to be able to compare rigid-
lid and free-surface formulations without having to deal with wavelike propagation of
truncation errors. To illustrate this statement, the evolution of perturbations kinetic
energy is shown in Figure (3.13), where the absence of oscillations at the onset of the
free-surface curve is to be remarked. At this point, it must be stressed that, unlike the
zonal velocity field and because the vorticity is discontinuous across the shear-layer
frontiers, the vorticity cannot be interpolated exactly – unless the discontinuous finite
element method is employed (seeCockburn et al.(2000) for a comprehensive review
of discontinuous finite element methods). This situation isdepicted in Figure (3.14)
and explained in detail in the caption.

In Figure (3.15), growth rates computed for all three formulations are shown and
compared with the analytical results. The mesh resolves theshear layer with 5 ele-
ments (the meridional resolution is 20 km). The mean relative deviations are 4, 2 and
3 percent for the vorticity-stream function, free-surfaceand velocity-pressure formu-
lations, respectively. Hence, none of them may significantly be categorized as yielding
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Figure 3.14: Since the zonal velocity is continuous, it is exactly interpolated with linear ele-
ments. On the other hand, the discontinuous vorticity cannot be interpolatedand the disconti-
nuity is, at best, linearly represented (see the dashed line). This leads to apoorer representation
of the shear layer. The growth rate is directly proportional to the shear-layer width and it is
unclear which length scale is to be used to compute the dimensionless growth rate when such
an approximation prevails. Filled and empty circles represent vorticity andvelocity nodes, re-
spectively.

better results. The only trend, however, is a slight overestimate obtained when using
the vorticity-stream function formulation. This might be due to the discontinuous na-
ture of the initial vorticity field. A last experiment is carried out on a coarser mesh
resolving the shear layer with 3 elements and having a meridional resolution of 50 km.
Results are reported in Figure (3.16) and mean relative deviations are 8 and 6 percent
for the free-surface and vorticity-stream function formulations, respectively. Because
large-scale ocean models do not easily run on meshes with resolutions as high as 20
km (unless local refinement is implemented), the last experiment has been carried out
to show that the use of a coarser mesh yields decent results.

3.4.3 Evolution on longer timescales

So far, all runs have been conducted over timescales that didnot allow for nonlinear
advective terms to become significant. Typical dimensionless run times were on the
order of 20. That is, real run times of about 4 months. We now extend the dimen-
sionless run time up to 100 (i.e., about 20 months). The phenomena that we witness
in this case are not faithful representations of what could happen in the real ocean or
atmosphere, because no physical process would have so much time to develop without
interacting with external processes. Bearing that in mind,we now show the unfolding
of eddies on meshesM1 andM4 (see Figures 3.9 and 3.10) for the vorticity-stream
function and free-surface formulations. Recall that both meshes have approximately
the same number of elements butM4 is refined within the shear layer with a resolution
that is about twice that ofM1.
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Figure 3.15: Growth rates for the three formulations on the same mesh resolving the shear
layer with 5 elements (meridional resolution is 20 km). The shear-layer width is a tenth of the
domain width and the basic state is the piecewise linear profile. The solid line is thetheoretical
growth rate for rigid-lid vorticity-stream function formulation.

In both series of experiments, advection in the free-surface formulation is treated
with streamline upwind weighting (Hanert et al., 2004) as it was already the case for
previous experiments on unstructured meshes presented earlier on (see Figure 3.12).
With this advection scheme, some numerical dissipation is added, without which the
scheme would be unstable. In comparison, the vorticity-stream function formulation
does not include any dissipation, be it physical or numerical. A striking difference
between both formulations on meshM1, as can be seen in Figure (3.17), is that ed-
dies do not tend to merge in the free-surface formulation. Itcan be hypothesized that
numerical dissipation is too substantial for this mesh, which inhibits the coalescence
of eddies. When the same experiment is carried out on meshM4 – with increased
resolution within the shear layer –, two important featuresappear (Figure 3.18). First,
the merging of eddies also occur with the free-surface formulation, although delayed
compared with the vorticity-stream function formulation.Second, the dynamics of
the merging for the latter formulation appears to be mesh-dependent, as it is not iden-
tical to that observed with meshM1 (compare left panels of Figures 3.17 and 3.18),
although all other parameters are the same. Some explanations on the coalescence of
eddies may be found inMichalke(1964). The first feature stresses the importance of
using an adapted mesh to resolve the dynamics. For the free-surface formulation, nu-
merical dissipation added to the flow diminishes as the element size decreases. Nev-
ertheless, as can be seen by comparing panels in Figure (3.18), there is still some
dissipation whose main effect is to delay the coalescence ofeddies. Despite all this,
it should be kept in mind that all ocean models include some phyical dissipation. In
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Figure 3.16: Growth rates for the vorticity-stream function and free-surface formulations on a
coarse mesh resolving the shear layer with only 3 elements (meridional resolution is 50 km).
The shear-layer width is 0.15 times the domain width (i.e., slightly wider than inprevious
experiments) and the basic state is the piecewise linear profile. The solid line isthe theoretical
growth rate for rigid-lid vorticity-stream function formulation.
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that respect, the rigid-lid, vorticity-stream function formulation devoid of any kind of
dissipation might not be closer to reality than the free-surface formulation with some
dissipation proportional to the mesh size, as in our situation.

3.5 Conclusions

The objective was to compare free-surface and rigid-lid finite element models of
barotropic instabilities. For large-scale ocean modeling, the time derivative of the sea
surface elevation appearing in the continuity equation (3.6) is at least two orders of
magnitude smaller than the velocity divergence, hence a priori justifying the rigid-
lid assumption. Therefore, any differences in the growth rates were expected to be
small. Two series of experiments were conducted to assess the role of the free surface
and both were aimed at computing growth rates and comparing them to theoretical
solutions valid for the vorticity-stream function formulation. In the first series, the
hyperbolic-tangent profile was used and it was shown that thefree-surface formula-
tion yielded growth rates that converged to theoretical ones as the mesh was refined.
For coarser meshes, initial truncation errors are fairly important and are allowed to
propagate as surface waves. Growth rates thus computed weresmaller than theoretical
ones and more so for low-resolution meshes. It is believed that propagation of trun-
cation errors as surface waves allows for energy to be redistributed and carried away
from within the shear flow towards the boundaries. The velocity-pressure formulation
yielded results that were roughly identical to that of the free-surface formulation. The
surface pressure merely plays the role of elevation by providing enough pressure to
keep the sea surface flat. This formulation thus allows for pressure waves to propagate.

Because theoretical results were derived for infinitely-wide channels, it was im-
portant to carry out a sensitivity analysis with respect to the location of boundaries.
The original computational domain was ten times wider than the shear-layer width
(an aspect ratio of1/10). Growth rates were then computed for increasing aspect ra-
tios. The vorticity-stream function was utilized to perform this analysis. The general
trend is a decreasing growth rate for an increasing aspect ratio. Gradual stabilization
is thus observed as the domain is more and more restricted by the presence of solid
boudaries, which agrees with the theoretical results byHoward (1964). Finally, an
experiment using a mesh having an aspect ratio of1/30, with coarser southern and
northern mesh extensions, was shown to yield the same results as that obtained with
the original mesh.

In order to do away with this issue of truncation errors, a piecewise linear pro-
file was then used. Although velocity was exactly interpolated with linear elements,
the discontinous vorticity could not be so. This permitted to concentrate on the free
surface, not as a carrier of truncation errors but as a variable per se. On a moderate-
resolution mesh (meridional resolution of 20 km), all threeformulation gave rise to
growth rates close to theoretical ones and, most importantly, no one furnished results
that could have allowed us to choose it as the right one.
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Figure 3.17: Comparison between the vorticity-stream function (left panels) and free-surface
(right panels) formulations on longer timescales on the structured meshM1. The stream func-
tion is shown. Dimensionless snapshot times are 0, 20, 30, 50, 70, 90 and 100. Distances
between twox-tics and twoy-tics are 500 km and 100 km, respectively. The time step is 0.01.
The basic state is the piecewise linear profile.
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Figure 3.18: Comparison between the vorticity-stream function (left panels) and free-surface
(right panels) formulations on longer timescales on the unstructured, non-uniform meshM4

The stream function is shown. Notice how the increase in mesh resolution within the shear layer
limits the numerical dissipation incurred by the advection scheme and permitsthe merging of
eddies for the free-surface formulation, although more slowly than forvorticity-stream function
formulation. Dimensionless snapshot times are 0, 20, 30, 50, 70, 90 and 100. Distances between
two x-tics and twoy-tics are 500 km and 100 km, respectively. The time step is 0.01. The basic
state is the piecewise linear profile.
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All experiments were carried out withα = 27. In order to have a grasp on the role
of the free surface, one should work withα close to 1. However, only two parameters
may vary: the layer depthh and the shear-layer length scaleL. To achieve a value
of 1, those two parameters have to assume values that would either break down the
assumtions underlying the model upon which theoretical results are drawn, or render
the domain unphysical. Decreasingh down to a few tens of meters while keeping
the domain width at1000 km is certainly numerically feasible but would produce
unapplicable results. At the other end of the spectrum, increasing the shear-layer
width by a factor of 10 implies having a domain width of ten thousand kilometers,
whereupon theβ-plane approximation does not hold any more.

Unstructured meshes were then employed and it was shown thatby refining the
mesh in dynamically-active regions, it was possible to decrease the computational
cost while performing better in terms of accuracy. This is ofparamount importance for
ocean modeling where unstructured meshes and the finite element method make their
way in the community. By locally increasing the resolution of the mesh, we easily con-
centrate the computational cost onto regions that require greater accuracy. To achieve
numerical stability with the the free-surface formulationon unstructured meshes, ad-
vection terms were computed with streamline upwind weighting. The growth rates
followed the theoretical trend and a higher accuracy was obtained with refined meshes
but numerical dissipation had the effect of slightly slowing down the growth of insta-
bilities.

The coalescence of eddies was then examined by extending therun time up to 100,
that is, 10 times longer than in all previous runs. This experiment proved very illus-
trative of the necessity of using adapted meshes for ocean modeling. On the struc-
tured mesh, the merging of eddies characterized the solution for the vorticity-stream
function formulation while this did not occur for the free-surface formulation, pre-
sumably due to numerical dissipation accompanying the streamline upwind weighting
treatment of advection terms. However, when the unstructured mesh was used, the
free-surface formulation was able to reproduce the coalescence of eddies by limiting
the numerical dissipation thanks to an increase in resolution within the right region of
the domain. The growth of eddies was slowed down in comparison with that for the
vorticity-stream function formulation. Nonetheless, thelatter, which does not include
dissipation of any kind, does not necessarily comply with reality and actual ocean
models. To summarize, we showed that the finite element method for free-surface
models was effective at representing barotropic instabilities when it is combined with
an appropriate advection scheme and, most importantly, adapted meshes.
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Chapter 4

Three-dimensional tracer
conservation

Summary
Sufficient conditions to consistently achieve global tracer conser-
vation are derived. This entails a discrete compatibility beteween
the elevation, continuity and tracer equations. This compatibility
constraint, together with the use of a numerically stable scheme,
severely restricts the choice of usable three-dimensional spatial
discretizations. The issue of time discretization is touched upon.
Some illustrative three-dimensional test cases are presented where
the method is shown to satisfy all conservation properties. We also
carry out a few experiments where consistency breaks down and
investigate the consequences thereof.

Despite the many recent achievements of the FE method, many challenges still lie
ahead of us. Admittedly, switching from structured meshes to unstructured meshes
requires developers to build new models from scratch ratherthan converting existing
ones piece by piece. Quite ironically, with this approach, we find ourselves in need
of addressing issues that have been solved in finite difference (FD) models but that
remain somewhat problematic or controversial with finite element models. Ensuring
global tracer conservation while preserving consistency (i.e., compatibility) between
equations in finite element shallow-water models is one of these issues and the core
of this chapter. This very issue has already been thoroughlyaddressed in FD models
(Deleersnijder, 1993;Roullet and Madec, 2000;Griffies et al., 2001;Campin et al.,
2004;Griffies, 2004). A common deceitful criticism of the CG method is the lack of
elementwise conservation. Several attempts at proving those criticisms wrong have
been made by defining interelement fluxes appropriately using so-called nodal fluxes
(Hughes et al., 2000;Berger and Howington, 2002). Those efforts, however, have not
really mitigated the widespread belief that the finite element method is not conserva-
tive and, thereby, not suitable for ocean modeling.

In this chapter, we demonstrate how to achieve global tracerconservation and con-
sistency in a three-dimensional, free-surface FE shallow-water model on a moving
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mesh. Global tracer conservation is attained if the volume integral of any tracer con-
centration within the domain is fixed in time, in the absence of boundary fluxes and
source/sink terms. It is unquestionable to us that any oceanmodel aimed at running
over climatic timescales must achieve global conservation. Consistency or compati-
bility is meant in the following sense: in a discrete model, set a tracer concentration
to a uniform value throughout the domain and let the free surface undulate, yet do
not add boundary fluxes; the tracer concentration must maintain the same uniform
value at all time. If this property is not satisfied, artificial tracer extrema might ap-
pear with the indirect effect of generating unphysical currents (in case the tracer is
the temperature or the salinity). For this reason, it is indispensable that any ocean
model solve the elevation, continuity and tracer equationsin a consistent way. That is,
they must be discretely compatible. Note that in FD models, consistency is commonly
referred to as local conservation (Griffies et al., 2001;Campin et al., 2004;Griffies,
2004). This is so because ensuring conservation at the cell level in terms of fluxes
does imply consistency. This is not necessarily true in FE models where the scheme
could be locally conservative in terms of nodal fluxes without solving the equations
consistently. In addition to these properties, we opted fora free-surface formulation.
Rigid-lid formulations are now deemed obsolete for severalreasons (Killworth et al.,
1991;Deleersnijder and Campin, 1995;Griffies et al., 2000), one of them being the
inability to easily account for surface freshwater fluxes. Finally, the domain is time-
dependent to accommodate the free-surface motions. All layers within the domain are
free to move in the vertical so that the free-surface displacement is distributed over
the vertical to avoid the occurrence of overly thin layers near the surface. As will
be shown, the volume change due to freshwater input (output)automatically leads to
dilution (concentration) of salt without having to resort to salt fluxes.

Using a formalism applicable to both the CG method and the DG method, we de-
rive sufficient conditions regarding the spatial discretization to ensure global tracer
conservation and consistency. We show that the same interpolation in the horizontal
must be used for the elevation, the vertical velocity and thetracers. Moreover, the
same interpolation in the vertical must be used for the vertical velocity and the tracers.
It is also demonstrated that computing the vertical velocity via the continuity equa-
tion, integrating it upwards or downwards subject to one boundary condition, is well
posed and does not lead to an accumulation of errors as was earlier suggested by some
authors (Lynch and Naimie, 1993;Muccino et al., 1997;Danilov et al., 2004). This re-
mains true as long as the upper boundary of the domain coincides with the free surface
and a consistent horizontal velocity is used. Some illustrative test cases are presented
where the method is shown to satisfy all conservation properties. We also carry out
a few experiments where consistency breaks down and investigate the consequences
therefrom.

4.1 Mathematical formulation

We shall now describe the minimum set of equations needed in our study. In this
section, all classical conservation properties are inferred from the continuous equa-
tions. In section 4.2, we will derive a set of conditions for which these properties carry

68



z y

x

Γb

Γs

T

Γn

η

d

Figure 4.1: Notations used to describe the three-dimensional time-dependent domainΩ. The
seabed and the free surface are denoted byΓb andΓs, respectively. The unperturbed plane
defined byz = 0 is notedT and is represented by the dotted lines. The lateral boundary is
notedΓn. At any location(x, y), the depthd(x, y) and the elevationη(x, y, t) are both defined
with reference toT . The displacement of the free surface is exaggerated.

over to the discrete equations. LetΩ(t) be the three-dimensional, time-dependent do-
main of interest. It is bounded below by the seabed, defined byΓb and above by
the free surface, defined byΓs, as depicted in Figure (4.1). The seabed is consid-
ered time-independent. The free surface, on the other hand,is time-dependent. The
lateral boundary, defined byΓn, is parallel to thez-direction. Note that because the
free-surface elevation varies in time, so does the lateral boundary. However, it has a
constant(x, y) position. For simplicity, we do not consider open boundaries in this
work. The domain boundary can thus be written as∂Ω = Γn ∪ Γb ∪ Γs. The un-
perturbed surface defined byz = 0 is notedT . We work within the scope of the
Boussinesq and hydrostatic approximations.

4.1.1 Equations and boundary conditions

Let u(x, y, z, t) = (u, v) be the horizontal velocity, with componentsu andv in
thex andy directions, respectively. The vertical velocity is the component in thez
direction and is denoted byw(x, y, z, t). The free-surface elevationη(x, y, t) does not
depend onz and is defined with respect to the reference levelT . The unperturbed
depthd(x, y), also defined with respect toT , is assumed to be time-independent, does
not depend onz and is everywhere nonnegative. The layer thickness,H, is the sum of
the depth and the free-surface elevation:H(x, y, t) = d(x, y) + η(x, y, t). With those
notations, the lower and upper domain boundaries are charcterized byΓb ≡ z = −d
andΓs ≡ z = η.

For the purpose of deriving the statements of volume and tracer conservation, there
is no need to write out the full horizontal momentum equations. We simply assume
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that the horizontal velocityu is known inΩ(t) and that it satisfies the impermeability
condition on the lateral boundaryΓn, that is

u · n = 0 onΓn, (4.1)

wheren = (nx, ny) is the unit outward-pointing normal toΓn. We will also notenz
the vertical component of the normal. In hydrostatic models, the vertical momentum
equation reduces to hydrostatic equilibrium. Hence, thereis no prognostic equation
for the vertical velocity. However, the vertical velocity is computed diagnostically via
the continuity equation

∇ · u +
∂w

∂z
= 0 in Ω, (4.2)

where∇ is the horizontal gradient operator. Eq. (4.2) is a statement of volume
conservation. Another statement of volume conservation can be obtained by depth-
integrating Eq. (4.2). This yields the following prognostic equation for the free-
surface elevation:

∂η

∂t
+ ∇ ·

∫ η

−d
u dz = qw onT , (4.3)

for which use has been made of the impermeability of the seabed and the free sur-
face. Note that in (4.3),T is the projection of the three-dimensional domainΩ on the
horizontal plane defined byz = 0. These impermeability conditions (the so-called
kinematic boundary conditions) read

w = −u · ∇d onΓb, (4.4)

w =
∂η

∂t
+ u · ∇η − qw onΓs, (4.5)

whereqw is the net freshwater volume flux per unit area (with units of avelocity) due
to precipitation (qw > 0), evaporation (qw < 0) and river runoffs (qw > 0), if not
formulated as lateral boundary conditions. Note that boundary conditions (4.4) and
(4.5) are equivalent to

u · n + wnz = 0 onΓb, (4.6)

u · n + wnz =

(
∂η

∂t
− qw

)

nz onΓs, (4.7)

In (4.6) and (4.7), the unit outward-pointing normals take on the following expressions

(nx, ny, nz) =

(

− ∂d
∂x ,−∂d

∂y ,−1
)

√

‖∇d‖2 + 1
onΓb, (4.8)

(nx, ny, nz) =

(

−∂η
∂x ,

∂η
∂y , 1

)

√

‖∇η‖2 + 1
onΓs. (4.9)

and we also assume that the orientation of the freshwater fluxis the same as that de-
fined by the normal at the free surface. The notationsvT and‖v‖ denote the transpose
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and the Euclidian norm, respectively, of the vectorv. Finally, a given tracer with con-
centrationC obeys an advection-diffusion equation (with no source/sink term and no
boundary fluxes) of the form

∂C

∂t
+ ∇ · (uC) +

∂ (wC)

∂z
= ∇ · (κ∇C) +

∂

∂z

(

κ
∂C

∂z

)

in Ω, (4.10)

with a condition of no boundary flux:

κ
∂C

∂n
= 0 on∂Ω, (4.11)

where∂C∂n is the normal derivative.

