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Chapter 1

Introduction

“Our planet is invested with two great oceans; one visible,
the other invisible; one underfoot, the other overhead; one
entirely envelopes it, the other covers about two third$f i
surface”Matthew F. Maury (1855) The Physical Geography
of the Seas and Its Meteorolagy

The oceans play a crucial role in our climate. Because of il heat capacity
of water .5 m of the upper ocean is equivalent to the entire tropospleard)the
oceans’ large extent (they cover ovéi% of the Earth's surface), oceans act as a
gigantic thermal flywheel, mitigating the fluctuations of ¢ang-term weather. They
are also huge reservoirs of GQcontaining about 60 times the amount of £
the atmosphere) and have a long memory. Oceans thereforea gdavotal role in
determining the climatic conditions on our planet on a lavgegety of timescales.
However, we still do not understand well the intricate detaf their circulation and
their interaction with the atmosphere. Furthermore, tremaographers are data-poor
in general. Even today, there are many regions in the sauttemisphere where not
a single in situ observation of ocean properties has evar begle. The tedium and
expense of making in situ measurements placed a severaliritr ability to explore
oceanic processes. Yet, even if in situ measurements waikalse throughout the
oceans, models would still be necessary to understanddbwiplex functioning, for
the sole knowledge of in situ observations would not suff@énter the details of
the oceans circulation. For predicting the future statdnefdceans, and hence of the
climate, numerical models are indispensable.

1.1 Selected history of numerical ocean modeling

The first ocean general circulation model (OGCM) is creditebr. Kirk Bryan at
the Geophysical Fluid Dynamics Laboratory (Princeton, YBAhe late 60’s Bryan,
1969). He is regarded by many as the founding father of nualeocean modeling.
The GFDL model was based upon a discretization of the equetib motions using
low-order finite differences. Many improvements have omdiover the following
years; among them the inclusion of free-surface dynarkitsvorth et al., 1991), the



development of hybrid vertical coordinatd&léck 1978) and state-of-the-art parame-
terizations for unresolved processes such as verticallembe Mellor and Yamada
1982) and isopycnal mixingRedi 1982;Gent and McWilliams1990), to name just
a few (thorough reviews are presented@®uffies et al.(2000) andGriffies (2004)).
Some of the emerging models are highly modular, well docueteand widely used
such that POM (Princeton Ocean Model), MOM (Modular Ocearddp MICOM
(Miami Isopycnic Coordinate Ocean Model), HYCOM (HYbrid @dinate Ocean
Model), OPA (O&an PAralélist), MITgcm (Massachusetts Institute of Technology
Global Circulation Model). If current operational oceandats can be differenti-
ated by their underlying parameterizations, often dimetiebetter modeling selected
processes, they share a common feature. The geophysichtfloamics equations
are solved on structured grids using the finite differencéhoe Therefore, the dis-
cretization paradigm remains the same as that of Bryan'sslm@bme properties of
structured grids, or lack thereof, tend to gradually rertdem out of date for ocean
modeling while, at the same time, so-called second-gaparatean models, based
on unstructured meshes, become increasingly popular.

The intrinsic flexibility of unstructured meshes is indeesnpelling for numeri-
cal marine modeling. Unstructured meshes have the poterfit@rcumventing the
pole singularities encountered when using structuredsgalayned with converging
meridians. This can be done more elegantly than with stradtmeshes for which
common tricks to avoid the singularities include using tworth) poles (OPA) or a
spherical cube (MITgcm). Complex topographic featureshsas coastlines, islands,
narrow straits and sills, can faithfully be representeddmally increasing the mesh
resolution and because there is no constraint on the mesiotpp(e.g.,Legrand
et al, 2006). The resolution can also be altered based upon daiitenia such as the
bathymetry Gorman et al. 2006;Legrand et al. accepted) or the value of a state vari-
able (egrand et al. 2000). In the latter case, the mesh can be dynamically adéapt
the course of the simulatio{ggott et al, 2005;Power et al, 2006). Given the wide
range in spatial scales of biophysical processes takirggptathe ocean (Figure 1.1),
a variable mesh resolution (in time and space) across thedtomain is of particu-
lar interest. Resolving the mesoscale variability in adasgale ocean model with-
out having to refine the mesh everywhere is now deemed feasitriesh adaptivity
is resorted to appropriately. Some illustrations of urgtrired meshes are provided
in Figures (1.2)-(1.4). Over the last decade, motivatedhage concepts, there has
been increasing effort into the development of marine nwbdaked on unstructured
meshes. Three classes of numerical methods can readilfehamstructured meshes:
the finite volume (FV), the spectral element (SE) and thedfieiement (FE) methods.

To a certain extent, each of these methods has been gainpudgpity in the ocean
modeling community. The FV method has been lately genemlia use unstructured
orthogonal grids Casulli and Walters2000;Ham et al, 2005;Fringer et al, 2006;
Stuhne and Peltie2006), thereby enhancing its flexibility. It is also muclpegriated
for its properties of local conservation in terms of numalrituxes across the bound-
ary of each control volume, rendering the method well suitedransport problems
(Casulli and Zanollj 2005). The SE method forms the basis of SEOM (Spectral El-
ement Ocean Model) described Iskandarani et al(1995) andiskandarani et al.
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Figure 1.1: Time and horizontal space scales of some physical and biologicasses in the
ocean, fronDickey(2003).

(2003). A variant of SEOM based on a discontinuous reprasientof scalars and
elevation is described blyevin et al.(2006). In principle, the SE method can han-
dle unstructured meshes. However, using high-order spiestéments for the oceans
with irregular boundaries typically lead to Gibbs oscithas in the numerical solu-
tion. The ocean modeling community is currently moving avirayn using the SE
method on unstructured meshes. However, the method remadeessful in atmo-
spheric modeling, where using structured meshes is mormpgate. The use of
the FE method for coastal, shelf and estuarine areas stotedwhat earlier.fynch
and Werner 1987; Walters and Wernerl1989; Lynch and Werner1991). During
the nineties, aside from some results obtained with diaggnéieite element ocean
models Myers and Weaverl995;Greenberg et a).1998), we did not really see any
revolutionary change. Over the last five years, with theatidn of new projects of
finite element global ocean models, such as FEOM (Finite Ef¢r@cean circulation
Model) from the Alfred Wegener Institute for Polar and M&Research, ICOM (Im-
perial College Ocean Model) from Imperial College and SLIS&¢ond-generation
Louvain-la-Neuve Ice-ocean Model) from Univeésitatholique de Louvain, we have
been witnessing a new wave of thriving development (andifig)dbf prognostic fi-
nite element ocean models. As warranted by the literatheef-E method appears to
be the most promising (e.gRietrzak et al. 2005, 2006). There might be two main
reasons for this. All the methods mentioned can handle wetstred meshes indeed
but the finite element method offers additional flexibilitythe choice of interpolation
(it can be of low or high order and continuous or discontirg)and is sustained by
a rigorous mathematical framework, in which a priori and atpoori error estimates
can be established and upon which mesh adaptivity takes.plac
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Figure 1.2: Mesh of the Great Barrier Reef (northeast Australia) with blowups o¥\théh-
sunday area, frorhegrand et al(2006). The mesh size varies from 1 km to 20 km.

The idea of using the FE method for marine modeling togetti#ir unstructured
meshes dates back to the work Bix (1975), who was probably the first in the lit-
erature to recognize the potential of variable mesh reisoldor ocean flows. The
first developments of finite element marine models were basdde wave continuity
equation Lynch and Gray1979), whereby the primitive shallow-water equations are
manipulated to form a wave equation for the free-surfaceagilen, with a subsequent
harmonic decomposition in time. This formulation does ndtes from spurious os-
cillations occurring when using the primitive equations #ime same interpolation for
the velocity and the elevation. The generalization of thgioal method led to the
generalized wave continuity equation (GWCE), documenteldibgmark(1986) and
Kolar et al. (1994). The GWCE has been extensively used over the past 2Owith
successful applications in coastal regions for tidal mtolis Cynch and Werner
1987, 1991 Walters and Wernerl989;Walters 1992;Lynch and Naimigl993;Luet-
tich and Westerink1995;Ballantyne et al.1996;Lynch et al, 1996;Fortunato et al,
1997; Cushman-Roisin and Naimi€002). Despite these encouraging applications
and the ongoing research to improve the method, it remaagupld by two caveats.
(1) GWCE-based models are subject to advective instakil{elar et al, 1994).
(2) The GWCE form sacrifices the primitive continuity equatithus the primitive
form is no longer satisfied in a discrete sense, which imglagginuity (or mass) im-
balances Blain and Massey2005;Dawson et al. 2006; Massey and Blain2006),
rendering the method less suitable for coupling with transpquations, let alone for
long time integrations (more than several years) in whiatseovation is crucial.
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Figure 1.3: Mesh of the Northwestern European continental shelf with recursiweugs of
the Hebridean shelf and Anton Dohrn seamount, ftagrand et al(accepted).The mesh size
varies from 0.5 km to 5 km.