4.1.2 Conservation properties

From the equations presented above, we may now derive the statements of volume
and tracer conservation and check the consistency between the tracer and continuity
equations. We also set the freshwater flux to zero,qw = 0.

Volume conservation

By integrating Eq. (4.3) over the time-independent, two-dimensional domainT and
using the divergence theorem to compute the second integral, we obtain

∫

T

∂η

∂t
dT +

∫

Γn

u · n dΓ = 0,

which, by using the boundary condition (4.1), further reduces to

d
dt

∫

T
η dT = 0. (4.12)

Eq. (4.12) is the statement of volume conservation.

Global tracer conservation

Integrating Eq. (4.10) overΩ(t), using the divergence theorem for the advection
and diffusion terms and enforcing the boundary condition (4.11) leads to

∫

Ω(t)

∂C

∂t
dΩ +

∫

Γn

u · nC dΓ +

∫

Γb

(u · n + wnz)C dΓ

+

∫

Γs

(u · n + wnz)C dΓ = 0.

(4.13)

The integrals overΓn andΓb vanish by enforcing boundary conditions (4.1) and (4.6).
Using the Reynolds transport theorem, the first term of the expression above becomes

∫

Ω(t)

∂C

∂t
dΩ =

d
dt

∫

Ω(t)

C dΩ −
∫

Γs

C
∂η

∂t
nzdΓ,
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reducing Eq. (4.13) to

d
dt

∫

Ω(t)

C dΩ +

∫

Γs

(

u · n + wnz −
∂η

∂t

)

C dΓ = 0.

Now, using boundary condition (4.7) yields the statement ofglobal tracer conserva-
tion:

d
dt

∫

Ω(t)

C dΩ = 0. (4.14)

Consistency

The property of consistency is equivalent to verifying thata constant tracer concen-
tration is solution to (4.10)-(4.11). SettingC = C0 6= 0 in Eq. (4.10),C0 being a
constant, we simply obtain

C0

(

∇ · u +
∂w

∂z

)

= 0 in Ω.

Therefore, the continuity and tracer equations are consistent (or compatible) with each
other when the following relation holds true

C0

(

∇ · u +
∂w

∂z

)

= 0 ⇐⇒ ∇ · u +
∂w

∂z
= 0 in Ω and forC0 6= 0. (4.15)

4.2 The discrete conservation laws

The purpose of this section is to derive the discrete counterparts of Eqs (4.12), (4.14)
and (4.15). We start by describing the mesh topology and introducing a few useful
notations. We then present the variational formulations ofthe elevation, continuity and
tracer equations, followed by their discretization based upon the Galerkin procedure.
The discrete conservation laws will then be inferred from the discrete equations. In
order to keep notations more concise, all subsequent developments are carried out for
the CG method. The equivalent for the DG method is presented in Appendix C.1.

4.2.1 Mesh topology

The numerical solution is sought in the three-dimensional domainΩh. The latter
consists of an approximation of the physical domain, obtained by interpolating the
boundaries of topographical features and the bathymetry. Within this framework, all
boundaries are also interpolated so that we have∂Ω ≃ ∂Ωh = Γhb ∪ Γhs ∪ Γhn. The
three-dimensional finite element mesh (Figure 4.2) is obtained by first partitioningT h

intoNt open non-overlapping trianglesTe. That is, we have

T h =

Nt⋃

e=1

Te and Te ∩ Tf = ∅ (e 6= f),
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Ωh

Ωe

Ωf

(ne, nez)
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b

b
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Tf
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Se
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Ωf (ne, nez)

Ωh

Figure 4.2: Main notations used to describe the mesh topology. In two dimensions, any interior
edgeEe is shared by two trianglesTe andTf . In three dimensions, any interior vertical faceFe

is common to adjacent prismsΩe andΩf (lying within a common layer). Two stacked prisms
Ωe andΩf share an interior triangular faceSe. A unit normal vector(ne, ne

z) is associated to
each of these interior geometric items, with the superscripte indicating that it is oriented from
e to f (with e > f ).

whereTe denotes the closure ofTe. Extrusion of each triangleTe into prismatic
columns is then performed so as to exactly fit the sea bottomΓhb and the free sur-
faceΓhs . The domainΩh is then naturally partitioned intoNp open non-overlapping
prismsΩe:

Ωh =

Np⋃

e=1

Ωe and Ωe ∩ Ωf = ∅ (e 6= f).

4.2.2 Variational statements

The variational statements involve integrations over geometrical items in two and
three dimensions. The following notations are used:

∫

� dΩ: 3D integration over prisms,
∫

� dΓ: 2D integration over rectangular faces (vertical faces),

∫

� dτ : 2D integration over triangles.

(4.16)
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Free-surface elevation equation

For the free-surface equation (4.3), the variational statement for any given timet
consists in findingη(x, y, t) ∈ H such that

∫

T h

{
∂η

∂t
+ ∇ ·

(∫ η

−d
u dz

)}

η̂ dτ = 0 ∀ η̂ ∈ H, (4.17)

whereH is the Sobolev spaceL2(T h) defined in Appendix C.2. Integrating the di-
vergence term by parts leads to

∫

T h

{
∂η

∂t
η̂ −

(∫ η

−d
u dz

)

· ∇η̂

}

dτ +

∫

Γh
n

u · n η̂ dΓ = 0. ∀ η̂ ∈ H,

By using the fact that∇η̂ is independent ofz and by enforcing the impermeability
condition (4.1), the above expression reduces to

∫

T h

∂η

∂t
η̂ dτ −

∫

Ωh

u · ∇ η̂ dΩ = 0 ∀ η̂ ∈ H. (4.18)

Continuity equation

For the continuity equation, the variational statement forany given timet consists
in findingw(x, y, z, t) with (u, v, w) ∈ Hdiv(Ω

h) (see Appendix C.2), such that

∫

Ωh

(

∇ · u +
∂w

∂z

)

ŵ dΩ = 0 ∀ ŵ ∈ W, (4.19)

whereW is defined in Appendix C.2. By integrating the above expression by parts,
we obtain

−
∫

Ωh

(

u · ∇ŵ + w
∂ŵ

∂z

)

dΩ +

∫

Γh
n

ŵ u · n dΓ

︸ ︷︷ ︸

1

+

∫

Γh
b

ŵ (u · n + wnz) dτ

︸ ︷︷ ︸

2

+

∫

Γh
s

ŵ (u · n + wnz) dτ

︸ ︷︷ ︸

3

= 0 ∀ ŵ ∈ W.

A closer look at the terms labeled 1 to 3 will shed light on their meaning. By en-
forcing the impermeability condition of the lateral boundary and the sea bed, namely
conditions (4.1) and (4.6), integrals 1 and 2 vanish. Integral 3 does not vanish and
must be computed in order to determine the vertical velocityon Γhs . Note that the
boundary condition (4.6) at the seabed is a natural boundarycondition that is auto-
matically incorporated into the variational statement. The continuity equation must
then be integrated from the seabed upwards. This can be done by using upwind-
biased test functions for the CG method or upwind-biased fluxes for the DG method
(the latter approach is described in detail in Appendix C.1). In an intuitive interpreta-
tion, the continuity equation can be viewed as a steady-state advection equation (with
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the advective velocity equal to one) with source term (the horizontal velocity diver-
gence), which might help clarify the approach described herebefore. We end up with
the following variational statement:

−
∫

Ωh

(

u · ∇ŵ + w
∂ŵ

∂z

)

dΩ +

∫

Γh
s

ŵ (u · n + wnz) dτ = 0 ∀ ŵ ∈ W.

(4.20)

Tracer equation

We now turn our attention to the tracer equation (4.10). Since the domain of inte-
grationΩh is time-dependent and a time derivative appears in Eq. (4.10), a little more
work is needed prior to deriving the variational statement.We will recast the origi-
nal equation into the so-called arbitrary Lagrangian-Eulerian (ALE) form. With this
formulation, the mesh is neither fixed in space, nor does it follow the fluid. It is there-
fore neither Eulerian nor Lagrangian. A good review of ALE methods is presented by
Donea et al.(2004). FollowingFarhat et al.(2001), we define a reference fixed mesh
Ωh0 and a mapping functionx betweenΩh0 andΩh:

A : Ωh0 → Ωh : ξ → A (ξ, t) = x.

This mapping simply associates a three-dimensional coordinateξ of the reference
meshΩh0 to a three-dimensional coordinatex = (x, y, z) in the physical moving mesh
Ωh. We further assume that this transformation is invertible:

J =

(
∂x

∂ξ

)

> 0,

whereJ is the Jacobian of the transformation. We also require that the mapping
associate the boundary of the reference mesh to the boundaryof the physical mesh,
i.e.,A(∂Ωh0 ) = ∂Ωh without any other constraint on interior coordinates asidefrom
some smoothness requirement. The conservative ALE form of Eq. (4.10) then reads
(Formaggia and Nobile, 2004):

∂(JC)

∂t

∣
∣
∣
ξ
+ J∇ · (uC) + J

∂ (w̃C)

∂z
=

J∇ · (κ∇C) + J
∂

∂z

(

κ
∂C

∂z

)

in Ωh0

(4.21)

where all terms are computed in the reference domainΩh0 . In particular, the time
derivative is computed with respect to a fixed position inΩh0 . We have defined̃w =
w − wm where the mesh velocitywm is given by

wm =
∂z

∂t

∣
∣
∣
ξ
. (4.22)

With the presence of the mesh velocity, vertical advection is relative to the moving
mesh. The variational statement for the tracer equation is obtained by multiplying Eq.
(4.21) by a test function̂C, integrating the result over the reference mesh and using
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the fact that dΩ = JdΩ0. We seekC ∈ G such that

d
dt

∫

Ωh(t)

CĈ dΩ +

∫

Ωh(t)

[

∇ · (uC) +
∂ (w̃C)

∂z

]

Ĉ dΩ =

∫

Ωh(t)

[

∇ · (κ∇C) +
∂

∂z

(

κ
∂C

∂z

)]

Ĉ dΩ ∀ Ĉ ∈ G,
(4.23)

whereG is the Sobolev spaceH1(Ω
h) defined in Appendix C.2. The first term in the

above expression was obtained by using the following result:
∫

Ωh
0

∂(JC)

∂t

∣
∣
∣
ξ
Ĉ dΩ0 =

d
dt

∫

Ωh
0

JCĈ dΩ0 =
d
dt

∫

Ωh(t)

CĈ dΩ,

where we used the fact that the test function does not depend on time in the reference
mesh. It does, however, depend on time in the physical domainΩh. The advection
and diffusion terms can be integrated by parts, which yields

∫

Ωh(t)

[

∇ · (uC) +
∂ (w̃C)

∂z

]

Ĉ = −
∫

Ωh(t)

C

(

u · ∇Ĉ + w̃
∂Ĉ

∂z

)

dΩ

+

∫

Γh
s

CĈ (u · n + w̃nz) dτ

(4.24)

and ∫

Ωh(t)

[

∇ · (κ∇C) +
∂

∂z

(

κ
∂C

∂z

)]

Ĉ dΩ =

−
∫

Ωh(t)

κ

(

∇Ĉ · ∇C +
∂Ĉ

∂z

∂C

∂z

)

dΩ,

(4.25)

where we used the no-flux conditions (4.1), (4.6) and (4.11).Note that the left-hand
side of Eq. (4.24) is nothing but the variational statement of the continuity equation
(see Eq. 4.20) in which the velocity is multiplied by the tracer concentrationC, the
test functionŵ is replaced byĈ and the modified vertical velocitỹw is used in place
of the vertical velocityw. Now, using Eq. (4.24) and Eq. (4.25) in Eq. (4.23) gives
rise to

d
dt

∫

Ωh(t)

CĈ dΩ −
∫

Ωh(t)

C

(

u · ∇Ĉ + w̃
∂Ĉ

∂z

)

dΩ

+

∫

Γh
s

CĈ (u · n + w̃nz) dτ

+

∫

Ωh(t)

κ

(

∇Ĉ · ∇C +
∂Ĉ

∂z

∂C

∂z

)

dΩ = 0 ∀ Ĉ ∈ G.

(4.26)

4.2.3 Finite element discretization

We now seek approximationsηh ≃ η, wh ≃ w andCh ≃ C in finite-dimensional
subsets ofH, W andG, respectively. Each of those subsets, marked by a superscript
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h, is spanned by a finite number of polynomial basis functions.The basis functions
will be notedψ. The finite element approximations are

η ≃ ηh =

Nη∑

j=1

Hj(t)ψ
η
j ∈ Hh = span

{

ψη1 , ψ
η
2 , . . . , ψ

η
Nη

}

⊂ H,

w ≃ wh =

Nw∑

j=1

Wj(t)ψ
w
j ∈ Wh = span

{
ψw1 , ψ

w
2 , . . . , ψ

w
Nw

}
⊂ W,

C ≃ Ch =

NC∑

j=1

Cj(t)ψ
C
j ∈ Gh = span

{
ψC1 , ψ

C
2 , . . . , ψ

C
NC

}
⊂ G.

(4.27)

Note that, strictly speaking, the three-dimensional basisfunctions depend on time due
to the mesh motions. This, however, only has an implication on the tracer equation
where a time derivative occurs. We now opt for the Galerkin method, which is equiv-
alent to the following procedure. Consider each variational statement, Eqs (4.18),
(4.20) and (4.26), in which the sought variable (η, w andC) is substituted for its ap-
proximations (ηh, wh andCh, respectively) and hold it true when the test function is
substituted for any of the basis functions spanning the corresponding subset to which
the test function belongs. We also assume that we possess an approximationuh of the
horizontal velocity field, the obtention of which is beyond the scope of this chapter
(see Chapter 5 instead).

The discrete formulation for the elevation, Eq. (4.18), nowconsists in findingηh ∈
Hh such that

∫

T h

∂ηh

∂t
ψηi dτ −

∫

Ωh

uh · ∇ψηi dΩ = 0 ∀ i = 1, 2, . . . , Nη. (4.28)

For the continuity equation, the discrete formulation consists in findingwh ∈ Wh

such that

−
∫

Ωh

[

uh · ∇ψwi + wh
∂ψwi
∂z

]

dΩ

+

∫

Γh
s

ψwi
(
uh · n + whnz

)
dτ = 0 ∀ i = 1, 2, . . . , Nw.

(4.29)

Finally, the discrete variational statement for the tracerequation consists in finding
Ch ∈ Gh such that

d
dt

∫

Ωh(t)

ChψCi dΩ −
∫

Ωh(t)

Ch
(

uh · ∇ψCi + w̃h
∂ψCi
∂z

)

dΩ

+

∫

Γh
s

ChψCi
(
uh · n + w̃hnz

)
dτ

+

∫

Ωh(t)

κ

(

∇ψCi · ∇Ch +
∂ψCi
∂z

∂Ch

∂z

)

dΩ = 0

∀ i = 1, 2, . . . , NC .

(4.30)
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4.2.4 Discrete conservation laws

Starting from the discrete formulations (4.28), (4.29) and(4.30), we now investigate
under which conditions global volume and tracer conservation as well as consistency
(i.e., compatibility) are achieved in the discrete sense.

Volume conservation

Since Eq. (4.28) must be valid for anyψηi , it must hold true forψηi = 1 as well
(which belongs toHh). Settingψηi = 1 in Eq. (4.28) and using the fact thatT h is
time-independent gives rise to

d
dt

∫

T h

ηh dτ = 0, (4.31)

which is the discrete statement of volume conservation. Thefulfillment of the latter is
assured by the way we wrote the variational statement for thefree-surface elevation. It
is readily shown that the volume variation can only be causedby freshwater fluxes. By
including the latter in the discrete variational statementfor the free-surface elevation,
Eq. (4.28), the expression above simply becomes

d
dt

∫

T h

ηh dτ =

∫

T h

qw dτ.

Global tracer conservation

The property of global tracer conservation is investigatedby settingψCi = 1 in the
discrete variational statement for the tracer equation, Eq. (4.30). We then obtain

d
dt

∫

Ωh(t)

Ch dΩ +

∫

Γh
s

Ch
[
uh · n + (wh − whm)nz

]
dτ = 0, (4.32)

where we used̃wh = wh−whm. In view of Eq. (4.32), providing that the integral over
the free surfaceΓhs is discarded, the tracer is globally conserved, namely

d
dt

∫

Ωh(t)

Ch dΩ = 0. (4.33)

However, discarding this integral consistently, that is while preserving the discrete
compatibility between the elevation, continuity and tracer equations, brings about ad-
ditional constraints as we will now see.

Consistency

According to the definition presented earlier, consistencyis equivalent to requiring
that a constant concentration be solution to Eq. (4.30). Setting Ch = C0 6= 0 in Eq.
(4.30), factoring outC0 and separating out the terms depending on the mesh velocity
(and integrating them by parts) from those that do not, we endup having to satisfy the
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following equation

d
dt

∫

Ωh(t)

ψCi dΩ

︸ ︷︷ ︸

A1

−
∫

Ωh(t)

ψCi
∂whm
∂z

dΩ

︸ ︷︷ ︸

A2

−
∫

Ωh(t)

(

uh · ∇ψCi + wh
∂ψCi
∂z

)

dΩ

︸ ︷︷ ︸

B1

+

∫

Γh
s

ψCi
(
uh · n + whnz

)
dτ

︸ ︷︷ ︸

B2

= 0 ∀ i = 1, 2, . . . , NC .

(4.34)

TheA2-labeled term is the result of integrating by parts all termsinvolving the mesh
velocity. The set ofB-labeled terms in the above expression and the discrete varia-
tional statement for the continuity equation, Eq. (4.29), are identical under the follow-
ing two conditions:

1. the subsetsWh andGh are the same (in which case we haveψwi = ψCi ∀i =
1, 2, . . . Nw = NC),

2. theB-labeled terms and Eq. (4.29) are computed on the same meshΩh(t).

These two conditions may be summarized by simply demanding that Eq. (4.29) and
the advection terms in Eq. (4.34) be discretely compatible,a condition that we will
call discrete compatibility between the continuity and tracer equations. Concretely,
this entails that the same elements must be used to computewh andCh. Note that
this condition is conceptually the same as that derived whenusing finite differences
(Griffies et al., 2001). Now, the fulfillment of this condition does not necessarily
ensure that Eq. (4.34) is satisfied. The following relation between theA-labeled terms
of Eq. (4.34) must also hold true :

d
dt

∫

Ωh(t)

ψCi dΩ =

∫

Ωh(t)

ψCi
∂whm
∂z

dΩ. (4.35)

When using a discontinuous representation, the above expression must be true for
each elementΩe(t) individually whenψCi = 1, which a stricter condition. When
discretized in time and expressed for an individual elementΩe, Eq. (4.35) becomes

VOL
(
Ωn+1
e

)
− VOL (Ωne ) =

∫ tn+1

tn

(
∫

Ωe(t)

∂whm
∂z

dΩ

)

dt, (4.36)

where the time step shall be defined as∆t = tn+1 − tn. Eq. (4.36) is known as
the Discrete Geometric Conservation Law (DGCL) (Farhat et al., 2001;Donea et al.,
2004;Formaggia and Nobile, 2004) and states that the variation in volume of a given
element over∆t must be equal to the volume swept by the element boundaries (with
velocitywm) during that time interval. Note that if the volume is computed exactly,
then the time integration in the right-hand side of (4.36) must be exact. Depending
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upon the hypotheses made regarding the time dependence ofwm, a proper quadrature
rule must then be used. Hence, to ensure consistency, the following two conditions at
least must be fulfilled:

1. the continuity and tracer equations must be discretely compatible (i.e., the way
we compute the vertical velocity must be discretely compatible with the way we
compute the advection terms in the tracer equation),

2. the mesh update procedure must comply with the DGCL (see Eq. 4.36).