In the meantime, more efforts have been directed towardinfina mixed finite
element pair for the primitive shallow-water equationg th@es not support spurious
oscillations (see e.gHua and Thomasseti984). Aware of the limitations of the
GWCE and urged to develop primitive equations finite elemeata models, research
towards this goal have intensified since the end of the madte Roux et a].1998;Le
Roux 2001;Hanert et al, 2003;Le Roux 2005;Le Roux et a.2005;Walters 2006;
White et al, 2006b;Le Roux et al.in press). Early issues of the method often cited
as reasons not to use it — such as spurious oscillations,ysigah wave scattering
due to the unstructured character of the mesh and lack of owaservation — are
starting to wither. Nowadays, applications of FE shalloatev models based on the
primitive equations are becoming much less of an excepftiwtlijaev et al.2003;
Danilov et al, 2004; Ford et al, 2004a,b;Pain et al, 2004; Danilov et al, 2005;
Hanert et al, 2005;Labeur and Pietrzak2005; Walters 2006; White et al, 2006a;
White and Deleersnijdeiin pressWhite et al, submitted) and this trend is unlikely
to lose its momentum.

Finite element methods based on the primitive equationsrepass both the con-
tinuous Galerkin (CG) and discontinuous Galerkin (DG) rodth The latter applied
to the shallow-water equations is newer than the former asdruch to offer for solv-
ing hyperbolic systems of equatioRléherty et al, 2002) and advection-dominated
flows (e.g.,Hanert et al, 2004;Kubatko et al. 2006a) in general. Furthermore, the
method is known to conserve flow properties elementwise énirtkuitive meaning
of the FV method (as opposed to the local conservation ptppé€ICG methods de-
scribed byHughes et al(2000)). At least for now, DG methods remain less mature



Figure 1.4: Mesh of the globe, fronGorman et al(2006).

than CG methods for ocean modeling. They have nonethelessgaining popularity
for modeling shallow-water flows as wels¢hwanenberg et al2000;Aizinger and
Dawson 2002; Schwanenberg and Harm2004; Nair et al, 2005;Remacle et a).
2005;Dawson et al.2006;Kubatko et al. 2006a;Remacle et a].2006;White et al,
2006b;Bernard et al, accepted) and are particularly well suited for transparbfems
(Kubatko et al. 2006b).

1.2 Thesis objectives

This thesis was undertaken under the auspices of the Sphuject that aims at
building an unstructured mesh, finite element OGCM basecherptimitive equa-
tions. It remains unclear at this stage whether the CG or tAeriathod is preferable
for simulating shallow-water flows. Both methods have tlaeivantages and draw-
backs in terms of accuracy, robustness and efficiency. $mwibrk, we do not intend
to discriminate one method in favor of the other. As it turng when flipping the
pages of this thesis, each method happens to outperfornthike depending on the
application at hand.

1Second-generation Louvain-la-Neuve lce-ocean Mddet p: / / www. ¢l i mat e. be/ SLI M.



The ultimate objective of this thesis is to provide the ptype of a three-dimensional,
finite-element, marine circulation model, which solvesphienitive equations and in-
cludes the following prominent features.

¢ The three-dimensional mesh is based on the downard extrakatwo-dimensional,
triangular, unstructured mesh. The extrusion generatesns that are subse-
quently split into prisms.

¢ The free-surface dynamics is included and the domain igzatido move in the
vertical to accomodate the free-surface motions and toorespo freshwater
forcings.

e Mass and tracers are globally conserved up to machine recisll equations
are solved consistently so that a uniform tracer conceotraemains equal to
the initial value at all time, no matter which dynamics is sidiered but provided
that there is no source term and no boundary flux.

e Stabilization is not required. The numerical solution doessupport spurious
oscillations.

e The dynamics and the equations are split between the ektandainternal
modes. The external mode is solved semi-implicitly in tinvajch allows for
using a unique time step for both modes.

e The computational cost of the solution scales linearly the number of two-
dimensional vertices. No system need be solved in threerdiioes.

o Earlier studies within the research team have been fullgrtékto account. The
two-dimensional structure of the current model relies anwork by Hanert
et al. (2005).

In essence, the model that we present is fully operatiorsirialate three-dimensional
flows in planar geometry without baroclinic forcing. Yetigtconceived in such a way
that any tracer can readily be added and will evolve in a avasige fashion.

1.3 Thesis synopsis

The free-surface dynamics is included in the model via thetism to the external
mode (i.e., barotropic mode), for which an effective tegiei must be devised. In
Chapter 2, we assess the accuracy and robustness of some finite eleratirads in
solving the one-dimensional linearized shallow-wateratiguns. The problem has a
known analytical solution that includes a discontinuitytlie elevation. The hyper-
bolic nature of the system of equations is emphasized byukmmethod of charac-
teristics. While the continuous Galerkin method is shownedgrm quite poorly, the
discontinuous Galerkin method proves to be very accurader@ioust, provided that
the adequate numerical fluxes be enforced. In particulag,shown that computing
the right numerical fluxes comes down to weakly enforcingcibretinuity of the char-
acteristic variables. This is the so-called Riemann sahged in higher dimensions
for which a local change of variables allows to reduce thdiem dimensions to one
in the direction normal to the element boundary (edge orface



An ocean model should be built with the physics in mind. We tmas expect that
any all-purpose computational fluid dynamics code will béeab decently model
oceanic flows if it is not tailored to do so in the first place.rélave opt for a step-
by-step approach in which validation of each physical comemb is a key aspect.
Since we not only aim at resolving the large-scale circatabut also most energetic
mesoscale processes, it is of paramount importance toseqréhe mesoscale vari-
ability with as much accuracy as possible. Mesoscale \ifitigpartly originates from
baroclinic instabilities and, to a lesser extent, from bamic instabilities. InChapter
3, we concentrate on the latter and evaluate three finiteegieformulations in their
ability to accurately represent geophysical fluid flow ibdties. Physical dissipation
is absent from the equations, making it a challenging tess éa numerical methods
where any numerical dissipation is likely to produce ermrgeresults.

Large-scale free-surface ocean models designed to rurclwetic timescales are
required to globally conserve the volume and any tracer updohine precision. In
addition, the following property is critical. Setting a¢ea to a uniform value through-
out the closed domain and letting the free surface undulaemust recover the same
tracer concentration at any later time if there is no tracerse. This property of
consistency, together with monotonicity, will ensure thatspurious tracer extrema
occur. InChapter 4, it is shown that achieving consistency requires a disarete-
patibility between the tracer and continuity equations.adidition, to ensure global
tracer conservation in a consistent way, a discrete cotrifigtibetween the tracer,
continuity and free-surface equations must be fulfilleds Buggested that this com-
patibility constraint, together with the use of a numeticatable scheme, severely
restricts the choice of three-dimensional spatial diszagons.

In Chapter 5, the full three-dimensional model is presented. Sinceultie mo-
mentum equations are treated in the previous chapter, balynbmentum equations
are considered in detail in this last chapter. The timegstepalgorithm is fully de-
scribed. The model is validated against a realistic flow adoai shallow-water island
for which field measurements are available. A convergenadysis is carried out and
we show that, as the mesh resolution is increased, the meddilé to predict the
correct velocity field in the island’s wake. Very intense @liimg is also predicted off
the northern island’s tip during ebb and flood. We suggedgtttiis upwelling might
be the main cause for the presence of mud at the surfacer, tatimethe much weaker
upwelling predicted near the center of the eddies.

Marine flows are intrinsically complex and appropriate fiptetation techniques
ought to be used to fully exploit the results of a given modelew two-dimensional
cuts within the three-dimensional computational domaiscahe times gives a poor
rendition of otherwise multidimensional processes invaj\several variables. Holis-
tic tools, which take into account all processes and thetohy, are more appropriate.
Among those tools are timescales such as the age and therresitime. InChapter
6, the concept of age is used to devise two diagnoses of vidrticssport in the vicin-
ity of a shallow-water island, subject to tidal flow. The rkseonfirm the presence of
strong upwelling off the island’s tip, suggested in the as chapter.