It should be emphasized that these conditions involve the continuity and tracer equa-
tions as well as the mesh update procedure. So far, nothing has been said regarding
the free-surface elevation equation.

Conserving the tracer globally while preserving the consistency between the conti-
nuity and tracer equations requires that the surface integral onΓhs automatically vanish
whenCh = 1 in Eq. (4.32). This will happen only if the computation of thevertical
velocity guarantees it. We now verify that this is the case. Let us now return to the
continuity equation and focus on the discrete variational statement, Eq. (4.29). Since
the mesh is made up of prisms with vertical faces, we can readily add up the com-
ponents of Eq. (4.29) written forψwi sharing the same two-dimensional support. We
noteI the set of indicesi corresponding to the basis functionsψwi aligned on the same
vertical. By definition, all these basis functions satisfy the following two properties:

∑

i∈I
ψwi (x, y, z) = ψw,2DI (x, y),

∑

i∈I

∂ψwi
∂z

(x, y, z) = 0,

whereψw,2DI is simply the projection ofψwi (i ∈ I) onto the plane(x, y). With
an abuse of notation, this projection is identified byI. With the first summation, the
vertical dependences of all basis functions cancel out. Now, adding up the components
of (4.29) in the vertical gives rise to

−
∫

Ωh

uh · ∇ψw,2DI dΩ +

∫

Γh
s

ψw,2DI

(
uh · n + whnz

)
dτ = 0. (4.37)

The similarities between the above expression and the discrete variational statement
for the elevation, Eq. (4.28), are clear. By choosing the basis functions for the vertical
velocity such thatψw,2DI = ψηI , whereψηI is the two-dimensional elevation basis
function, the second term in the discrete elevation equation (Eq. 4.28) is identical to
the first term in Eq. (4.37). This leaves us with the followingequality:

∫

Γh
s

ψw,2DI

(
uh · n + whnz

)
dτ =

∫

T h

ψηI
∂ηh

∂t
dτ =

∫

Γh
s

ψηI
∂ηh

∂t
nz dτ

wherenz is the Jacobian of the transformation of coordinates fromT h to Γhs . The last
expression thus becomes

∫

Γh
s

ψwi

{

uh · n +

(

wh − ∂ηh

∂t

)

nz

}

dτ = 0, (4.38)
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where we used the fact thatψwi reduces to its two-dimensional structure onΓhs . Eq.
(4.38) is the discrete counterpart of the kinematic boundary condition on the vertical
velocity, given by Eq. (4.7). Most importantly, this resultdemonstrates that global
conservation can be achieved without breaking down consistency. When settingCh =
1 in Eq. (4.30), the surface integral onΓhs vanishes if the mesh velocity at the sea

surface iswhm = ∂ηh

∂t and the same interpolation is used in the horizontal for the
elevation and the vertical velocity. Under these two conditions, the surface integral
can be discarded consistently in Eq. (4.32).

The discrete surface kinematic boundary condition is retrieved by adding up the dis-
crete components of the continuity equation in the vertical. This is a consequence of
the elevation and continuity equations being discretely compatible. And they should
be since they express the same principle of volume conservation. It then turns out that
the surface kinematic boundary condition is redundant, complying with the first-order
nature of the continuity equation. In Appendix C.3, we show that integrating the con-
tinuity equation downward (with the imposition of the surface boundary condition)
allows for automatically retrieving the seabed boundary condition, provided of course
that the continuity and elevation equations are discretelycompatible. Both directions
of integration yield equivalent results (the correct boundary condition is retrieved) and
the tracer conservation does not depend on it (the tracer is consistently conserved in
both cases). It is easy to conjure up a way of breaking down consistency while pre-
serving global conservation. By enforcing the surface tracer flux to vanish, global
conservation is ensured. However, if there is no compatibility between the elevation
and the continuity equations, this surface integral does not naturally vanish and consis-
tency breaks down. Now, an opposite scenario can be imagined. Consistency is easily
achieved by ensuring that the tracer and continuity equations are discretely compati-
ble. Nevertheless, if the surface integral does not vanish and is computed (to ensure
consistency), global conservation will break down for a tracer distribution different
than a constant value throughout the domain.

The key results regarding conservation are summarized below. In the absence of
source/sink terms and boundary fluxes, sufficient conditions to consistently achieve
global tracer conservation in free-surface flows on moving meshes are the following.

1. The continuity and tracer equations are discretely compatible, which comes
down to having the discrete advection terms in the tracer equation reduce to
the discrete continuity equation whenCh = 1 (see Eq. 4.34).

2. The DGCL is satisfied elementwise (see Eq. 4.36).

3. The elevation and continuity equations are discretely compatible. This condi-
tion entails that the discrete surface kinematic boundary condition is retrieved
when adding up all components of the discrete continuity equation in the verti-
cal (see Eq. 4.38).

4. The mesh velocity at the surfaceΓhs is upwards and has a magnitudewhm = ∂ηh

∂t .
Note that, in the interior, the mesh motion is not constrained unless element
shape regularity requires it.
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4.2.5 Which elements should we use ?

The above conditions restrict the choice of finite element subsets and, thereby, the
choice of elements that should be used. These restrictions lead to the following guide-
lines:

1. The same element must be used for the vertical velocity andthe tracer.

2. The nodes location in the horizontal must be the same for the elevation and the
vertical velocity.

3. The two previous statements also imply that the nodes location in the horizontal
must be the same for the elevation, the vertical velocity andthe tracer.

4. In the vertical, the nodes location for the vertical velocity and the tracer is un-
constrained, yet it must be identical for both variables.

In addition to these considerations, the mixed formulationused for the horizontal ve-
locity and the elevation must be numerically stable. The mixed formulation should
be devoid of spurious elevation and velocity modes. In the presence of spurious el-
evation modes, a stabilized formulation can usually filter out the modes. However,
this requires to add a term to the discrete elevation equation, with the consequence of
breaking down the discrete compatibility between the elevation and continuity equa-
tions. Velocity modes are less problematic insofar as a small amount of momentum
diffusion is usually sufficient to filter them out. Based on the most recent studies,
the two mixed formulations that turn out to be the most usefulfor hydrostatic ma-
rine modeling based on the primitive equations are thePNC1 − P1 and theRT0 pairs
(Hanert et al., 2003;Le Roux, 2005;Le Roux et al., 2005, in press). The first pair was
originally used byHua and Thomasset(1984) for shallow-water flows and consists of
a linear non-conforming interpolation for both componentsof the velocity and a linear
interpolation for the elevation. It does not support any spurious oscillations. This pair
has been used byHanert et al.(2005) andWhite et al.(2006a) in two dimensions and
by White and Deleersnijder(in press) in three dimensions. The second pair is called
low-order Raviart-Thomas element. The normal velocity components are located at
the middle of each side of the triangular element and the elevation is constant on each
element. Shallow-water models using this formulation are described byMiglio et al.
(1998) andWalters(2005).

Using thePNC1 − P1 pair requires to opt for aP1 representation in the horizontal
for the tracer and the vertical velocity (in order to consistently ensure global conserva-
tion). To fulfill the same property with theRT0 element, the vertical velocity and the
tracer must be constant in the horizontal on each element. Inboth cases, there is no
constraint for the vertical interpolation: it could be of high order and discontinuous.
Both schemes have advantages and disadvantages. A linear continuous representation
for the tracers is not optimal for advection-dominated flows. Stabilization could be
necessary (without impact on conservation). The finite volume scheme pertaining to
theRT0 element is certainly more stable but might be overdiffusive. Regarding the
elevation,P1 is more accurate thanP0 with the latter leading to twice as many de-
grees of freedom. Moreover, aP1 interpolation for the elevation leads to a piecewise
linear (and continuous) representation of the moving mesh.Finally, when using the
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PNC1 − P1 pair, to be computationally competitive, the matrices of the systems to
compute the vertical velocity and the tracer must be rendered at least banded diagonal
through mass lumping

Note that these compromises arise because of the need to select a stable mixed for-
mulation. If stability were not in jeopardy, the best choicewould probably consist of a
linear non-conforming representation for all variables. All conditions to consistently
attain global conservation would be satisfied. Due to the orthogonality of the linear
non-conforming shape functions in the horizontal, all system matrices would be at
most banded diagonal (tridiagonal in case of a linear continuous interpolation in the
vertical) without resorting to mass lumping. This interpolation would be ideally suited
for advection-dominated flows. The momentum equation wouldinherit all conserva-
tion properties developed for the tracer equation. For thisscheme to be usable, though,
we would need to stabilize the elevation equation with a potential loss of mass con-
servation. This would be quite paradoxical since this interpolation choice would have
been made to ensure conservation in the first place ! The same discontinuous (linear
or higher-order) interpolation in the horizontal for all variables would also work out,
as far as conservation is concerned. However, stability analyses in the lines of that
presented byLe Roux and Carey(2005) (but in two dimensions) would be necessary
to sanction this choice.

4.2.6 The issue of time stepping

In light of the developments carried out above, time discretization does not appear
to be an issue. However, there is more into conservation thanthe proper choice of
elements for spatial discretization. To ensure a discrete compatibility between the
free-surface elevation and the continuity equations – and thus, to consistently ensure
global tracer conservation –, the following property must be satisfied. The horizontal
transport whose divergence is responsible for the change inthe free-surface elevation
must be equal to the horizontal transport associated with the horizontal velocity used
to compute the vertical velocity. These transports are not necessarily equal and when
that occurs, the three-dimensional horizontal velocity must be corrected so that its
transport is equal to that used to compute the free-surface elevation. The main cause
for this discrepancy originates from the choice of time stepping. If a semi-implicit
scheme is considered for the inertia-gravity wave terms (with or without mode split-
ting), the horizontal transport causing the elevation change from time stepsn to n+ 1
is the mean transport computed from those at time stepsn andn + 1. The three-
dimensional horizontal velocity must then be corrected accordingly. Following this
procedure, linearizing the elevation equation poses no problem as far as conservation
is concerned. However, it has been suggested in the past thatthis approach prevents
tracers to be conserved because the domain does not move (Roullet and Madec, 2000).
In fact, when we opt for such a linearized elevation equation, we may still alter the
domain geometry according to the free-surface motions. To preserve the property of
consistent conservation (i.e., discrete compatibility between the elevation and conti-
nuity equations), the three-dimensional horizontal velocity must be corrected to yield
a transport in the deformed domain that is equal to the transport (in the undeformed
domain) used in the linearized elevation equation.
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(u, v)
w and C
η

Figure 4.3: Location of nodes within a column split into prisms. The top triangle is the surface
triangle. The free-surface elevationη is linear and continuous. The horizontal velocity is linear
non-conforming in the horizontal and linear discontinuous in the vertical (indicated by two
nodes sharing a common physical edge). The discontinuous representation in the vertical is
particularly well suited for shear regions, as it commonly occurs in baroclinic flows. The vertical
velocity and tracers are linear everywhere, yet discontinuous in the vertical.

4.3 Illustrative experiments

A few numerical experiments are now presented. In its current configuration, the
model conserves the volume and any tracer globally up to machine precision in a
consistent way. We first discuss the Goldsbrough-Stommel circulation, induced by
freshwater fluxes and invetigate the effect on salt concentration. We then illustrate the
implications of a consistency breakdown.

4.3.1 Model description

The full description of the model is provided in Chapter 5. However, for the current
chapter to be self-contained, we briefly describe here the most important features. The
dynamics is split into a two-dimensional depth-averaged system for the evolution of
the fast-propagating surface waves and a three-dimensional system for the vertical
structure of the velocity. The same time step is used for bothsystems and all terms
governing the propagation of inertia-gravity waves are semi-implicit in time. After the
computation of the external mode and the three-dimensionalhorizontal velocity, the
latter is corrected so that its horizontal transport is equal to the transport causing the
change in the free-surface elevation. The elements used to interpolate the elevation and
the velocity are depicted in Figure (4.3). The mixed formulation PNC1 − P1 is used
for the horizontal velocity and the elevation, respectively. In order to be consistent
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with this choice, a linear continuous interpolation is usedfor the vertical velocity and
all tracers. The latter, as well as the horizontal velocity,are interpolated with linear
discontinuous basis functions in the vertical.

4.3.2 The Goldsbrough-Stommel circulation

The Goldsbrough-Stommel circulation discussed byHuang and Schmitt(1993) and
Huang (1993) arises from freshwater forcing and is absent in rigid-lid models. A
decent rendition of the barotropic flow induced by freshwater forcing alone in the
North Atlantic basin is obtained by assuming the following simple linear profile for
the freshwater fluxqw (see Eq. 4.3):

qw = −qw0

[

1 − 2
(y − ys)

(yn − ys)

]

,

where y is the meridional coordinate andys and yn are the southern and northern
coordinates of the basin, respectively. The freshwater fluxmagnitude is given byqw0

(with units of a velocity). A negative value forqw indicates evaporation and a positive
value indicates precipitation and river runoffs. This linear profile is an idealization
of observations (Huang and Schmitt, 1993) and integrates to zero over the domain so
that the total volume remains constant. We aim at comparing our results with that
previously presented byHuang(1993) andGriffies et al.(2001). In both studies, the
models were set up in spherical coordinates on a basin confined between the equator
and 60oN and extending 60o zonally. Our model was run on a square basin of size
5000 km and constant depth of 4000 m. FollowingHuang(1993), the coefficients of
horizontal and vertical viscosity are 5× 104 m2 s−1 and 10−4 m2 s−1, respectively.
The equations are solved in Cartesian coordinates on aβ-plane centered at 30oN.
Neglecting the earth curvature on these scales is questionable. However, the objective
of this experiment is twofold. First, we want to assess the model’s ability at naturally
handling freshwater fluxes as a simple forcing term in the elevation equation. Second,
we want to evaluate the model’s response in terms of surface salinity due to a local
volume variation.

As shown in Figure (4.4), our results compare well to that ofHuang (1993) and
Griffies et al.(2001). It should be noted, however, that the barotropic streamfunc-
tion does not render the full picture of the flow because the latter is not divergence-
free. Three meshes were used, each one with increased resolution along the western
boundary (see caption of Figure (4.4) for details on mesh resolution). Both the anti-
cyclonic subpolar and cyclonic subtropical gyres are well represented. The separation
between both gyres lies at three fifths of the domain extent, in good agreement with
results byHuang(1993) andGriffies et al.(2001). The barotropic volume transport
is less than one Sv (1 Sv = 106 m3 s−1), which is only a few percent of the wind-
driven and thermally-driven transport. However, as hintedby Figure (4.5) represent-
ing the surface salinity after three years, this tiny freshwater flux can potentially drive
a strong three-dimensional baroclinic circulation. The freshwater input and output lo-
cally causes an increase and decrease, respectively, in theocean volume. This, in turn,
locally dilutes and concentrates the salt and a horizontal salinity gradient builds up at
the surface. This dilution/concentration effect is only due to a variation in the volume
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Figure 4.4: Barotropic streamfunction in Sv (1 Sv = 106 m3 s−1) for the freshwater-induced
Goldsbrough-Stommel circulation on meshes with decreasing element sizes. The freshwater
forcing qw varies linearly iny between -1 and 1 m/year, respectively corresponding to evapo-
ration in the south and precipitation in the north. Numerical experiments are carried out in a
square basin of size 5000 km and depth 4000 m. Equations are solved onaβ-plane centered at
30oN. The coefficients of horizontal and vertical eddy viscosity are 5× 104 m2 s−1 and 10−4

m2 s−1, respectively. Meshes are refined along the western boundary of thebasin. Resolution
varies from 250 to 1000 km for the coarse mesh, from 125 to 500 km forthe intermediate mesh
and from 62.5 to 250 km for the fine mesh. The coarse mesh contains 215 elements. Upon
refinement, the number of elements roughly quadruples.
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Figure 4.5: Deviation in psu of surface salinity from the reference value after a three-year run.
In this experiment, salinity acts as a passive tracer: it does not feed back the flow. The salinity
gradient buildup has the potential of driving a strong baroclinic circulation.

of the ocean. The tracer flux at the sea surface is zero. In our experiment, salinity acts
as a passive tracer: it does not feed back the flow. The coefficients of horizontal and
vertical eddy diffusivity are 103 m2 s−1 and 10−4 m2 s−1, respectively. For thorough
studies of the freshwater-driven baroclinic circulation,seeHuang(1993),Huang and
Chou(1994) andRahmstorf(1996).

4.3.3 When consistency breaks down

The results shown thus far have been obtained by solving the consistent discrete
equations, with nodes location depicted in Figure (4.3). Wenow study cases in which
the elements for the vertical velocityw and the tracerC are different and whereby
consistency breaks down. In all experiments described in this section, the elements
used for the vertical velocity and the elevation are those depicted in Figure (4.3). We
use different elements for the tracer.

In Figure (4.6), three situations are compared. The model isrun on a 10 km wide
and 20 m deep square basin. The initial elevation field is a 2 m high Gaussian that we
let freely evolve as a gravity wave over 1000 time steps of 72 s. The Gaussian magni-
tude decreases to one percent of its peak value over 3 km. The same initial condition
is used in all experiments. The initial tracer concentration is 1 and should remain
equal to 1 at all time (there is no boundary flux and no source/sink term). The surface
integral in Eq. (4.32) is discarded to ensure global tracer conservation in all situa-
tions. In the first experiment, we use the same element forw andC. All consistency
conditions are fulfilled and this is verified numerically. The deviations in the surface
tracer concentration are zero (up to machine precision). Inthe second and third exper-
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Figure 4.6: Illustration of consistency breakdown incurred when using different elements for
the vertical velocityw and the tracerC. In all simulations, the tracer concentration is initially
set to 1 and should remain equal to 1 at all time. The surface flux term (see Eq. 4.32) is
discarded to ensure global conservation in all experiments (see lower panels). The domain is 10
km wide and 20 m deep. The initial elevation field is a 2-meter high Gaussian. The time step
is 72 s. We use theP1 element for the elevation in all runs. We clearly see that using the same
elements forw andC consistenly ensures global conservation (surface deviations are zero in
machine precision).
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Figure 4.7: Convergence analysis of consistency errors on a tracer initially set to1 within
the domain. The errors are computed on structured meshes accordingto Eq. (4.39). The
convergence rate is nearly quadratic (the slope is 1.8).

iments, the element forC is linear non-conforming and remain linear discontinuous
in the vertical. The non-conforming representation in the horizontal is particularly
well suited for advection-dominated flows (Hanert et al., 2004), which is the reason
behind this choice. When solving the advection equation for the tracer (i.e., without
diffusion), the deviations at the surface reach very high values that are unbounded nu-
merically and they grow unstably (see second experiment in Figure 4.6). In the third
experiment, horizontal diffusion is added (κ = 10 m2 s−1), which drastically reduces
the deviations at the surface. Since the largest deviationsare typically confined within
the upper layers of the domain, they could be alleviated by choosing an appropriate
diffusion coefficient.