Conclusions and perspectives are givehapter 7.
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Chapter 2

Finite element methods for the
external mode

Summary
Some finite element methods are employed to solve the linear

shallow-water equations describing the propagation of Pdéncar
waves within a one-dimensional finite domain. An analytical solu-
tion to the problem, set off by a discontinuous steplike elevation,
is known and allows for assessing the accuracy and robustness of
each method. We evaluate the method of characteristics, the con-
tinuous Galerkin method and the discontinuous Galerkin method
with two ways of computing the numerical fluxes.

Motion in the ocean spans a very wide range of timescales. enthd large-scale
circulation is characterized by velocities on the order pta one meter per second
and timescales that can be as large as hundreds of yearastirdpagating inertia-
gravity waves exhibit phase velocities on the order of haddrof meters per second
and much smaller timescales. Internal gravity waves prajgagith velocities on the
order of one meter per second or less. The vast disparityazfroprocesses timescales
poses a challenge in numerical ocean modeling. If an expilice step is used, it is
limited by the so-called Courant-Friedrichs-Lewy (CFLNdaion, which states that
the time step should not be larger than the travel time of éiséeft physical process
over the smallest space increment. In free-surface oceatelmthat allow for the
existence of external inertia-gravity (Poineawaves, the upper bound on the time
step is far smaller than more practical time steps that wpeluhnit time integration
over thousands of years on today’s computers. The first pttatitircumventing this
problem by replacing the free surface by a rigid lid — therebgninating external
inertia-gravity waves — has been widely dismissed. Amorgrdtionales for such
a design are that a rigid lid distorts the properties of lesgale barotropic Rossby
waves, does not permit tidal modeling and complicates tblesion of surface fresh-
water fluxes Killworth et al., 1991; Dukowicz and Smith1994; Deleersnijder and
Campin 1995;Hallberg, 1997;Higdon and Szoekd 997;Griffies et al, 2000).
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A common alternative no longer relies on the rigid-lid apgmoation. The ocean
surface is free and remains a prognostic variable but thergong equations are split
into subsystems that model the fast and slow motions segharathese subsystems
are generally referred to as the barotropic and baroclistesns, respectively, or the
external and internal modes, respectively. Fast motioasapproximately indepen-
dent of the vertical coordinate so that the external mode is two-dimensional and is
well represented by the shallow-water equations that mibe@emotion of fluid layers
of constant density. Slow motions are fully three-dimenalphowever, but the re-
striction on the time step is dictated by the internal dyrenof which timescales are
several orders of magnitude larger than that of the extenmale. The latter can be
solved explicitely with small time steps or implicitely \witarger time steps. Choosing
an implicit treatment eliminates the constraint imposethigyCFL condition but leads
to large systems to be solved at each time step. This choicbeamade for tidal and
tsunami calculations provided that a reduced time step &e. usan explicit approach
is considered for the barotropic mode, the number of smadthapic time steps for
each large baroclinic time step is roughly the ratio of banut inertia-gravity wave
speed to baroclinic internal gravity wave spe&dl{vorth et al., 1991). Details on
mode splitting implementations can be foundBlumberg and Mello(1987),Hall-
berg(1997),Higdon and Szoek@d 997) andHigdon (2002).