To quantify to which extent consistency is lost, we may compute the following a
posteriori estimate

ce =

√
∫

Ωh (Ch − 1)
2 dΩ

V
(4.39)

whereV is the domain volume. In Figure (4.7), values ofce are plotted against the
element size when the model is run in the same configuration asthat considered previ-
ously (a 10 km by 10 km, 20 m deep, square basin starting with a 2m high Gaussian).
The mesh is refined in the horizontal only, which is the direction where consistency is
lost. The rate of convergence is nearly quadratic.
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Figure 4.8: The above panels show the deviation of the tracer concentration at the surface of
the domain. The tracer is initially set to 1 throughout te domain and should remain equal to 1
at all time. (a) Shelf scale: contour drawn for deviations of -20 and 20.(b) Intermediate scale:
contour drawn for deviations of -0.005 and 0.005. (c) Basin scale: contour drawn for deviations
of -0.001 and 0.001. The corresponding simulation features are given below each panel. The
initial elevation field is a 2-meter high Gaussian.

Finally, in Figure (4.8), similar experiments (without diffusion) are carried out on
domains with spatial scales ranging from 10 km (shelf scale)to 1000 km (basin scale)
with increasing depths, yet setting off all experiments with the same 2 m high Gaus-
sian (the parameters of the simulation are recalled in the figure). These runs were
carried out in an attempt at getting some insights on the effect of a consistency break-
down on flows spanning a wide range of spatial scales. As we have already seen, the
consequences are quite dramatic for the smallest domain (which is the same experi-
ment as that corresponding to the middle panel of Figure 4.6). For larger domains,
the surface deviations remain below one percent. Since the deviations of the tracer
are caused by the inconsistent treatment of the the advection terms, it might be ex-
pected that as soon as those terms grow larger in magnitude, those deviations will
increase. For the small domain, the flow speed is on the order of 0.3 m s−1 while
it decreases to roughly 0.08 m s−1 and 0.01 m s−1 for the intermediate and larger
domains, respectively. If we set the order of magnitude of the advection terms to 1
for the small domain, advection has a relative magnitude of7 × 10−3 and10−5 for
the intermediate and larger domains, respectively. This sheds light on the results ob-
tained in Figure (4.8). It could be argued that for such weak barotropic flows in large
domains, the inconsistency is not problematic and could be easily tackled by adding
some horizontal diffusion. For the larger-scale basin circulations, advection is typi-
cally quite small in most of the domain (the Rossby number is typically on the order
of 10−3). However, in those regions where advection becomes important (typically
where boundary currents prevail), severe inconsistenciesmight arise, leading to un-
physical effects. Finally, modeling flows in coastal and shelf regions where advection
is dominant definitely requires to use a consistent spatial scheme. Failing to do that
may not only generate spurious currents but also numerical instabilities.
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4.4 Conclusions

In this chapter, we have synthesized sufficient conditions in terms of the finite el-
ement spatial discretization of a three-dimensional, hydrostatic, free-surface, marine
model to consistently conserve any tracer globally. A consistent (or discretely compat-
ibility) spatial scheme is defined as one that maintains the uniform tracer concentration
set initially (when there is no boundary flux and no source/sink term). The following
conditions must be fulfilled to satisfy those properties. (i) The same interpolation must
be used in the horizontal for the elevation, the vertical velocity and the tracer. (ii) The
same interpolation in the vertical must be used for the vertical velocity and the tracer.
(iii) The mesh update procedure must satisfy the Discrete Geometric Conservation
Law. (iv) The mesh velocity at the surface must be equal to∂η

∂t . These considerations
must be complemented by the necessity of choosing a stable finite-element pair for
the primitive shallow-water equations.

Several numerical experiments were carried out to show the model’s ability at re-
sponding to freshwater forcing. In particular, we showed how the variation in the
domain volume naturally leads to dilution and concentration of salt. We finally per-
formed a series of experiments in which consistency betweenthe vertical velocity and
the concentration was deliberately broken down. If consistency must be ensured for
advection-dominated flows typical in coastal and shelf regions, it was shown that us-
ing an inconsistent scheme for larger-scale application could be a viable alternative.
However, even for those problems, diffusion-based remedies could not work out in
regions where advection becomes more important (e.g., boundary currents regions).
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Chapter 5

A three-dimensional finite
element marine model

Summary
The full three-dimensional model is presented. An in-depth de-
scription of the spatial discretization of the momentum equation
is given. The time-stepping algorithm is detailed. The model is
validated against an analytical solution and against a realistic flow
around a shallow-water island for which field measurements are
available.

The full three-dimensional model is presented in this chapter, which is written to
be self-contained. In that respect, all equations are presented as well as their finite
element discretization. Unlike Chapter 4, which addressesconservation issues within
a general framework, the current chapter details the model for a given choice of ele-
ments, namely those depicted in Figure (4.3). The horizontal velocity is linear non-
conforming in the horizontal and linear discontinuous in the vertical. The vertical
velocity is linear continuous in the horizontal and linear discontinuous in the vertical.
The elevation is linear continuous. Since the elevation andcontinuity equations have
been given more focus in the previous chapter, an in-depth coverage of the momentum
equation is considered in this chapter.

5.1 Governing equations

The equations will be formulated in a Cartesian framework, with the assumptions
of constant fluid density (ρo) and under the hydrostatic approximation. The spatial
coordinates arex, y andz and the three-dimensional velocity components areu, v and
w, respectively. We also defineu = (u, v) to be the horizontal velocity vector. The
free-surface elevation (η) is defined with respect to the constant reference heightz = 0
taken to be the mean sea level. The main notations are given inFigure (4.1). With
these assumptions, the horizontal components of the three-dimensional momentum
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equation read:

∂u

∂t
+ ∇ · (uu) +

∂

∂z
(wu) + fez ∧ u = −g∇η + D +

∂

∂z

(

νz
∂u

∂z

)

, (5.1)

wheref is the Coriolis parameter,ez is the upward-pointing unit vector,g is the
gravitational acceleration,νz is the vertical eddy viscosity coefficient and∇ is the
horizontal gradient operator. Horizontal momentum diffusion is parameterized byD.
Equation (5.1) is complemented with the continuity equation

∇ · u +
∂w

∂z
= 0, (5.2)

and the free-surface evolution equation

∂η

∂t
+ ∇ ·

(∫ η

−d
u dz

)

= 0, (5.3)

whered is the local unperturbed depth so that the total layer thickness is defined as
H(x, y, t) = d(x, y) + η(x, y, t).

The momentum horizontal diffusion termD and the vertical diffusion term both
parameterize the effect of unresolved, small-scale processes on the resolved scales
(Blumberg and Mellor, 1987;Griffies and Hallberg, 2000). However, momentum
horizontal diffusion is generally employed both for physical parameterization and to
ensure numerical stability (Griffies and Hallberg, 2000;Griffies et al., 2000). With
unstructured meshes, it is not uncommon to have the mesh sizevary by up to two
orders of magnitude between different parts of the domain (e.g.,Foreman et al., 1995;
Legrand et al., accepted, 2006). The range of unresolved scales thus varies widely
within the domain of interest, which motivates the use of a nonconstant viscosity
coefficient (νh). The Smagorinsky viscosity (Smagorinsky, 1963) is a function of
the local horizontal rate of deformation times the local mesh size. In our model, the
following expression is used:

νh = cs∆
2 (ǫ : ǫ)

1/2
, (5.4)

wherecs is a nondimensional constant,∆ is the local mesh size andǫ is the two-
dimensional strain-rate tensor expressed in terms of the depth-averaged horizontal
velocity ū = (ū, v̄):

ǫ =





∂ū
∂x

1
2

(
∂ū
∂y + ∂v̄

∂x

)

1
2

(
∂v̄
∂x + ∂ū

∂y

)
∂v̄
∂y



 . (5.5)

For triangular meshes,∆2 is taken to be the surface area of the triangle (Akin et al.,
2003). A Laplacian form is considered for the momentum friction termD:

D =
∂

∂x

(

νh
∂u

∂x

)

+
∂

∂y

(

νh
∂u

∂y

)

. (5.6)

The Smagorinsky scheme enhances momentum diffusion in regions of large horizontal
shear while reducing it in regions of smaller mesh spacing (Figure 5.1). Enhanced
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Figure 5.1: Horizontal viscosity coefficientνh [m2 s−1] at ebb (left panel) and flood (right
panel) on the intermediate mesh of Figure (5.6). Notice the larger values inregions of high
velocity shear in the island’s wake where eddies form and in regions characterized by a lower
mesh resolution.

versions of the model should consider the strain-rate tensor used in Eq. (5.4) defined in
terms of the local velocity, which is more appropriate for baroclinic flows that may be
characterized by large shears in the vertical. The advantage of defining (5.4) in terms
of the depth-averaged velocity is that it allows part of the depth-averaged diffusion
term to be time stepped in the equations for the external mode, rather than diffusion
entering the external mode as a coupling term only. This enhances the numerical
stability of the external mode.

Similar to Fischer et al.(1979) andDeleersnijder et al.(1992), for unstratified
shallow seas, the vertical eddy viscosity is defined as

νz = κu∗ (d+ z)

(

1 − 0.6
d+ z

H

)

, (5.7)

whereκ is the von Karman constant andu∗ is the bottom friction velocity, which
obeys the following equality

u2
∗ =

‖τ‖
ρo

. (5.8)

In the right-hand side of (5.8),‖ · ‖ is the Euclidian norm andτ denotes the constant
bottom stress. The latter is parameterized by the followinglogarithmic law:

τ (x, y, ξb)/ρ0 =

[
κ

ln(ξb/ξ0)

]2

‖ub(x, y, ξb)‖ub(x, y, ξb), (5.9)

in which ξb is the distance to the seabed where the appropriate bottom velocity ub is
defined andξ0 is the roughness length. It should be pointed out that this turbulence
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closure remains very simple. It was however designed for unstratified, shallow seas
(Fischer et al., 1979) and we believe it can be employed for modeling the flow around
Rattray island, which lies in well-mixed water (Wolanski et al., 1984) and consists of
the main application presented in this chapter.

5.2 Boundary conditions

Although most boundary conditions depend on the physical context, some of them
remain invariant. The horizontal velocityu is subject to a condition of no normal flow
and full slip on the closed lateral boundaryΓn:

u · n = 0 and νh
∂u

∂n
= 0 on Γn, (5.10)

where∂u∂n is the normal derivative ofu, defined as

∂u

∂n
=
∂u

∂x
nx +

∂u

∂y
ny, (5.11)

with nx andny thex andy components, respectively, of the three-dimensional outward-
pointing unit normal to∂Ω. Note that we could also assume partial slip along the
lateral boundaries, amounting to a loss of momentum throughlateral stress. At the
bottom, a slip condition is enforced on the horizontal velocity by relating the bottom
momentum flux to the bottom velocity:

νh
∂u

∂n
+ νz

∂u

∂z
=

τ

ρ0
on Γb, (5.12)

whereτ/ρ0 is given by (5.9). At the free surface, the wind stress may be taken into
account:

νh
∂u

∂n
+ νz

∂u

∂z
=

τ s

ρ0
on Γs, (5.13)

whereτ s is the surface wind stress. For the vertical velocity, we have the usual kine-
matic boundary condition at the bottom

w = −u · ∇h on Γb (5.14)

and top

w =
∂η

∂t
+ u · ∇η on Γs, (5.15)

or, equivalently (4.6) and (4.7). The open boundary conditions depend on the problem
at hand and usually involve prescribing the normal velocityand/or a linear combina-
tion of the normal velocity and the elevation such as a radiation condition. For the
sake of simplicity, we will not deal with open boundary conditions in the discussion
that follows.

96



5.3 Numerical procedure

In this section, we describe the numerical technique used tosolve the equations
presented above. The mesh topology has already been described in Section 4.2.1
and Appendix C.1 and will not be reproduced here. There is no apriori constraint
on the location of vertical nodes but we currently require that two adjacent columns
comprise the same number of prisms. Hence, the three-dimensional mesh contains
the same number of layers throughout. This constraint couldbe relaxed in the future
by allowing adjacent columns to contain different number ofprisms, the transition
being assured by non-conforming prisms (e.g., with hangingnodes). All nodes are
free to move in the vertical, which allows for tracking the free surface and preventing
the occurrence of overly thin layers near the surface by vertical redistribution of the
nodes. By permitting such freedom in the mesh motion, we implicitly allow for the
use of generalized vertical coordinate systems (e.g.,Kasahara, 1974;Deleersnijder
and Ruddick, 1989;Gerdes, 1993;Adcroft and Hallberg, 2006;Song and Hou, 2006).

5.3.1 Variational statements

The variational statements will be written for the elementsdepicted in Figure (4.3),
which are those suggested in Chapter 4. The horizontal velocity is linear and non-
conforming in the horizontal and linear discontinuous in the vertical. The elevation
is linear continuous. The vertical velocity is linear in alldirections, but continuous in
the horizontal (to be compatible with the elevation) and discontinuous in the vertical.
The variational statements involve integration over mesh geometrical items in two and
three dimensions. The notations (4.16) are used.

Momentum Equation

Since the mesh is allowed to move in the vertical, we write theALE (Arbitrary
Lagrangian-Eulerian) form for the variational statement of the momentum equation.
The derivation is similar to that giving rise to the ALE form of the tracer equation,
Eq. (4.23) in Chapter 4. For the momentum equation (5.1), thevariational statement
consists in findingu(x, y, z, t) ∈ U × U such that

Np∑

e=1

d
dt

∫

Ωe(t)

u · û dΩ +

Np∑

e=1

∫

Ωe(t)

[

∇ · (uu) +
∂

∂z
(w̃u) + fez ∧ u

+ g∇η −D − ∂

∂z

(

νz
∂u

∂z

)]

· û dΩ = 0 ∀û ∈ U × U ,
(5.16)

whereU×U is the suitable infinite-dimensional Sobolev space such that U = H1(Ωh).
A definition of this functional space is given in Appendix C.2. The test function̂u
belongs toU × U and is sufficiently well behaved that the integrals in (5.16)make
sense. The vertical velocity is modified to take into accountthe mesh motion so that
vertical advection is relative to the moving mesh:w̃ = w − wm, wherewm is the
mesh velocity, defined by Eq. (4.22).
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Because the horizontal velocity is discontinuous, it is convenient to further manip-
ulate the variational statement of the momentum equation (5.16) so that interelement
boundary terms appear. This also permits to naturally enforce the boundary conditions
(5.10)-(5.13). To do so, the horizontal advection term and all diffusion terms may be
integrated by parts, which gives rise to

Np∑

e=1

d
dt

∫

Ωe(t)

u · û dΩ +

Np∑

e=1

∫

Ωe(t)

[

−u · (u · ∇û) − w̃u · ∂û
∂z

+(f êz ∧ u) · û + g∇η · û + νh
∂u

∂x
· ∂û
∂x

+ νh
∂u

∂y
· ∂û
∂y

+ νz
∂u

∂z
· ∂û
∂z

]

dΩ

−
∫

Γh
s ∪Γh

b

û ·
(

νh
∂u

∂n
+ νz

∂u

∂z
nz

)

dτ

︸ ︷︷ ︸

1

+

∫

Γh
s ∪Γh

b

(u · n + w̃nz)u · û dτ

︸ ︷︷ ︸

2

+

∫

Γh
n

(

(u · n)u − νh
∂u

∂n

)

· û dΓ

︸ ︷︷ ︸

3

+

Nf∑

e=1

∫

Fe

< u · ne >< u >λ ·[û] dΓ

︸ ︷︷ ︸

4

+

Ns∑

e=1

∫

Se

< u · ne + wnez >< u >λ ·[û] dτ

︸ ︷︷ ︸

5

−
Ns∑

e=1

∫

Se

〈

νh
∂u

∂n
+ νz

∂u

∂z
nez

〉

· [û] dτ

︸ ︷︷ ︸

6

+

Ns∑

e=1

∫

Se

σ[u] · [û] dτ = 0

︸ ︷︷ ︸

7

∀û ∈ U × U ,

(5.17)
where the diffusion terms have been spelled out for clarity and all seven underbraced
integrals (labeled 1 to 7) arise after integration by parts of either the advection or
diffusion terms. These terms are explained hereafter.

1. The first integral is an expression of the diffusive momentum flux through the
sea bottom and sea surface. Use can be made of boundary conditions (5.12)-
(5.13) to compute the integral.

2. The second integral expresses the advective fluxes of momentum through the
sea bottom and sea surface. Since those interfaces are impermeable, this in-
tegral is discarded. In light of Chapter 4, we may ask ourselves whether this
integral automatically vanishes when we setu = 1, in which case discarding
this integral is consistent. However, this will be the case only if the spatial dis-
cretization used for the horizontal velocity is discretelycompatible with that
used for the elevation and vertical velocity. For reasons ofnumerical stability,
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this is not the case1. In other words, the momentum equation does not inherit
the properties of consistency derived for the tracer equation in Chapter 4.

3. The third integral comprises both the diffusive and advective momentum fluxes
through the closed lateral boundary. This term vanishes with the enforcement of
boundary condition (5.10). Note that any condition of partial slip could be nat-
urally enforced by computing this integral, given an expression forνh∂u/∂n.

4. The terms labeled 4 and 5 arise by assembling all contributions of interelement
boundary integrals from advection terms. Each one of theNf integrals is an
expression of the momentum flux by advection through the vertical face shared
by two adjacent prisms. Similarly, each one of theNs integrals is the advective
flux through triangular faces shared by prisms stacked upon each other. Using
the same notations asHanert et al.(2004), we note< f > the mean value off
on any face shared by two adjacent prisms and< f >λ, its weighted average.
That is,

< f >=
1

2
f|Ωe

+
1

2
f|Ωf

, < f >λ=

(
1

2
+ λ

)

f|Ωe
+

(
1

2
− λ

)

f|Ωf
,

for all three-dimensional elementsΩe and Ωf sharing a common face. The
jump across the latter is noted[f ] and is defined by

[f ] = f|Ωe
− f|Ωf

,

with f|Ωe
being the restriction off onΩe. Note that the quantity being advected

is < u >λ. In expression(5.18), the adjustable parameterλ ∈ [−1/2, 1/2]
allows for orienting the flux. In particular, takingλ = 1

2sign(u ·n) is equivalent
to an upwind-biased flux. This advection scheme was shown byHanert et al.
(2004) to be particularly effective in two dimensions. Here, we generalize it in
three dimensions.

5. The terms labeled 6 and 7 (involving integrals over triangular faces shared by
stacked prisms) originate from the integration by parts of the momentum diffu-
sion term.Hanert et al.(2004) showed that the non-conforming nature of the
interpolation in the horizontal ensures that no boundary term needs be computed
across vertical faces as far as momentum diffusion is concerned. The sixth sum
involves integrals of centered diffusive fluxes. There is nopreferred orientation
associated to it. The seventh term is a weak continuity constraint and involves
the discontinuity-penalization parameterσ while solving problems that are not
purely hyperbolic (Houston et al., 2002). The expression forσ is proportional
to the diffusivity coefficients.