Large-scale oceanic motions roughly obey the geostrogjudilerium. When im-
balances occur, the geostrophic balance is restored bysmédPoincae waves. In
strongly stratified seas, internal inertia-gravity waves generated when displace-
ment of density surfaces occurs. Those waves respond t@the physical mecha-
nism as external Poindawaves Gill, 1982). In models allowing for the existence
of inertia-gravity waves, it is of paramount importance épnesent those waves ac-
curately. In that respect, the coupled issues of time andesgiscretization ought to
be focused on. Time stepping is beyond the scope of this ehégte e.g.Beckers
and Deleersnijder1993) as we mainly concentrate on spatial discretizatfoone-
dimensional benchmark for the propagation of Poiaeeaves is proposed. This prob-
lem bears many similarities with the classical geostroplijastment initially studied
by Rossby and further investigated Kill (1976) for the linear part anduo and
Polvani (1996) for its nonlinear counterpart. In this chapter, thedrized shallow-
water equations, in which homogeneity is assumed injtbegection, are solved in a
domain of finite length with an initial discontinuous eldweatfield. The design differ-
ence with adjustment problems lies in the finiteness of theaio in thex-direction.
Whereas in adjustment problems, an infinite domain inztairection is considered,
we study the case of Poinéwaves propagation in a finite domain. In so doing, no
end state is ever reached and, in the absence of frictione wespagation goes on
forever within the domain. The persistence of the discaiitiies is the prominent fea-
ture of the time-dependent solution presented3iy (1976). It also appears in the
solution to our benchmark, thereby posing a challenge fassital numerical meth-
ods to solve the problem. A numerical method will be appdiisssed upon its ability
to capture the traveling discontinuity without generatsmmrious oscillations. The
following methods are considered: the method of charasttesi the Galerkin finite
element method (FEM) and the discontinuous Galerkin FEM wibb different ways
of computing the numerical fluxes.
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2.1 A one-dimensional benchmark

The linearized governing equations for a single, invistidmogeneous shallow
layer of fluid on anf-plane are the shallow-water equations, given by

o o
ot v ~ 9o

v an

on ou v

whereu andv are the vertically-averaged horizontal velocity compdaémthez- and
y-directions, respectively. The reference layer thickngesenstant and denoted by
while n represents the free surface elevation. The Coriolis pasaryfiés taken to be
constant under thé-plane approximation. Finally; is the gravitational acceleration.

Linearization implies getting rid of advective terms andwaning that the free sur-
face elevation be much smaller than the constant referegih di.e.,n < h). The
disposal of advective terms is legitimate as long as thetBassmber is much smaller
than1, in which case inertial terms are not dominant. We decidetod on a set of
linear equations, mainly for the sake of simplicity and hessawe will be able to
interpret the results in the best way.

Within the frame of this work, we will further assume homoggyin they-direction
so that all derivatives with respect tovanish. The domain is thus infinite in the
direction, which reduces the problem to a one-dimensioast cThe domain remains
finite in thez-direction. It should be noted that the problem we propos®tee does
not consist of an adjustment problem a&&il (1976) in which the domain is infinite
— or large enough so that it can be deemed so numerically, @sieed inKuo and
Polvani(1996). In that respect, we do not focus on the final stateghvtibes not exist
for finite domains. Instead, we study the wave propagatie@npmenon. Reducing
the system (2.1) to the unique x-direction yields

Ou _ __

ot v o gax7

ov

- = 2.2
8t+fu 0, (2.2)
on ou

E—Fh% =0,

wherez € [—-L/2,L/2] and¢ > 0. The boundary conditions atgz = +L/2,¢) =
0, which merely consists of boundary impermeability. We gttiek time evolution of
an initially motionless fluid layer with a discontinuity ihe elevation field. Thus, at
t=0

u(z,0) =v(x,0) = 0,

{—no if —L/2<2<0

z.0) = ian —
n(x,0) = nosign(x) o 0<z<)2
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Nondimensionalization of (2.2) is obtained by introducihg following characteristic
scales:f~!, L, no, Lh—! fne, for the time, the space, the elevation and the velocities,
respectively. Using the same symbols, the nondimensianalteons become

ou B 50N
E —-v = (0% %, (23)
v
E + u — 0, (2'4)
on  Ou
S ta = O (2.5)

We have defined = f " which is the ratio of the Rossby radius of deformation to
the length scale, or a nond|men5|0nal Rossby radius of ahefiion. Note that (2.3)-
(2.5) is now defined fot > 0 andz € [—1/2,1/2]. Boundary and initial conditions
are adapted accordingly.