To summarize, by discarding integrals 2, 3 and by using the boundary conditions
(5.12) and (5.13) to compute integral 1, the variational statement for the momentum

1This is so because the element used for the horizontal velocity is P
NC
1 .
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equation reduces to

Np∑

e=1

d
dt

∫

Ωe(t)

u · û dΩ +

Np∑

e=1

∫

Ωe(t)

[

−u · (u · ∇û) − w̃u · ∂û
∂z

+(f êz ∧ u) · û + g∇η · û + νh
∂u

∂x
· ∂û
∂x

+ νh
∂u

∂y
· ∂û
∂y

+ νz
∂u

∂z
· ∂û
∂z

]

dΩ

−
∫

Γh
s

û · τ s

ρ0
nz dτ −

∫

Γh
b

û · τ

ρ0
nz dτ

+

Nf∑

e=1

∫

Fe

< u · ne >< u >λ ·[û] dΓ

+

Ns∑

e=1

∫

Se

< u · ne + wnez >< u >λ ·[û] dτ

−
Ns∑

e=1

∫

Se

〈

νh
∂u

∂n
+ νz

∂u

∂z
nez

〉

· [û] dτ

+

Ns∑

e=1

∫

Se

σ[u] · [û] dτ = 0 ∀û ∈ U × U .

(5.18)
In the statement above, the surface integral onΓhs (Γhb ) is positive (negative) because
nz is positive (negative) there. This respectively corresponds to a positive influx of
momentum due to wind stress and a negative influx due to bottomstress. It is worth
mentioning that in Eq. (5.17), boundary integrals 5 to 7 are the only means by which
information is conveyed in the vertical between elements. These integrals need not
be calculated in case a continuous representation is resorted to in the vertical. For
flows that do not feature strong vertical shears, a continuous representation is likely
the most cost-effective choice. Yet, for baroclinic flows, the shear in the vertical may
be large and a discontinuous representation may be more optimal, especially if the
mesh resolution is low in the vertical.

Free-surface equation

For the free-surface equation (5.3), the variational statement, which is the same as
that derived in Chapter 4, consists in findingη(x, y, t) ∈ H such that

∫

T h

∂η

∂t
η̂ dτ −

∫

Ωh

u · ∇η̂ dΩ = 0 ∀η̂ ∈ H, (5.19)

whereH is the Sobolev spaceL2(T h), defined in Appendix C.2.

Continuity Equation

The variational statement for the continuity equation (5.2) is readily obtained by
considering the variational statement derived in AppendixC.1 for a discontinuous
representation in all directions. With the element chosen for the vertical velocity, the
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interpolation is continuous in the horizontal so that the third term of Eq. (C.4) simply
vanishes, giving rise to

−
Np∑

e=1

∫

Ωe

(

u · ∇ŵ + w
∂ŵ

∂z

)

dΩ +

∫

Γh
s

ŵ (u · n + wnz) dτ

+

Ns∑

e=1

∫

Se

〈u · ne〉 [ŵ] dτ +

Ns∑

e=1

∫

Se

[ŵ]w|Ωe
nezdτ = 0 ∀ ŵ ∈ W.

(5.20)

5.3.2 Space discretization

Finite element approximations to Eqs (5.18)-(5.20) can be obtained by substituting
u, η andw for their respective approximationsuh, ηh andwh. Those approximate
fields belong to finite-dimensional subspacesUh × Uh ⊂ U × U , Hh ⊂ H and
Wh ⊂ W, respectively. We have

u ≃ uh =

Nu∑

j=1

Uj(t)ψ
u
j (x, y, z),

η ≃ ηh =

Nη∑

j=1

Hj(t)ψ
η
j (x, y),

w ≃ wh =

Nw∑

j=1

Wj(t)ψ
w
j (x, y, z),

(5.21)

whereUj , Hj andWj are the time-dependent nodal values andψuj , ψηj andψwj are
the associated polynomial basis functions. Finally, the nodal values are computed by
resorting to the Galerkin method, which comes down to substituting the test functions
û, ŵ and η̂ for ψui êx + ψui êy, ψwi andψηi in (5.18) for i = 1 . . . Nu, in (5.19) for
i = 1 . . . Nη and in (5.20) fori = 1 . . . Nw, respectively.

5.3.3 Time-stepping algorithm

In order to lighten the notations, it is preferable to carry out the time discretization
of Eqs (5.1) and (5.3) rather than their space-discretized counterparts. Since the verti-
cal velocity is computed diagnostically, we shall not treatthe continuity equation (5.2)
here. Once time discretization is performed, it is straightforward to achieve discretiza-
tion in space of the semi-discrete equations by following the procedure described in
the previous section.

The most fundamental choice that we make in this model regarding the time dis-
cretization is to resolve all processes with the same time step. In order to circumvent
the stability constraint incurred by the propagation of inertia-gravity waves, a semi-
implicit or implicit (or any level of impliciteness in between) free-surface method is
required (Dukowicz and Smith, 1994). Hence, Eqs (5.1) and (5.3) must be solved
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simultaneously for(un+1, ηn+1), which leads to

un+1 − un

∆t
+ ∇ · (unun) +

∂

∂z
(wnun) + f êz ∧ un+θ

+ g∇ηn+θ − Dn − ∂

∂z

(

νnz
∂un+1

∂z

)

= 0,

(5.22)

for the momentum equation and

ηn+1 − ηn

∆t
+ (1 − θ)∇ ·

∫ ηn

−d
un dz + θ∇ ·

∫ ηn+1

−d
un+1 dz = 0, (5.23)

for the free-surface equation. In (5.22) and (5.23),∆t is the time step and

gn+θ = θgn+1 + (1 − θ)gn,

where0.5 ≤ θ ≤ 1.0. The choiceθ = 0.5 yields a semi-implicit scheme whileθ = 1
leads to an implicit scheme. Unless otherwise stated, we consider a Crank-Nicolson
(CN) scheme (θ = 0.5). This scheme is strictly energy-conserving for the propagation
of linear inertia-gravity waves. In Eq. (5.22), the advection and horizontal diffusion
terms are explicit in time while the vertical diffusion termis implicit (with the vertical
eddy viscosity coefficient taken at the previous time step).The second integral in Eq.
(5.23) can be split into an integral over the depth at time step n and an integral over
the change in depth. Neglecting the latter, we simply obtain

ηn+1 − ηn

∆t
+ (1 − θ)∇ ·

∫ ηn

−d
un dz + θ∇ ·

∫ ηn

−d
un+1 dz = 0. (5.24)

In most applications, it is safe to neglect the nonlinear coupling term between the
elevation at time stepn + 1 and velocity at time stepn + 1 becauseη ≪ h. How-
ever, doing so was shown byHodges(2004) to reduce the formal accuracy of the
CN discretization to first-order in time.Hodges(2004) proposes to add a correction
term to restore second-order accuracy but also shows that the accuracy order of the
CN scheme degrades to first-order in time when the Courant-Friedrichs-Lewy (CFL)
number is greater than unity and whether or not the correction term is added. For typi-
cal time and space scales in ocean modeling, the CFL number associated with surface
gravity waves is far greater than unity and the CN accuracy reduces to first-order in
time. We therefore chose to neglect the nonlinear coupling term in Eq. (5.24).

The solution(un+1, ηn+1) can be found by solving the coupled system (5.22)-
(5.24) involving the nodal values(Un+1,Hn+1). For large-scale applications, the
computational overhead incurred by the resolution of this system becomes quickly un-
bearable. This is even more so considering the mesh is movingand the left-hand ma-
trix of the system must be recomputed at each time step. A hugegain in performance
may be obtained by splitting the dynamics into a two-dimensional depth-averaged sys-
tem for the evolution of the inertia-gravity waves and a three-dimensional system for
the vertical structure of the velocity (e.g.,Simons, 1974;Blumberg and Mellor, 1987;
Killworth et al., 1991). Those systems are sometimes called external and internal
modes, respectively.
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The external mode equations are the traditional shallow-water equations, obtained
by integrating the momentum equation (5.1) over depth and coupling the result with
the free-surface equation (5.3) written in terms of the depth-averaged velocityu:

∂u

∂t
+ f êz ∧ u + g∇η = B, (5.25)

∂η

∂t
+ ∇ · (Hu) = 0, (5.26)

whereB regroups the forcing and coupling terms originating from depth-integration
of advection and diffusion terms (see Appendix D). It is important to note that some
of these terms may be expressed in terms of the depth-averaged velocity – i.e., in
terms of prognostic variables – and therefore can be time stepped with the left-hand
side of (5.25). However, it remains unclear which terms should be time stepped and
which terms should act as depth-averaged, forcing terms. Itis context-dependent and,
in this study, advection and horizontal diffusion are time stepped. The finite ele-
ment resolution of the shallow-water equations is well documented (Le Roux et al.,
1998, 2000;Hanert et al., 2003, 2005) and will not be reproduced here. We use the
scheme proposed byHanert et al.(2005). In particular, the nodal values of the depth-
averaged velocity are located at the middle of the edges joigning elevation nodes. So,
the depth-averaged velocity is interpolated with the so-calledPNC1 element (Hua and
Thomasset, 1984). Note that this choice is coherent with the location of nodes for the
three-dimensional horizontal velocity (see Figure 4.3). Atheta-scheme applied to Eqs
(5.25)-(5.26) gives the following time discretization

un+1 − un

∆t
+ f êz ∧ un+θ + g∇ηn+θ = Bn, (5.27)

ηn+1 − ηn

∆t
+ ∇ ·

(
Hnun+θ

)
= 0. (5.28)

It is worth noticing that, unlikeHanert et al.(2005), Eq. (5.28) is not time stepped with
a leap-frog scheme. The latter is to be avoided due to the existence of computational
modes. Those could be time-filtered at the cost of breaking down consistency (Griffies,
2004), which, in our opinion, is highly undesirable.

A closer look at Eq. (5.28) indicates that the transportM (defined as the depth-
integrated horizontal velocity) whose divergence causes the change in the free-surface
elevation is given by

M = Hn
(
θun+1 + (1 − θ)un

)
. (5.29)

Even by takingθ = 0.5, the linearization in time of the termHu in Eq. (5.28)
precludes the transport from being formally centered in time. For being so, we ought
to compute the divergence ofHn+θun+θ, with θ = 0.5. Although this computation
would yield a time-centered transport, it has two drawbacks: (i) it requires the solution
of a nonlinear system and (ii) it requires to hold in memory a mesh that is centered
in time in addition to the meshes at timesn andn + 1. Therefore, we are instead
favorable to solving the linearized Eq. (5.28) for which thechange in elevation is
caused by a transport computed on the geometry at time stepn, that is Eq. (5.29)
with θ = 0.5. This leads to a much faster algorithm at the cost of a very small loss
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of accuracy. This design leads to the time staggered algorithm exposed in Section
5.3.4. The three-dimensional horizontal velocity structure (i.e., the internal mode) is
determined by solving the following equation

uk+1 − uk

∆t
+∇ ·

(
ukuk

)
+
∂

∂z

(
wmuk

)
+f êz ∧uk−Dk− ∂

∂z

(

νkz
∂uk+1

∂z

)

= 0.

wherek = n − 1/2 and in which the depth-independent elevation gradient termis
discarded because its effect on the velocity field is taken care of by the depth-integrated
system (5.27)-(5.28).

The transport computed from the three-dimensional horizontal velocity field is not
equal to the transport given by Eq. (5.29):

∫ ηn

−h
un+1/2 dz 6= Hn

2

(
un+1 + un

)
(5.30)

The origin of this discrepancy is twofold. First, we do not include the elevation gra-
dient in the equation for the three-dimensional horizontalvelocity field. Second, the
separation between the external and internal modes is not exact and, even if the ele-
vation gradient was added to Eq. (5.30), the discrepancy (5.30) would still exist. This
is due to the nonlinear coupling terms included inB in Eq. (5.27). Hence, the three-
dimensional horizontal velocity field must be corrected accordingly. Only in doing
so will the vertical velocity be compatible with the free-surface elevation and tracer
conservation consistenly ensured, as exposed in Chapter 4.

5.3.4 Overall time staggered algorithm

A schematic illustrating the time staggering of the overallalgorithm is depicted
in Figure (5.2). The elevation and tracers are known at integer time steps while the
velocity is known at half-integer time steps. The mesh geometry needs to be known
at integer time steps only. This follows from the linearization in time of the free-
surface equation (5.28) and the fact that the three-dimensional horizontal velocity field
is corrected on a mesh geometry known at an integer time step (see Eq. 5.30). To
describe the sequence of computations, we will assume that we know the variables
at the following steps:un, ηn,un−1/2, wn−1/2 andCn, whereC is any passive or
active tracer. The mesh geometry is known at stepsn − 1 andn. We will note these
geometriesMn−1 andMn, respectively. The overall algorithm is given hereafter.

1. Compute(un+1, ηn+1) knowing(un, ηn) by solving Eqs (5.27)-(5.28).

2. Compute(un+1/2) onMn kowing(un−1/2, wn−1/2) onMn−1 by solving Eq.
(5.30).

3. Correctun+1/2 so that the horizontal transport is equal to (5.29).

4. Computewn+1/2 on geometryMn knowingun+1/2 on the same geometry by
solving Eq. (5.20).

5. Update both geometries. At this point, we haveMn andMn+1.
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n − 1 n n + 1

n − 1/2 n + 1/2

u, η, C

u, w

Figure 5.2: Schematic of the staggering used between elevation and tracers (on integer time
steps) and velocity (on half-integer time steps). The mesh geometry needs to be known on
integer time steps only, which is a consequence of the transport computedby Eq. (5.28) not
being formally centered in time. The effect is that the velocity(u, w)n+1/2 is computed on
mesh geometryn. The symbolC denotes any active or passive tracer.

6. Compute any tracerCn+1 on geometryMn+1 knowing the tracerCn and the
velocity (un+1/2, wn+1/2) on geometryMn.

7. Return to step 1.

The first action undertaken to improve efficiency – namely separating the dynam-
ics into the slow and fast modes while using a single time step– has already been
described. Upon inspection of the time-stepping algorithmoutlined in the previous
section, we may identify five main computational tasks: the fast mode, the horizon-
tal velocity, the vertical velocity, the tracers and updating the mesh geometry. A few
important comments can be made regarding those tasks. We noteN2d the number of
two-dimensional triangle vertices andL the number of layers (a mesh containingL
layers means that the total number of vertices is(2L − 1) × N2d for L > 1). In a
Delaunay two-dimensional mesh, the number of horizontal edges tends to3N2d. The
overall computational cost of the algorithm may be established in terms of these two
variables:

1. The computation of(u, η) requires to solve a system of7N2d unknowns. In
a number of large-scale applications, it is legitimate to neglect the free-surface
elevation in the divergence term of Eq. (5.26). Hence, the left-hand side matrix
of the system is constant in time and needs only be factorizedonce at the onset of
the time integration. The computational cost and memory storage requirement
depend on the solver.

2. The computation of either component ofu requires to solve a system of2L ×
3N2d = 6LN2d unknowns. The factor2L is a consequence of the discontinuous
representation in the vertical. Due to the orthogonality ofthe non-conforming
basis functions in the horizontal (Hua and Thomasset, 1984), the left-hand side
matrix is banded diagonal, with a bandwidth of two. Note thatwithout vertical
momentum diffusion (which is implicit in time), the left-hand side of the linear
system reduces to a tridiagonal matrix.
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3. When solving Eq. (5.20) forw, we lump the left-hand side matrix of the system
in the horizontal to obtain a tridiagonal matrix. The numberof unknowns is
2L × N2d = 2LN2d and the computational cost scales likeO(LN2d). Note
that, although the scaling is the same as that foru, the cost of solving the system
for w is roughly 10 times smaller than for either component ofu. The reason
is that there are three times fewer unknowns forw than foru andv and that a
tridiagonal matrix needs be factorized forw instead of a banded diagonal matrix
for u andv.

4. In case we have a tracer, the number of unknowns is2L × N2d = 2LN2d and
the computational cost scales likeO(LN2d) if the left-hand side matrix of the
system is lumped horizontally.

5. The cost of updating the mesh geometry (i.e., computing the normals, the ele-
ment Jacobians and the new coordinates) is proportional to the number of ele-
ments, which scales likeO(LN2d).

Therefore, the overall computational cost of the algorithmscales likeO(LN2d). Dou-
bling the number of triangles (i.e., doublingN2d) and doubling the number of layers
will quadruple the computational cost. The total number of unknowns (with two trac-
ers) is18LN2d + 7N2d.

5.4 Convergence analysis

The numerical solution to the two-dimensional linearized shallow-water equations
is now compared with an analytical solution to the propagation of gravity waves in
a square basin of sizeL. The linearized shallow-water equations are obtained by
substitutingHn for the unperturbed depthd in Eq. (5.28). We taked = 1000 m and
L = 1000 km. The initial conditions areu = 0, v = 0, w = 0 andη = η0, where the
latter is a one-meter high Gaussian:

η0 = exp
[
−R

(
x2 + y2

)]

withR controlling the stiffness of the initial Gaussian. TheL2-norm of the error onu,
v, η andw is computed and reported in Figure (5.3) for a series of structured meshes
with descreasing element sizeh. TheL2-norm of the functione in T h is defined as

‖e‖L2(T h) =

√
∫

T h

e2 dτ .

Since we solve the two-dimensional shallow-water equations, the horizontal velocity
is depth-independent and the vertical velocity is linear, reaching its maximum at the
surface. We therefore choose to evaluate the error on the vertical velocity at the surface
only. At the cost of a slight decrease in accuracy, a significant gain in performance
is achieved by resorting to mass lumping for the vertical velocity. However, mass
lumping is only performed in the horizontal, transforming the matrix of the system
into a tridiagonal matrix. As the mesh resolution is increased, all errors decrease
quadratically (Figure 5.3).
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Figure 5.3: Convergence analysis of theL2-norm of the error onu, v, η andw on structured
meshes. The vertical velocity is computed without (⋄) and with (×) mass lumping. A quadratic
rate of convergence is observed for all variables (the slope is indicatednext to each variable).
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5.5 Application to a shallow-water island

Seeking to validate the three-dimensional barotropic component of our model, we
opted for a realistic test case. The latter had to be three-dimensional (without baro-
clinic effects) to be able to observe clear vertical motions. The momentum horizontal
advection scheme had to be severly evaluated, so a problem featuring flow sepration
and recirculation was deemed appropriate. We also wanted tocompare the model re-
sults with that of previous finite difference models and showthe effect of increased
mesh resolution. Finally, we did not want the benchmark to fall short of physical
interpretations. Hence, it had to be of interest for oceanographers and biologists.

In shallow coastal regions, flow disturbances caused by topographical features, such
as islands, headlands, reefs and narrow passages, can have strong effects on marine
ecosystems. Topographically generated circulation affects the distribution of sedi-
ments and can significantly influence the local dispersal of pelagic organisms (Hamner
and Hauri, 1981;Wolanski and Hamner, 1988;Wolanski et al., 1988;Wolanski, 1994;
Coutis and Middleton, 1999, 2002). Of particular concern are the stable shallow-water
eddies generated in the wakes of islands by oscillating tidal flows. By shallow water,
it is meant here that the ratio of the water depth to the islandwidth (facing the current)
is much less than one. Among shallow-water islands for whichstable tidal eddies are
observed, Rattray Island (Great Barrier Reef, Northeast Australia – Figure 5.5) has
been the focus of many studies in the past two decades (Wolanski et al., 1984;Fal-
coner et al., 1986;Black and Gay, 1987;Wolanski and Hamner, 1988;Deleersnijder
et al., 1992;Wolanski et al., 1996, 2003;White and Deleersnijder, in press). Aerial
photographs (Figure 5.4) show turbid water in the wake of Rattray Island both at ris-
ing and falling tides, suggesting upwelling capable of carrying bed sediments upwards
during the life span of the eddies.

5.5.1 Model setup

The domain of interest is shown in Figure (5.5). Because of its limited extent, the
f -plane approximation is made with the latitude being 20oS. The roughness length
is taken to beξ0 = 5 × 10−3 m in Eq. (5.9) (Black and Gay, 1987). Because the
last velocity node lies on the seabed, the bottom stress (5.9) is computed by using the
mean value of the last two velocity nodes. The distance to theseabedξb is calculated
accordingly. We neglect surface stress as there was no significant wind during the
field survey (Wolanski et al., 1984). The constantcs used in the parameterization of
the horizontal momentum diffusion coefficient, Eq. (5.4), typically lies in the range
0.05 − 0.1. It is on the same order of the value recommanded bySmagorinsky(1963)
and smaller than that used in usual finite element models suchas that ofLynch et al.
(1996).

The currents are dominated by the tides, whose ellipses are strongly polarized and
essentially oriented from northwest to southeast (Wolanski et al., 1984). They-axis
of the domain is rotated to be parallel to the major axis of theellipses. We may thus
assume the side boundaries to be impermeable. The southeastand northwest bound-
aries – hereafter referred to as lower and upper boundaries,respectively – remain open.
Using available field measurements, the depth-averaged normal velocity and the eleva-
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Figure 5.4: Eddy formation in the wake of Rattray Island during flood tide (photo courtesy of
Eric Wolanski).
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Figure 5.5: Rattray Island is located in the Great Barrier Reef (Northeast Australia).On the
right panel, the domain of interest is represented in the(x, y) reference framework. Rattray
Island is the black area at the center. Depths are in meters.
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tion are imposed at both the lower and upper boundaries by prescribing the incoming
characteristic variablēun − η

√

g/h, whereūn is the depth-averaged normal velocity.
This is the so-called Flather boundary condition (Flather, 1976;Ruddick et al., 1994).
The phase lag between both boundaries is small and neglectedin the model. Forcing
used in the model corresponds to a 3.5 m spring tide recorded between 23 November
1982 and 4 December 1982. Rising tide flows southeastward. All results below are
presented on 4 December 1982. This is the only day (with 2 December) for which all
currentmeters were deployed.

5.5.2 Results and discussion

The model was run on meshesM1, M2 andM3 of Figure (5.6) with 6, 8 and 10
layers, respectively. The time step is 10 s, 3 s and 1 s, respectively. It is constrained by
advective processes off the island’s tips where the speed approaches 1 m s−1 where
the mesh resolution is typically the highest (e.g., less than 10 meters on meshM3). In
all experiments, the Smagorinsky constantcs is equal to 0.08.

Flow pattern

In Figures (5.7)-(5.8), the velocity field predicted by the model is compared with
that measured at 25 locations where current meters were deployed and at three differ-
ent times during rising tide. As can be seen in Figure (5.7), when using meshM1 (the
coarsest), the model is unable to faithfully predict the recirculation pattern in the wake
of the island. In particular, at 9h30, the model predicts a very sluggish flow close to
the island whereas a swifter flow, parallel to the island, wasmeasured in the field. At
11h30, the model reproduces the clockwise-rotating eddy inthe island’s wake. How-
ever, the recirculation strength closest to the island is too weak by roughly 50 percent
and the eddy is too narrow. As depicted by field measurements (and suggested by
aerial photographs), the right-hand side eddy should extend across the entire wake
and should keep growing until the time of tide reversal. However, a vector plot of the
modeled velocity field (not shown) accounts for two counter-rotating eddies within
the island’s wake. The left-hand side eddy is too large and, by the time of tide reversal
(about 13h45), it has grown to a size and intensity similar tothat of the right eddy.
However, the velocity field taken at measuring sites does notsuggest the existence of
an eddy of that size on the southern side of the island at rising tide.

Results obtained on meshM2 and shown in Figure (5.8) present a higher degree
of similarity. All features pertaining to the measured velocity field are found in the
model. The recirculation intensity is larger than that obtained with the coarser mesh
and quite similar to that of the measured field. The right-hand side eddy is larger
and well reproduced by the model. It extends across the entire island’s wake. This is
particularly obvious at 13h45. The velocity field obtained with meshM3 (not shown)
is basically the same as that obtained with meshM2, which corroborates the previous
model output.

In Figure (5.9), we compare the predicted velocity field for the three meshes on
4 December 1982. The circulation patterns obtained with meshesM1 andM2 are
quite different, as was already made obvious through comparison of Figures (5.7) and
(5.8). Although two counter-rotating eddies are predictedwith both meshes, the right-
hand side eddy is larger for meshM2, complying with field measurements as we have
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Figure 5.6: From left to right, the meshes contain approximately 6100, 14,000 and 18,600
triangles, respectively. The resolution for the left mesh (M1) varies from 80 m to 600 m. The
resolution for the center mesh (M2) varies from 40 m to 600 m and for the right mesh (M3),
it varies from 20 m to 400 m. The main difference between the center and right meshes is
a higher resolution around the island and a smoother transition (from the island toward the
domain boundaries) for the right mesh. At the bottom:M1-extruded, three-dimensional mesh
with smaller vertical spacing near the seabed.
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9h30 (meas.)
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11h30 (meas.)
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13h45 (meas.)
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9h30 (model on M1)
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11h30 (model on M1)

0.5 m s−1

13h45 (model on M1)

Figure 5.7: Comparison between the measured velocity field (left panels) and that predicted by
the model (right panels) on meshM1 (the coarsest of the three meshes) at three different times
on 4 December 1982. High water level occurs just before 13h45.
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13h45 (model on M2)

Figure 5.8: Comparison between the measured velocity field (left panels) and that predicted
by the model (right panels) on meshM2 (the intermediate mesh in terms of resolution) at three
different times on 4 December 1982. Hight water level occurs just before 13h45.
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M1 M2 M3

Figure 5.9: Comparison between the numerical predictions on the three meshes (M1 to M3

from left to right) on 4 December 1982 at 13h10. Notice how the circulationpattern differs
between meshesM1 andM2 and is barely altered when using a finer mesh (M3). The velocity
field has been interpolated on a 160 m× 160 m structured mesh.

wuw

wus

w

1

Figure 5.10: The total vertical velocityw can be split into a topography-induced component,
the so-called upsloping velocity (wus) and the upwelling velocity (wuw), due to intrinsic up-
welling mechanisms.

already stressed above. The circulation pattern obtained on meshM3 is very similar
to that obtained on meshM2, even though the resolution is halved in the vicinity of
the island. This is a clear indication of the convergence properties of the model for
this application. It should be borne in mind that both the bathymetry and the island
geometry play a role in shaping and sizing the eddies. Running the model without
bathymetry (not shown) gives rise to two eddies of similar size.

Upwelling and downwelling

In a three-dimensional model, intrinsic upwelling and downwelling mechanisms
can be detected by resorting to the concept of upwelling velocity described byDeleer-
snijder (1989) and used byDeleersnijder(1994) andWhite and Deleersnijder(in
press). The upwelling velocity is the component of the vertical velocity from which
we subtract the topography-induced component (see Figure 5.10). In what follows,
the upwelling velocity is always computed at mid-depth.

In Figure (5.11), we show the upwelling velocity on the threemeshes. For the
top panels, we consider a range of[−20, 10] mm s−1 while for the lower panels, we
restrict the range to[−6, 3] mm s−1. The coarse mesh is unable to capture any of
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M1 M2 M3

Figure 5.11: Upwelling velocity in [mm s−1] for the three meshes. Notice how the coarse
mesh fails at capturing the intense vertical motions off the right island’s tip.

the intense downwelling and upwelling processes that are resolved on the two other
meshes (see the top panels). In particular, we can see that intense upwelling extends
further downstream – and recirculates within the wake – whencomputations are car-
ried out on the finest mesh. Note that much less intense zones of upwelling are already
predicted on the coarse mesh (see bottom left panel). This upwelling is on the order
of 1 to 2 mm s−1 , which is at least one order of magnitude smaller than the upwelling
predicted off the northern island’s tip.

Upwelling and downwelling at four different times during rising tide is depicted
in Figure (5.12) for the finest mesh. A key feature in all snapshots is the presence
of an intense upwelling zone (> 20 mm s−1) off the northern island’s tip. Strong
downwelling also occurs downstream of the right tip and is confirmed by observa-
tions (Wolanski, personal communication, 2006). Weaker upwelling is also predicted
downstream of the left tip (not visible with the range considered).

A comparison between five three-dimensional, finite-difference models for rep-
resenting the tidal flow around Rattray Island is reported byWolanski et al.(2003).
All models used the same bathymetry, the same horizontal resolution (200 m) and the
same forcing at open boundaries. They all predicted an upwelling near the center of
the eddies on the order of 1 mm s−1. According toWolanski et al.(2003), the up-
welling intensity near the eddy center must be at least 5 mm s−1 to account for the
presence of bed sediments near the free surface (the eddy lives for about 2 hours). The
results obtained with our finite element model shows that, regardless of the horizontal
mesh resolution, we predict upwelling of less than 2 mm s−1 near the eddy center.
However, during both tidal phases, intense upwelling> 20 mm s−1 is predicted off
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9h50

12h00

11h00

13h10

Figure 5.12: Upwelling velocity [mm s−1] at four different times on 4 December 1982 during
rising tide on meshM3. Notice the intense upwelling off the right tip in all spapshots.
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the island’s northern tip. This upwelling could be responsible for carrying bed sedi-
ments upwards, given that this vertical motion exists for atleast two hours (see Figure
5.12). Once reaching the surface, those fine sediments are trapped in the flow and re-
circulates within the wake. This could explain the high turbidity of the water observed
during rising tide. These findings confirm the results obtained recently byWhite and
Deleersnijder(in press), who used a diagnosis based on the age to quantify the time
needed for bottom water masses to reach the surface.

5.6 Conclusions

We have presented a new three-dimensional, unstructured mesh finite element ma-
rine model. The current configuration is suitable for studying flows without baroclinic
effects. The model has a free surface and is hydrostatic. Themesh is unstructured in
the horizontal and moves in the vertical to track the free-surface motions. We have
described the numerical treatement of the hydrodynamical equations with the finite
element method. The model was validated against a realisticflow around a shallow-
water island for which field measurements were available. Asthe mesh resolution was
increased, the model was able to predict the correct velocity field in the island’s wake.
Very intense upwelling was also predicted off the northern island’s tip during ebb and
flood. We suggested that this upwelling might be the main cause for the presence of
mud at the surface, rather than the much weaker upwelling predicted near the center
of the eddies.
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Chapter 6

Diagnosing vertical transport in
a 3D marine model

Summary
Diagnoses based on the concept of age are considered to quantify
vertical transport in a three-dimensional finite element model for
the tidal flow around an island. Two types of age for the bottom
water are defined. The first age is a measure of the time elapsed
since the bottom water left the seabed. The second age is the time
required for the bottom water to travel from the seabed to the sea
surface. Results are interpreted.

Marine flows are so complex that it is often very difficult to gain insight on their
functioning by simple inspection of the model results. The latter are typically analyzed
by resorting to two-dimensional cuts at some given times, the choice of which are left
to the user’s appreciation and feeling. All processes are not only three-dimensional
but also time-dependent and a big picture of the flow is usually missing when opting
for this simplistic approach. In addition, focusing on a single variable sometimes fails
at taking into account the interactions between processes.Singling out one variable
merely allows for pinning down one component of a given process that typically in-
volves several variables. In the end, we are left with the impression that only a tiny
portion of the model results has been exploited.

The use of other interpretation techniques to understand the results of such complex
models is deemed necessary. Among these techniques are auxiliary timescales such
as the age and the residence time. These timescales are inherent properties of the
flow and may be evaluated diagnostically (Delhez et al., 1999) to help understand the
processes under consideration. In addition, the associated diagnoses are holistic in that
they account for several processes and for the interactionsbetween several variables.
A historical review for the use of these timescales is beyondthe scope of the present
work and can be found elsewhere (Delhez et al., 1999;Deleersnijder et al., 2001;
Delhez et al., 2004). In this chapter, we present an application of the ageto diagnose
vertical transport in a tidal flow in the vicinity of a shallow-water island. We do not
intend on laying out the theoretical framework for the age and residence time but
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refer the reader to appropriate contributions (Deleersnijder et al., 2001;Delhez and
Deleersnijder, 2002)

In the previous chapter, the three-dimensional model SLIM was applied to study
the tidal flow around Rattray Island. The model predicted some upwelling near the
center of the eddies in the wake of the island, both during flood and ebb. However, we
were also able to predict much stronger upwelling off the island’s tips. There is now
little doubt that the flow around the island is strongly three-dimensional. However,
if strong vertical motions exist in the vicinity of the island, we might wonder which
one in particular could be responsible for the suspension ofsediments in the island’s
wake. The best answer would probably be provided by a sediment transport model
that would take into account the buoyancy of the particles. However, before rushing
into the application of such a model, we might want to resort to a simpler diagno-
sis, yet sophisticated enough to account for all physical processes, and their history,
responsible for vertical transport.

6.1 Methods

The concept of age, which is a component of CART1 (Delhez et al., 1999;Deleer-
snijder et al., 2001; Delhez and Deleersnijder, 2002) provides such a holistic ap-
proach. The age of a particle of seawater is defined as the timeelapsed since the
particle under consideration left the region in which the age is prescribed to be zero.
The basic observation that the water is turbid in the island’s wake leads to the sim-
ple, following two questions. How much time does it take bottom water to reach the
surface during ebb and flood ? And where does this bottom wateroriginate ? In this
context, bottom water is composed by those water particles touching the seabed at a
given time. In that respect, bottom water can be viewed as a passive tracer and its
age is set to zero when it touches the seabed. Note that it is not uncommon to regard
water masses as passive tracers (Cox, 1989;Hirst, 1999;Goosse et al., 2001). Once
the water particles leave the seabed and rise, carried upwards by some upwelling, the
age increases. Depending on the fate of these water particles when they touch the sea
surface, we end up with two different ages. The first age of a sample of water particles
is defined as the arithmetic average of the times that have elapsed since the particles
left the seabed for the last time. The age of a water particle keeps increasing as long
as it does not touch the seabed again. Once a water particle touches the seabed, its
age is reset to zero. Hence, the first age answers the more intuitive question as to how
old bottom water is at the surface. The second age is defined tobe the time needed to
travel from the seabed to the sea surface. Similarly to the first type of age, the age of
a water particle is reset to zero when it touches the seabed. However, once the water
particle touches the sea surface, it is disregarded until ittouches the seabed again. This
key difference between both types of age is illustrated in Figure (6.1). From now on,
all variables associated with the type of agei will have a subscripti. The ages will be
referred to as age 1 and age 2.

1Constituent-oriented Age and Residence time Theory,http://www.climate.be/CART
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t

t1
t2

t3

Sea surface

Figure 6.1: A water sample containing three water particles is taken at the sea surface at time
t. Each particle has a different history, as illustrated by their trajectories. For the first type of
age, the age keeps increasing as long as the particle does not touch the seabed again. Therefore,
the first age isa1 = [(t − t1) + (t − t2) + (t − t3)] /3. For the second age, the particle is
disregarded when it touches the sea surface. Therefore, only the first particle need be accounted
for: a2 = (t − t1).

To compute the age, we have to solve advection-diffusion equations for the bottom
water concentrationCi and the age concentrationαi. Once those two variables are
known, the ageai is given as the ratio of the age concentration to the water concen-
tration:

ai =
αi
Ci

(i = 1, 2). (6.1)

The water concentrationCi is solution to (Delhez et al., 1999)

∂Ci
∂t

+ ∇ · (uCi) +
∂

∂z
(wCi) =

∂

∂z

(

Kz
∂Ci
∂z

)

+D (i = 1, 2), (6.2)

whereKz is the vertical eddy diffusivity coefficient andD parameterizes turbulent
horizontal diffusivity with a Smagorinsky scheme similar to Eq. (5.4). The age con-
centrationαi obeys the following equation (Delhez et al., 1999):

∂αi
∂t

+ ∇ · (uαi) +
∂

∂z
(wCi) = Ci +

∂

∂z

(

Kz
∂αi
∂z

)

+D (i = 1, 2), (6.3)

where the water concentrationCi is the so-called aging term. Note that the water
concentration varies between0 and1. Boundary conditions are yet to be prescribed
to close the system. Because the vertical eddy diffusivity at the bottom is zero, it is
convenient to introduce a bottom roughness lengthξb. This is similar to the roughness
length introduced for the computation of the bottom stress.We may similarly define
a surface roughness lengthξs. The bottom and surface boundary conditions will be
enforced atzb = −h+ ξb andzs = η − ξs. At sea bottom, the water concentration is
1 and the age concentration is0 for both ages:

[Ci]z=zb
= 1 and [αi]z=zb

= 0 (i = 1, 2), (6.4)
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which translates the fact that we want to track water particles that leave the seabed
with the age reset to 0. At the sea surface, we have to distinguish between age 1 and
age 2. Since the free surface is impermeable to the first age, we have

[

Kz
∂C1

∂z

]

z=zs

= 0 and

[

Kz
∂α1

∂z

]

z=zs

= 0, (6.5)

which means that age 1 keeps increasing even when water particles touch the free
surface. For the second age, we have to implement the fact that once a particle touches
the surface, it is disregarded. In other terms, the water concentration is zero at the
surface:

[C2]z=zs
= 0. (6.6)

Now, the age concentration is defined by (Delhez et al., 1999)

α2 =

∫ ∞

0

c2(x, y, z, t, τ) dτ,

wherec2 is the water concentration distribution function andτ is the age variable, that
is an independent variable not to be confused with the mean age a. Since the water
concentration is assumed to be zero at the surface,c2 is zero and so isα2:

[α2]z=zs
= 0. (6.7)

The conditions applied on lateral boundaries depend on whether they are closed or
open. Along closed boundaries, a no-flux condition is enforced on the water and age
concentrations. At outflow open boundaries, both the water and age concentrations
are advected out of the domain. At inflow open boundaries, incoming water and age
concentrations must be prescribed to compute the advectiveflux. The incoming water
(age) concentration is taken to be the mean outgoing water (age) concentration. In
other terms, the incoming age is prescribed to be the mean outgoing age, leading to
periodic boundary conditions on the age in the mean sense. This is based on the hy-
pothesis that horizontal age constrasts appear close to theisland and that homogeneity
prevails far away from it.

At this point, two remarks can be formulated.

(i) We will take the vertical eddy diffusivity coefficientKz to be equal to the vertical
eddy viscosity coefficientνz. In other words, the Prandtl number – which is the
ratio of viscosity to diffusivity – is assumed to be equal to one. This hypothesis
is generally accepted for unstratified fluids and it therefore applies to Rattray
Island (Munk and Anderson, 1948).

(ii) The computation of age 2 at the surface implies to evaluate an indeterminate
limit of type 0/0. We have to make sure that the limit exists.

Some numerical issues associated with the computation of both types of age, such as
the existence of the bottom logarithmic layer, are addressed in detail byWhite and
Deleersnijder(in press) and are not reproduced here.
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6.2 Results and discussion

For the computation of the age, the coarsest mesh of Figure (5.6) was employed
with 16 layers in the vertical based on sigma-coordinates. Figures (6.2) and (6.3) show
ages 1 and 2, respectively, at the surface, at four differenttimes during a tidal cycle.
Note that experiments on extended meshes (in the free streamdirection) have been
made to assess the sensitivity of the predicted age on the distance at which boundary
conditions are imposed. In all cases, the predicted age remains within a few percent of
that computed with the original mesh (not shown). Hence, theboundaries are located
far enough from the island. At the onset of the simulation, the water concentration
is prescribed to be the solution of the water-column model presented byWhite and
Deleersnijder(in press). The initial age concentration is zero. For age 1,the water
concentration is never computed and remains equal to one throughout the domain and
at all time. For age 2, both the water and age concentrations are computed.