2.1.1 Analytical solution

As a first step, we present the analytical solution to (2233)( Differentiation of
(2.3) and (2.5) with respect toandzx, respectively, gives rise to

Pu v 5 071
T2 22
ot ot otdx’
%y B%u
w0t "oz~

Elimination of the mixed derivative and substitutionefg—j by u from (2.4) leads to
a single equation for the zonal velocity

0u 5 0%u

Equation (2.6) can be analytically solved using the sejmaraif variables method.
This is shown in details in appendix A.1. Solution to (2.3)5] is

a?k,
Z H,( ”H —— sin (wyt) cos (kpx),

n=1 “n
;:1 H,(-1)"! wf [cos (wnt) — 1] cos (kpx), (2.7)
00 2]€2
n(z,t) = Z H,(—1)"sin (knx) {1 - 2 [1 - cos (wnt)]} ,
n=1 n

where coefficient${,, amount toH,, = 4(;71“. In Figure (2.1), we show the solution
(2.7) for the elevation at different times and compare ihv@itll’s analytical solution
to the adjustment problen&(ll, 1976). Solutions were computed with= /10/10.
Left panels of Figure (2.1) show the solution within the lgdirt of thefinite domain
(x < 0). Right panels show the solution within the right part of thiénite domain
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(x > 0). Thus, the panels separation is the axis- 0. In both situations, the front
moves at a speed equaldg to the left and to the right, for the left and right panels,
respectively. As long as the front does not hit the boundéthiefinite domain, both
solutions are the same (although antisymmetric). Afteectitn at the boundary,
Poincaé waves evolve within the finite domain. For the adjustmeabjam, the front
keeps moving to the right, trailing a wake of Poirearaves behind it.

2.1.2 A hyperbolic problem

Because (2.3)-(2.5) is a system of first-order hyperbolieagiqns, there exist three
real characteristics. We can write the system in compaaot:for

ou ou
AE + B% =d,

whereA, B, u andd are defined to obtain the following expression:

1007 ,([n 01 0] 5[ 0
0106—u+a2008—u:v.
00 1]%| 0 0 0|9y Y

In order to reduce (2.3)-(2.5) to a system of three ordinafferéntial equations
(ODEs), we now compute the eigenvalues and eigenvectoteajeneralized prob-
lem:

z] (B—MA) = 0
det(B — \;A) 0
for which we have
A =0 z1 =[001]7,
Ao = 7o = [a10]7,
Az = —« z3 = [a —10]7.

For each eigenvectar;, an ODE is obtained by computing the following expression:

d
z?au = Z?d.

The system of ODEs then is

%’U——U On%:(),

d dx

. _ dr _ 2.8
dt(mH—u) v on priaie (2.8)
i( _ )—_ Ondj—_

dt arn u v dt_ «

The foregoing procedure has allowed for transforming tis¢esy of partial differential
equations (2.3)-(2.5) into the system of ODEs (2.8) in tharabteristic variables,
an + v andan — u. Each ordinary differential equation is written on a chagsstic
curve (x(t), t) defined by% = \;, Where); = 0, Ay = o and )3 = —q, for the
first, second and third ODE. Because the position is deperatetime, only time
integration needs be performed to compute the charadteraiables, as long as we
remain located on the associated characteristic curve.
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Finite Infinite domain

domain
The discontinuity has not yet reached the boundary in the finite domain

Reflection at the boundary occurred in the finite domain while the discontinuity
keeps traveling to the right in the infinite domain

~
[T
The discontinuity travels out of the shown portion of the infinite domain
Adjustment proceeds in the infinite domain...
n Y

M |

.. while repeated reflections in the finite domain yield a more complex solution
<0 x>0

Figure 2.1: Exact solution for the elevation Left panels show solutions for the finite domain
(z < 0) and right panels show solutions for the adjustment problens (0), as provided by

Gill (1976). The axisc = 0 separates left and right panels. Left panels are 0.5-unit long and
right panels are 3-unit long. The ticks on ti#axis are one unit of elevation apart, the middle
one being). From top to bottom, solutions are showntat 1,¢ = 5,¢ = 10 ¢t = 100 and

t = 1000. The parameted is /10/10.
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2.2 Analysis of some numerical methods

From our standpoint, the main interest of this problem liests ability to be a
benchmark for numerical methods. Therefore, we may comibereaccuracy and
robustness between several numerical technigues to sal#e(@.5). The difficulty
in solving these equations lies in the presence of the disaoty. Any numerical
scheme ought to be assessed based upon its ability to calpisiciscontinuity with-
out generating spurious oscillations. In this section, vesent the following methods:
the method of characteristics, the galerkin finite elemeethod (FEM), the discon-
tinuous Galerkin FEM and the discontinuous Riemann-GaidfiEM. All numerical
experiments were conducted with= 104 s !, g = 10ms 2, h = 100 m, L = 10°
m, 7o = 1 m, leading tor = v/10/10.