Let us first concentrate on age 1. A striking feature is visible in Figure (6.2a) and
(6.2c), where bottom water (the blue elongated patches) emanates off the island’s
tips. This water is less than one hour old at both tips. The fact that the age of the
bottom water is roughly the same off both island’s tips can beexplained by the depth
difference. Off the right tip, the depth is about 30 m while off the left tip, it is about
15 m. However, upwelling on the right is found to be at least twice as intense as
that on the left, which could explain the resulting symmetry. When the tide keeps
rising, some of the bottom water recirculates within the island’s wake while the rest
is advected downstream. At the end of rising tide, age 1 is about two to three hours
downstream of the island, as shown in Figure (6.2b). Finally, at the end of falling tide,
the age varies between three to four hours with a few exceptions of younger water
located near the centers of both eddies. The age of these patches is about two hours.
This is shown in Figure (6.2d). Since the age of bottom water within the island’s
wake shortly before tide reversal is roughly three hours, itcould be hypothesized that
this water mainly originates from the island’s tips when thefree-stream speed is large
enough to initiate upwelling.

The interpretation of age 2 at the surface is more delicate. Although not as definite
as for age 1, we may also discern young patches originating from the island’s tips
in Figures (6.3a) and (6.3c). Along the downstream edge of the island, a patch of
older water is visible (reddish patch). These patches coincide with regions of very
low horizontal velocity, as can be seen on the right panels showing the depth-averaged
velocity field. Because of less intense circulation, vertical diffusion decreases, which
has a direct impact on the age. Finally, shortly before tide reversal, age 2 behaves
rather counter-intuitevely. The surface age pattern seemsto be opposite to that for age
1 (see Figures (6.2b) and (6.3b)). The largest values of the surface age is found around
the centers of the eddies, where the upwelling velocity is large. This is strinkingly
clear for the left-hand side eddy in Figure (6.3b) and the right-hand side eddy in Figure
(6.3d). This counter-intuitive behavior motivated an investigation on the effect of
vertical advection on the age within eddies. Using a one-dimensional water-column
model,White and Deleersnijder(in press) showed that flows characterized by a certain
range of positive vertical Peclet numbers undergo an increase in age 2 at the center of
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a. Dec. 01 8h00

c. Dec. 02 15h00

b. Dec. 01 10h40

d. Dec. 02 18h20

Figure 6.2: Age 1 (age of bottom water) in hours at four different times: a. peak flood velocity,
b. tide reversal, c. peak ebb velocity, d. tide reversal. The velocity field (vectors) is interpolated
on a structured grid for clarity.
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a. Dec. 01 8h00

c. Dec. 02 15h00

b. Dec. 01 10h40

d. Dec. 02 18h20

Figure 6.3: Age 2 (time taken by bottom water ro reach the surface) in hours at four different
times: a. peak flood velocity, b. tide reversal, c. peak ebb velocity, d. tidereversal. The velocity
field (vectors) is interpolated on a structured grid for clarity.
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the eddies. A typical value for the vertical Peclet number within an eddy in the wake
of Rattray Island is one, which explains the predicted behavior.

6.3 Conclusion

The pattern of age 1 at the surface confirms the presence of intense upwelling off
the island’s tips. Most importantly, the value of age 1 at thesurface, downstream of
the island and shortly before tide reversal, suggests that the water at the surface orig-
inate from the tips of the island and recirculate within the wake. The role of the age
in explaining this circulation pattern is crucial as the latter could not readily be pro-
posed by a simple look at the upwelling velocity. Furthermore, this flow description is
somewhat in contradiction with the sketch proposed byWolanski and Hamner(1988),
in which upwelling only takes place within the eddies. The results presented in this
work motivate further research toward a better understanding of the three-dimensional
flow circulation around shallow-water islands.

The pattern pertaining to age 2 also exhibits upwelling off the island’s tips. How-
ever, within the eddies where upwelling velocity is the largest, the surface age in-
creases. This counter-intuitive behavior was validated bya simplified water-column
model including both advection and diffusion. Nevertheless, at this stage, the effect of
advection upon age 2 remains physically not well understood. Drawing conclusions
based on age 2 is not straightfoward and, undoubtedly, requires additional effort.
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Chapter 7

Conclusion and perspectives

In this research work, conducted under the auspices of the SLIM1 project, we have
developed a three-dimensional, marine model using the finite element method. The
model solves the hydrostatic primitive equations. The three-dimensional mesh is made
up of prisms and is obtained by extruding an unstructured, triangular two-dimensional
mesh. The free-surface dynamics is included in the model andthe computational do-
main is dynamically deformed to accommodate the free-surface motions. The interior
mesh motion is unconstrained and can be regulated by any criterion that is deemed
appropriate (e.g., isopycnal coordinates). At large scales, the computational domain
motion allows for resolving the dynamics incurred by freshwater fluxes (precipitation
and evaporation). At smaller scales, it allows for taking into account the layers thin-
ning and thickening undergone by tidal dynamics. Potentially, the mesh motion would
also permit the inclusion of a wetting and drying algorithm.

In its current version, the model lacks a baroclinic component. However, it is con-
ceived in such a way that any tracer can readily be added and will evolve in a conserva-
tive fashion. In addition, the finite element discretization of the elevation, continuity
and tracer equations is consistent. Hence, a uniform tracerconcentration remains
equal to the initial value at all time, no matter which dynamics is considered but pro-
vided that there is no source term and no boundary flux. To achieve these properties of
conservationand consistency while using a stable mixed formulation, the following
interpolations are used in the horizontal. The horizontal components of the velocity
are linear and non-conforming (PNC1 ). The elevation, the vertical velocity and all
tracers are linear (P1). We have almost unlimited freedom regarding the interpolation
in the vertical, except that it must be the same for the vertical velocity and the tracers.

The development of the three-dimensional structure of the future OGCM SLIM has
always been the main objective. Nevertheless, in fulfillingthis objective, secondary
problems were addressed. We evaluated some finite element methods for the resolu-
tion of the equations for the external mode using a challenging benchmark. The dis-
continuous Galerkin method outperformed the other methodsprovided that the right
numerical fluxes were computed. This very test case was especially enlightening to

1Second-generation Louvain-la-Neuve Ice-ocean Model,http://www.climate.be/SLIM
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understand how Riemann solvers work in dimensions higher than one by projecting
the equations along the one-dimensional normal to the edge (in 2D) or face (in 3D).
We further assessed the barotropic component of the model inresolving barotropic
instabilities. The equations solved were inviscid, makingit challenging for numer-
ical methods designed to resolve advective processes with some kind of numerical
stabilization. In that case, the mesh resolution must be sufficiently high to prevent
numerical dissipation from inhibiting the growing of physical instabilities.

During this doctoral research, we have developed some structural components of
SLIM. Nevertheless, the model still lacks many features of afull-fledged OGCM, cou-
pled with a sea-ice model, set out as objective by 2009. The SLIM team, comprising
11 PhD students and 4 supervisers at the time of this writing,is more active than ever
at fulfilling this objective. In theshort term (within a year and a half), the model must
be enhanced to operate in spherical geometry, with no constraint from any horizontal
coordinate system whatsoever. The barotropic component must be fully validated on
the basis of some or all of the seven Williamson test cases (Williamson et al., 1992).
Within the same time frame, the baroclinic component must bedeveloped and vali-
dated. This entails devising an advection scheme for tracers that is as monotonic as
possible to avoid the occurrence of unphysical extrema. We will also need to investi-
gate the necessity of stabilizing (following e.g.,Ilinka et al., 2000) the advection term
for the tracer equation (aP1 discretization is not optimal for advection-dominated
flows). An adequate element for the baroclinic pressure mustalso be selected. Ap-
propriate test cases should include realistic benchmarks.In order to run the model on
large domains without too much constraint on mesh resolution, the current code must
be modified so that the model is able to run on parallel computers.

In the medium term (within two years), the full three-dimensional, baroclinic
model will have to be tested in spherical geometry on the world ocean. Preliminary re-
sults should be validated by using diagnoses in terms of transports across typical straits
(Drake, Indonesia, etc.) and poleward heat fluxes. This validation process will require
a long period of fine parameterization tuning and should start as early as possible. The
aforementioned diagnoses should be performed using adequate interpretation tech-
niques, such as the age (Deleersnijder et al., 2001;Delhez and Deleersnijder, 2002),
which should be built-in within the model. The choice of vertical coordinates will
have to be carefully thought out. Terrain-following coordinates are better suited for
flows in shallow seas than for the large-scale circulation inthe oceans. An approach
based onz-coordinates is probably more appropriate to avoid numerical errors in the
computation of the horizontal pressure gradient (Haney, 1991). However, to avoid a
staircase representation of the seabed and to circumvent the constraint of using the
same number of prisms in adjacent columns, non-conforming prisms (with hanging
nodes, seeRivière and Girault(2006)) could be employed, preferably in the interior
of the ocean where the dynamics is less active and less prone to inducing numerical
errors. Developments regarding this mesh setup in three dimensions should begin at
the start of the second year. Hence, the technique should probably be first mastered in
two dimensions during the first year. Coupling the finite element sea-ice model with
the ocean model should begin during that second year as well.
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In the longer term (beyond two years from now), steps toward adaptive modeling
will have to be taken. This includes mesh adaptivity withoutwhich the full potential of
the finite element method will not be unleashed. However, if dynamic mesh adaptiv-
ity is tempting, it also brings about complications in termsof interpolations between
meshes that must be mass- and tracer-conserving. Mesh adaptivity – in addition to a
varying mesh resolution in space – raises the question of determining how to dynam-
ically adapt the model subrid-scale parameterizations, not only in space but also over
time. Great care will have to be taken to ensure that the physical processes we seek to
resolve regulate the numerical method, and not the other wayaround ! In that respect,
mesh adaptivity is extremely delicate and must be considered with great care. In prin-
ciple, adaptive modeling consists in much more than simply adapting the mesh and the
underlying parameterizations. The set of equations could legitimately be adapated in
the course of the simulation to account for those physical processes that could be re-
solved as the mesh resolution allows for it. Although the large-scale ocean circulation
is very well approximated by solving the hydrostatic equations, a few non-hydrostatic
processes (e.g., deep convection (Marshall et al., 1997)) could be resolved locally by
adapting the mesh and the equations (we would then locally solve the non-hydrostatic
primitive equations). Because SLIM aims at being a multi-purpose marine model, ca-
pable of being applied to estuaries, coastal oceans and ocean basins, non-hydrostatic
modeling should be on the agenda in the longer term. This state of mind is reinforced
by the belief that the computational power of future computers will allow to run sim-
ulations on higher resolution meshes for which the hydrostatic approximation might
become questionable.
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Appendix A

Complementary material to
Chapter 2

A.1 Analytical solution

The solution to (2.6) on[0, 1], subject to an arbitrary initial condition on the eleva-
tion, sayη0(x), is developed herein. Using the method of seperation of variables, we
defineu(x, t) to be

u(x, t) = F (x)T (t)

so that replacingu by that product into (2.6) yields

T ′′F + TF = α2TF ′′

or
T ′′

T
= α2F

′′

F
− 1 = C

whereC is a constant expressing the fact that both sides of the first equality must not
depend upon neitherx nor t. The solution to the time-dependent part,T (t), must be
of the form

T (t) = A sin(ωt)

to account for the initial condition onu. Note that the constantC is deemed negative
to avoid growing exponential-type solutions in time. By twice differentiatingT , the
constantC is found to be:C = −ω2. The space-dependent part,F (x), obeys

F ′′ = −ω
2 − 1

α2
F,

where it is required thatω2 > 1 to avoid an exponential dependence onx, which could
not satisfy the boundary conditions. For the same reason, solutions involving cosine
cannot exist. Thus, we have

F (x) = B sin(kx),
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wherek2 = ω2−1
α2 . Now, to satisfy both boundary conditions, we must havek = kn =

(2n − 1)π, which constrainsω to ω = ωn =
√

1 + α2k2
n. Combining the time and

space dependences, the velocityu(x, t) is given by an infinite sum of those harmonics:

u(x, t) =

∞∑

n=1

Dn sin (ωnt) sin (knx), (A.1)

where the constantDn is to be determined. To do so, we may write Eq. (2.3) att = 0:

α2 ∂η

∂x
= −∂u

∂t

= −
∞∑

n=1

Dnωn sin (knx).

This equality is satisfied provided that the initial elevation fieldη0(x) take the follow-
ing form

η0(x) =

∞∑

n=1

Hn cos (knx),

where the coefficientsHn are given by

Hn = 2

∫ 1

0

η0(x) cos (knx) dx. (A.2)

Thus, for eachn, we have

Dn =
α2kn
ωn

Hn

and the final expression foru(x, t) is

u(x, t) =
∞∑

n=1

Hn
α2kn
ωn

sin (ωnt) sin (knx). (A.3)

Now thatu(x, t) is known, we may seek the expression forv(x, t) by using Eq. (2.4)
and the initial conditionv(x, 0) = 0, which yields

v(x, t) =
∞∑

n=1

Hn
α2kn
ω2
n

[cos (ωnt) − 1] sin (knx). (A.4)

Finally, the elevation fieldη(x, t) is easily infered from Eq. (2.3). A few algebraic
manipulations lead to

η(x, t) =
∞∑

n=1

Hn cos (knx)

{

1 − α2k2
n

ω2
n

[1 − cos (ωnt)]

}

. (A.5)

Depending on the initial condition, an analytical expression can be found forHn. For
the sign function, coefficientsHn amount to

Hn =
4(−1)n

kn
.
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A.2 Details on the variational statement for DG

We focus on the continuity equation to show how formulations(2.14) and (2.15)
are derived. Integration by parts of the term involving the spatial derivative generates
an extra term, as shown hereafter:

Ne∑

e=1

∫

Ωe

∂un

∂x
η̂ dx = −

Ne∑

e=1

∫

Ωe

un
∂η̂

∂x
dx+

Ne∑

e=1

|unη̂|∂Ωe
. (A.6)

The last sum of (A.6) may be expanded so that the index now runson physical nodes:

Ne∑

e=1

|unη̂|∂Ωe
=

Nv∑

i=1

{
un(X−

i )η̂(X−
i ) − un(X+

i )η̂(X+
i )
}

=

Nv∑

i=1

{〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] 〈η̂(Xi)〉} ,
(A.7)

where〈f(Xi)〉 and[f(Xi)] are the average and jump off at physical nodeXi, defined
as

〈f(Xi)〉 =
1

2

(
f(X−

i ) + f(X+
i )
)

[f(Xi)] = f(X−
i ) − f(X+

i ).

The last sum of (A.7) is obtained from the following equality:

ac− bd =
1

2
(a+ b) (c− d) +

1

2
(a− b) (c+ d) .

Next, the sumS2 in (2.13) may be rewritten so as to run on physical node indices as
well. We have

Ne∑

e=1

|a(η̂) [un]|∂Ωe
=

Ne∑

e=1

a
(
η̂(X−

e+1)
)
[un(Xe+1)] − a

(
η̂(X+

e )
)
[un(Xe)]

=

Nv∑

i=1

[a(η̂(Xi))] [u
n(Xi)] .

(A.8)
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Combining (A.6), (A.7) and (A.8) yields formulation (2.14). Finally, we arrive at
formulation (2.15) by putting together both sums. That is, we can write

Nv∑

i=1

〈un(Xi)〉 [η̂(Xi)] + [un(Xi)] 〈η̂(Xi)〉 +

Nv∑

i=1

[a(η̂(Xi))] [u
n(Xi)]

=

Nv∑

i=1

〈un(Xi)〉 [η̂(Xi)]

+

Nv∑

i=1

[un(Xi)]

(

〈η̂(Xi)〉 +

(

λ− 1

2

)

η̂(X−
i ) −

(

λ+
1

2

)

η̂(X+
i )

)

=

Nv∑

i=1

〈un(Xi)〉 [η̂(Xi)] +

Nv∑

i=1

[un(Xi)]λ [η̂(Xi)]

=

Nv∑

i=1

[η̂(Xi)] 〈un(Xi)〉λ ,

(A.9)

where〈f(Xi)〉λ is a weighted average:

〈f(Xi)〉λ =

(
1

2
+ λ

)

f(X−
i ) +

(
1

2
− λ

)

f(X+
i ).
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Appendix B

Complementary material to
Chapter 3

Any given zonal shear flow(ū(y), 0) – henceforth called basic state – is solution to
thesteady-statenonlinear system of equations (3.4)-(3.6), provided that the elevation
η̄ be in geostrophic equilibrium. In this case, the equations reduce to

(1 + βy)ū(y) = −dη̄
dy
,

whereuponη(y) can be solved for, up to an arbitrary additive constant. Now,given
such a basic flow(ū(y), 0, η̄(y)), and beyond knowing whether it is stable or not, we
are interested in the evolution of perturbations(u′, v′, η′) of this basic state. We may
recast the problem unknowns in terms of sums of (known) basicstate variables and
perturbations unknowns, the latter being much smaller in amplitude than the basic
state variables. We thus rest within the realm of linear stability analysis insofar as all
products of perturbation variables may safely be neglected. In so doing, we have

u(x, y, t) = ū(y) + u′(x, y, t),

v(x, y, t) = v′(x, y, t),

η(x, y, t) = η̄(y) + η′(x, y, t),

and substituting these variables into (3.4)-(3.6) yields the following linearized evolu-
tion equations for the perturbations

∂u′

∂t
+ ū

∂u′

∂x
+ v′

dū

dy
− (1 + βy)v′ = −∂η

′

∂x
, (B.1)

∂v′

∂t
+ ū

∂v′

∂x
+ (1 + βy)u′ = −∂η

′

∂y
, (B.2)

∂η′

∂t
+ α2 ∂u

′

∂x
+ α2 ∂v

′

∂y
= 0. (B.3)
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Wavy disturbances in thex-direction are solutions to (B.1)-(B.3):

u′(x, y, t) = U(y)eik(x−ct),

v′(x, y, t) = V (y)eik(x−ct),

η′(x, y, t) = H(y)eik(x−ct).

wherek is the zonal wavenumber,c = cr + ici is the complex phase speed andkci
denotes the growth rate. Substituting these expressions into (B.1)-(B.3) yields the
following coupled system of ordinary differential equations (ODEs) inU(y), V (y)
andH(y):

− kc U(y) + ik ū U(y) − (1 + βy)V (y) = − ik H(y),

− kc V (y) + ik ū V (y) + (1 + βy)U(y) = − dH

dy
,

− kc H(y) + α2 ik U(y) + α2 dV

dy
= 0,

to which the trivial solutionU = V = H = 0 is to be ruled out. In order to have
instability, it is required that the disturbances grow exponentially in time. Deriving
necessary (and sufficient) conditions for instability – in terms of the basic state and
the flow parameters – is far from being tractable if we deal with the above system
of ODEs, whereū(y) is itself a function ofy. However, it is a very well-known
problem for rigid-lid formulations (Pedlosky, 1979;Cushman-Roisin, 1994). In that
case, the time derivative of the elevation disappears from the continuity equation (B.3)
and the pressure gradient replaces the elevation gradient in the momentum equations
(B.1) and (B.2). We are then free to define a perturbation stream function and the
eigenvalue problem reduces to one that involves a single equation in the perturbation
stream function, (

∂

∂t
+ ū

∂

∂x

)

∇2ψ′ + (β − d2ū

dy2
)ψ′ = 0,

whose general solution is

ψ′(x, y, t) = φ(y)eik(x−ct),

with u′ = −∂ψ′

∂y andv′ = ∂ψ′

∂x . This leads to an ODE forφ(y)

d2φ

dy2
− k2φ+

β − d2ū
dy2

ū− c
φ = 0. (B.4)

Requiring thatci > 0 to have growing instabilities translates to necessary conditions
on the basic state. Assuming the existence of parallel boundaries aty = y1 and
y = y2, where the perturbation stream functionψ′ vanishes, integral properties may be
established (Kuo, 1978;Cushman-Roisin, 1994). Multiplying (B.4) by the conjugate
functionφ∗ and integrating the result across the entire domain gives rise to

−
∫ y2

y1

(∣
∣
∣
∣

dφ

dy

∣
∣
∣
∣

2

+ κ2 |φ|2
)

dy +

∫ y2

y1

β − d2ū/dy2

ū− c
|φ|2 dy = 0, (B.5)
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whose imaginary part is

ci

∫ y2

y1

(

β − d2ū

dy2

) |φ|2

|ū− c|2
dy = 0. (B.6)

Therefore, requiring thatci > 0 implies that the integrand of (B.6) must change sign.
This leads to the first necessary condition for instability,namely that the expression
β − d2ū/dy2 must vanish within the domain. Considering the real part of (B.5), we
get

∫ y2

y1

(ū− cr)

(

β − d2ū

dy2

) |φ|2

|ū− c|2
dy =

∫ y2

y1

(∣
∣
∣
∣

dφ

dy

∣
∣
∣
∣

2

+ κ2 |φ|2
)

dy. (B.7)

Now, if the flow is unstable, the integral in (B.6) vanishes sothat we may multiply it
by (cr − ū0), for any real constant̄u0, and add the result to (B.7) to obtain

∫ y2

y1

(ū− ū0)

(

β − d2ū

dy2

) |φ|2

|ū− c|2
dy > 0, (B.8)

which is equivalent to demanding that the expression

(ū− ū0)

(

β − d2ū

dy2

)

be positive in some finite portion of the domain. Hence, for the flow to be unstable,
the following criteria must be met:

1. β − d2ū
dy2 must vanish at least once within the domain,

2. (ū − ū0)
(

β − d2ū
dy2

)

must be positive in at least some finite portion of the do-

main.

In the second condition,̄u0 is the value ofū(y) where the expression of the first
condition vanishes because it must be true for any real constant.
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Appendix C

Complementary material to
Chapter 4

C.1 Derivation of variational statements for DG

We now derive the variational formulations of the elevation, continuity and tracer
equations for the discontinuous Galerkin method. The latter requires to evaluate inte-
grals on interior geometric items, which are hereafter defined. In two dimensions, we
consider the setEh of all interelement edgesEe = ∂Te ∩ ∂Tf with e > f (Figure
4.2). This set comprises all edges shared between adjacent triangles belonging toT h.
We thus have

Eh =

Ne⋃

e=1

Ee and Ee ∩ Ef = ∅ (e 6= f),

whereNe is the number of such interelement edges. To each edgeEe corresponds a
unique normal vector(ne, nez) pointing fromTe to Tf . Similarly to the velocity, the
horizontal components of the unit normal are written in vector form and denoted by
ne. In three dimensions, we consider the setFh of all interelement vertical rectangular
facesFe = ∂Ωe ∩ ∂Ωf with e > f (Figure 4.2). This set comprises all faces shared
between adjacent prisms in adjacent columns but does not comprise those faces shared
by two prisms within the same column. It is important to keep in mind that those faces
remain vertical at all time. We have

Fh =

Nf⋃

e=1

Fe and Fe ∩ Ff = ∅ (e 6= f),

whereNf is the number of such vertical interelement faces. To each faceFe cor-
responds a unique normal vector(ne, nez) pointing fromΩe to Ωf . Finally, the set
Sh comprises those triangular faces shared by prisms within the same column, that
is shared by prisms stacked upon one another. Each of those triangular faces will be
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notedSe = ∂Ωe ∩ ∂Ωf with e > f (Figure 4.2). We have

Sh =

Ns⋃

e=1

Se and Se ∩ Sf = ∅ (e 6= f),

whereNs is the number of such triangular faces. A unique normal(ne, nez), pointing
from Ωe to Ωf , is associated to each triangular faceSe.

In what follows, we use the same notation for all the functional spaces as that used
for the continuous Galerkin method. We must be aware, though, that the spaces are
different and must be defined elementwise since the sought approximtions remain
undefined across element boundaries. We do not want to delve into this here and
prefer to refer the interested reader to appropriate references (Cockburn et al., 2000;
Flaherty et al., 2002).

Free-surface elevation equation

Starting from Eq. (4.17), integrating the divergence term by parts and defining the
depth-averaged velocity as follows,

u =
1

H

∫ η

−d
u dz,

the variational statement becomes
Nt∑

e=1

∫

Te

{
∂η

∂t
η̂ −

(∫ η

−h
u dz

)

· ∇η̂

}

dτ

+

Nt∑

e=1

∫

∂Te

Hu · nη̂ ds = 0 ∀ η̂ ∈ H,

where∂Te denotes the boundary ofTe. By using the fact that∇η̂ is independent ofz,
the above expression can be rewritten as

Nt∑

e=1

∫

Te

∂η

∂t
η̂ dτ −

Np∑

e=1

∫

Ωe

u · ∇η̂ dΩ

+

Nt∑

e=1

∫

∂Te

Hu · nη̂ ds = 0 ∀ η̂ ∈ H.
(C.1)

The last term in Eq. (C.1) involves integrals on interelement edges (interior edges)
and integrals on boundary edges. The latter, that is the integral on∂T h, vanishes by
weakly enforcing the impermeability condition on the transportHu. The last summa-
tion in Eq. (C.1) thus involves only integrals over interioredges and can be expressed
as the following new summation:

Nt∑

e=1

∫

∂Te

Hu · nη̂ ds =

Ne∑

e=1

∫

Ee

{

(Hu)|Ωe
· neη̂|Ωe

− (Hu)|Ωe
· neη̂|Ωf

}

ds

=

Ne∑

e=1

∫

Ee

{〈Hu · ne〉 [η̂] + [Hu · ne] 〈η̂〉}ds,

(C.2)
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where the following equality has been used

ac− bd =
1

2
(a+ b)(c− d) +

1

2
(a− b)(c+ d)

and the jump and mean operators are defined as

[g] = g|Te
− g|Tf

,

〈g〉 =
1

2

(

g|Te
+ g|Tf

)

,

respectively. In Eq. (C.2), we discard the term[Hu · ne] 〈η̂〉 to weakly enforce the
continuity of the fluxHu · ne. Therefore, Eq. (C.2) becomes

Nt∑

e=1

∫

∂Te

Hu · nη̂ ds =

Ne∑

e=1

∫

Ee

〈Hu · ne〉 [η̂] ds.

We end up with the following variational statement:

Nt∑

e=1

∫

Te

∂η

∂t
η̂ dτ −

Np∑

e=1

∫

Ωe

u · ∇η̂ dΩ

+

Ne∑

e=1

∫

Ee

〈Hu · ne〉 [η̂] ds = 0 ∀ η̂ ∈ H.
(C.3)

Continuity equation

By integrating (4.19) by parts and after some algebraic manipulations (involving
the weak enforcement of the flux continuity across element boundaries), we obtain

−
Np∑

e=1

∫

Ωe

(

u · ∇ŵ + w
∂ŵ

∂z

)

dΩ +

∫

Γh
n

ŵ u · n dΓ

︸ ︷︷ ︸

1

+

∫

Γh
b

ŵ (u · n + wnz) dτ

︸ ︷︷ ︸

2

+

∫

Γh
s

ŵ (u · n + wnz) dτ

︸ ︷︷ ︸

3

+

Nf∑

e=1

∫

Fe

〈u · ne〉 [ŵ] dΓ

︸ ︷︷ ︸

4

+

Ns∑

e=1

∫

Se

〈u · ne〉 [ŵ] dτ

︸ ︷︷ ︸

5

+

Ns∑

e=1

∫

Se

[ŵ]w|Ωe
nezdτ

︸ ︷︷ ︸

6

= 0 ∀ ŵ ∈ W.

A closer look at the terms labeled 1 to 6 will shed light on their meaning. By enforc-
ing boundary conditions (4.1) and (4.6), integrals 1 and 2 vanish. Integral 3 does not
vanish and must be computed in order to know the vertical velocity on Γhs . The re-
maining three sums involve integrals over interior geometric items. Integrals 4 occur
over interior vertical faces, which explains why the vertical velocity does not appear.
Similarly, integrals 5 occur over all interior triangles (which are merely the lower and
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upper faces of each prism). Despite the cumbersome notations, summations 4 and 5
are intuitive and simply state that the mean horizontal velocity must be used when
computing the fluxes. Integrals 6 state that whenever the normal velocity is integrated
over an interior triangleSe, we use the vertical velocity lying within the lower element
– that isΩe according to Figure (4.2) – rather than the mean vertical velocity. This
amounts to integrating the continuity equation from the bottom upwards will full up-
wind weighting on the vertical velocity belonging to the element below the triangular
face. In an intuitive interpretation, the continuity equation can be viewed as a steady-
state advection equation (with the advective velocity equal to one) with source term
(the horizontal velocity divergence), which might help clarify the approach described
herebefore. Note that the boundary condition (4.6) at the seabed is a natural boundary
condition that is automatically incorporated into the variational statement. The latter
becomes

−
Np∑

e=1

∫

Ωe

(

u · ∇ŵ + w
∂ŵ

∂z

)

dΩ +

∫

Γh
s

ŵ (u · n + wnz) dτ

+

Nf∑

e=1

∫

Fe

〈u · ne〉 [ŵ] dΓ +

Ns∑

e=1

∫

Se

〈u · ne〉 [ŵ] dτ

+

Ns∑

e=1

∫

Se

[ŵ]w|Ωe
nezdτ = 0 ∀ ŵ ∈ W.

(C.4)

Tracer equation

Due to consistency requirements, the variational statement for the tracer equation
is very closely related to that for the continuity equation.Because the DG variational
statement includes a great number of terms, we only include advection. Considering
Eq. (4.23) and integrating the second term by parts leads to

Np∑

e=1

∫

Ωe(t)

(

∇ · (uC) +
∂ (w̃C)

∂z

)

Ĉ dΩ =

−
Np∑

e=1

∫

Ωe(t)

C

(

u · ∇Ĉ + w̃
∂Ĉ

∂z

)

dΩ +

∫

Γh
s

CĈ (u · n + w̃nz) dτ

+

Nf∑

e=1

∫

Fe

〈Cu · ne〉 [Ĉ]dΓ +

Ns∑

e=1

∫

Se

〈Cu · ne〉 [Ĉ]dτ

+

Ns∑

e=1

∫

Se

[Ĉ]Cw̃|Ωe
nezdτ.

(C.5)

Note that the left-hand side of Eq. (C.5) is nothing but the variational statement of
the continuity equation (see Eq. C.4) in which the velocity is multiplied by the tracer
concentrationC, the test function̂w is replaced bŷC and the modified vertical velocity
w̃ is used in place of the vertical velocityw. Now, substituting the second summation
in Eq. (4.23) for Eq. (C.5), the variational statement consists in findingC ∈ G such
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that
Np∑

e=1

d
dt

∫

Ωe(t)

CĈ dΩ −
Np∑

e=1

∫

Ωe(t)

C

(

u · ∇Ĉ + w̃
∂Ĉ

∂z

)

dΩ

+

∫

Γh
s

CĈ (u · n + w̃nz) dτ
Nf∑

e=1

∫

Fe

〈Cu · ne〉 [Ĉ]dΓ

+

Ns∑

e=1

∫

Se

〈Cu · ne〉 [Ĉ]dτ +

Ns∑

e=1

∫

Se

[Ĉ]Cw̃|Ωe
nezdτ = 0 ∀ Ĉ ∈ G.

(C.6)

C.2 Functional spaces

The spaceL2(Ω) contains those functions that are square integrable, i.e.,

L2(Ω) =

{

f :

∫

Ω

|f |2 dΩ <∞
}

.

The spaceH1(Ω) contains those functions belonging toL2(Ω) and whose first weak
derivatives belong toL2(Ω) as well. That is

H1(Ω) = {f ∈ L2(Ω) : ∀i = 1 . . . d, ∂xi
f ∈ L2(Ω)} ,

whered is the dimension of the space (d = 3 for the usual physical space). The space
Hdiv(Ω) contains those functions that belong toL2(Ω) and whose divergence belongs
toL2(Ω):

Hdiv(Ω) =

{

f = (f1, . . . , fd) ∈ L2(Ω)d :
∂fi
∂xi

∈ L2(Ω)

}

.

Finally, the spaceW involved in the variational statement for the continuity equation,
Eq. (4.19), is defined as

W =

{

ŵ ∈ L2(Ω) :

∫

Ω

|u∂ŵ
∂x

+ v
∂ŵ

∂y
+ w

∂ŵ

∂z
|dΩ <∞, ∀ (u, v, w) ∈ Hdiv(Ω)

}

.

C.3 Downward integration of the continuity equation

In Chapter 4, the continuity equation is integrated upwardsafter imposing the kine-
matic boundary condition at the seabed. By doing so, and provided that the conti-
nuity and elevation equations be discretely compatible, the discrete surface kinematic
boundary condition is automatically retrieved. Herein, weshow that an equivalent re-
sult is obtained by integrating the continuity equation downwards after imposing the
kinematic boundary condition at the surface. Let us consider the discrete variational
statement for the continuity equation, inferred from Eq. (4.29), in which boundary
conditions are yet to be prescribed. We have

−
∫

Ωh

[

uh · ∇ψwi + wh
∂ψwi
∂z

]

dΩ +

∫

Γh
b

ψwi
(
uh · n + whnz

)
dτ

+

∫

Γh
s

ψwi
(
uh · n + whnz

)
dτ = 0 ∀ i = 1, 2, . . . , Nw.
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Imposing the discrete counterpart of the surface kinematicboundary condition (4.7)
gives rise to

−
∫

Ωh

[

uh · ∇ψwi + wh
∂ψwi
∂z

]

dΩ +

∫

Γh
b

ψwi
(
uh · n + whnz

)
dτ

+

∫

Γh
s

ψwi
∂ηh

∂t
nzdτ = 0 ∀ i = 1, 2, . . . , Nw.

We may now add up all components of the above expression pertaining to those test
functionsψwi sharing the same two-dimensional support (the indices belong to the set
I). This yields the following expression, written for the two-dimensional projection
of ψwi (i ∈ I), notedψw,2DI :

−
∫

Ωh

uh · ∇ψw,2DI dΩ +

∫

Γh
b

ψw,2DI

(
uh · n + whnz

)
dτ

+

∫

Γh
s

ψw,2DI

∂ηh

∂t
nzdτ = 0.

If we choose the basis functions for the vertical velocity such thatψw,2DI = φi, where
φi is the two-dimensional elevation basis function associated with the same nodal po-
sition in the(x, y)-plane, the first and third terms of the above equation are identically
equal to the discrete elevation equation, Eq. (4.28), whichleaves us with

∫

Γh
b

ψw,2DI

(
uh · n + whnz

)
dτ = 0,

namely the discrete counterpart of the kinematic boundary condition at the seabed,
Eq. (4.6).
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Appendix D

Complementary material to
Chapter 5

To garner details on the coupling termB occurring in Eq. (5.25), we may spell out
the equation in terms of itsx− andy−components. For thex−component, we have

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
=

− 1

H

∂

∂x

∫ η

−d
ũũ dz − 1

H

∂

∂y

∫ η

−d
ṽũ dz

+
1

H

∫ η

−d
∇ · (νh∇u) dz +

1

ρ0H
(τsx − τx)

(D.1)

while they−component reads

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
=

− 1

H

∂

∂x

∫ η

−d
ũṽ dz − 1

H

∂

∂y

∫ η

−d
ṽṽ dz

+
1

H

∫ η

−d
∇ · (νh∇v) dz +

1

ρ0H

(
τsy − τy

)

(D.2)

In Eqs (D.1) and (D.2), we have defined

ũ = u − u,

which is the deviation of the velocity relative to the depth-averaged velocity. The
terms involving products of those deviations arise from depth-integration of advec-
tion terms. The bottom and surface stresses are denoted byτ andτ s, respectively.
In Eqs (D.1)-(D.2), all terms involving the prognostic variables(u, v) can be time
stepped. The momentum diffusion term is purposedly writtenin terms of the full ve-
locity field. Only when writing the variational statement ofEqs (D.1)-(D.2) are we
able to elegantly derive expressions involving the depth-averaged and deviatory ve-
locity components. It is carried out below. Upon inspectionof Eqs (D.1)-(D.2), we
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see that the right-hand sideB of Eq. (5.25) is

B = −u∂u
∂x

− v
∂u

∂y
− 1

H

∂

∂x

∫ η

−d
ũũ dz − 1

H

∂

∂y

∫ η

−d
ṽũ dz

+
1

H

∫ η

−d
∇ · (νh∇u) dz +

1

ρ0H
(τ s − τ ) .

(D.3)

Let us now focus on the momentum diffusion term in the variational statement
associated with Eq. (D.1). After multiplying the equation by a two-dimensional test
function û and integrating over the unperturbed, two-dimensional domain T h, we
obtain

∫

T h

û

H

∫ η

−d
∇ · (νh∇u) dz dτ = −

∫

T h

∇

(
û

H

)

· (Hνh∇u) dτ

−
∫

Ωh

∇û · (νh∇ũ) dΩ

+

∫

Ωh

û

H2
∇H · (νh∇ũ) dΩ.

(D.4)

In Eq. (D.4), the first term in the left-hand side can be time stepped because it is
expressed in terms of the prognostic variableu. In that case, the term dissipates depth-
averaged horizontal momentum.
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Danilov, S., G. Kivman, and J. Schröter (2005), Evaluation of an eddy-permitting
finite-element ocean model in the North Atlantic,Ocean Model., 10, 35–49.

Dawson, C., J. J. Westerink, J. C. Feyen, and D. Pothina (2006), Continuous, discon-
tinuous and coupled discontinuous-continuous Galerkin finite element methods for
the shallow water equations,Int. J. Numer. Methods Fluids, 52, 63–88.

Deleersnijder, E. (1989), Upwelling and upsloping in three-dimensional marine mod-
els,Appl. Math. Model., 13, 462–467.

Deleersnijder, E. (1993), Numerical mass conservation in afree-surface sigma coor-
dinate marine model with mode splitting,J. Mar. Syst., 4, 365–370.

Deleersnijder, E. (1994), An analysis of the vertical velocity field computed by a three-
dimensional model in the region of the Bering Strait,Tellus Ser. A, 46, 134–148.

148



Deleersnijder, E., and J.-M. Campin (1995), On the computation of the barotropic
mode of a free-surface world ocean model,Ann. Geophys., 13, 675–688.

Deleersnijder, E., and K. G. Ruddick (1989), A generalized vertical coordinate for
3D marine models,Bulletins de la Sociét́e Royale des Sciences de Liège, 61(6),
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