2.2.1 Method of characteristics

Classical finite difference schemes may now be employedite $2.8), for which
we are constrained to use a time step and a spatial increratsfysg %jf = q,
as suggested in Figure (2.2). For the sake of clarity, letaine the characteristic
variablesw = an+ w andq = an — u. A forward Euler stencil applied to (2.8) yields

n+1 )

v v
k k _ . n
AL e
n+1 n
w — Wy _
% =P, (2.9)
n+1 n
QG —dk+1 g
At = U

where all information at time stephas been taken along appropriate characteristics.

k

n+1

At

E+1

Figure 2.2: Time integration must be performed along characteristics. Indieesln identify
space and time discretization points, respectively.

The essence of the method of characteristics resides ibility & carry the infor-
mation along characteristics, which allows to focus soteltime integration. There-
fore, we expect the method to be able to capture the traveisapntinuity at any time
step provided that the time integration be sufficiently aata1 This issue is illustrated
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in Figure (2.3), where the forward Euler and the secondfoRiege-Kutta stencils
have been used witht = 0.01. The solution for the elevatiomis compared with the
exact solution at dimensionless time= 200. Notice how the approximate solution
obtained with the first-order Euler scheme captures theodtgwity at the right loca-
tion but is highly inaccurate overall. The second-ordergaiKutta method performs
much better, with ar.?-norm that is more than 20 times smaller. To assess the extra
computational cost incurred by the use of the second-ordeg&Kutta method, a
run with 400,000 time stepg\¢ = 0.001) has been carried out with both methods.
The forward Euler integration yields the solution after S#tile the second-order
Runge-Kutta integration does so after 83 s. Hence, thereuighly a fifty percent
extra computational cost in using the latter method. It &hbe borne in mind that,
however efficient the method of characteristics may be fi lenchmark, a major
drawback lies in the fact that such an approach cannot biglsti@wardly extended
to two-dimensional computations.

Method of characteristics
First order forward Euler

Method of characteristics
Second-order Runge Kutta

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2.3: Approximate and exact solutions fgrat dimensionless time= 200 for the first-
order forward Euler method (top) and the second-order Runge-kugthod (bottom) with a
time step ofAt = 0.01. The solid line represents the exact solution. The circles represent the
approximate solution at grid points.

2.2.2 Continuous Galerkin

The continuous Galerkin method is the simplest of the cameidl methods to im-
plement in two and three dimensions. A variational fornmialatan be derived by first
time-discretizing (2.3)-(2.5). Each resulting equatiethien mutliplied by a test func-
tion (symbolized by a hat) and integrated over the entirealnf? = [—1/2,1/2]. If
a so-called?-scheme is employed for time discretization, the variatidarmulation
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consists in findingi" ! = (vt o™ T e U = (U, V, E) such that

n+l _ ,n 8”-‘1-9 N
/(““a— o4 4+ o2 2 ﬁ>dm -0 Yael,
Q

At Ox
Un+1 _ Un ~
/ (At@ + u" % ) dz =0 VoeV, (2.10)
Q
n+1 n+0
—n" Ju . B 4
/Q< AL n+ g n)dx =0 Vpeg,

wherea"t? = fa"*! + (1 — 0)a™ andf is an adjustable parameter that allows for
choosing between time schemes. The so-called Crank-Nitalsheme is obtained
with = 0.5. Note thatu”, v™ andn™ denote the functions evaluated at the previous
time step and live in the same functional spaces as the unisoivhat is to say, a
finite element problem is solved at each time step. We mayaiasider using the
following alternative scheme that likens the classicalimd-backward scheme, in
which case a variational formulation consists in findiffg™ € U such that

n+l _ . n 1 8 n+1 .
/ (““u — (" oM+ a2”a> dr =0 Vael,
Q

/ U L fuye ) d =0 voev, @1y
o\ Ar Tl v T
n+1 n n
[/ P =0 vjeé
/Q( At e aﬂ)dx s

wheren"*! is first computed from the continuity equation and used irstifEsequent
calculation of(u™** v™*1). The Coriolis term is treated semi-implicitely in both for-
mulations so as to not artificially generate nor dissipatrgn which complies with
the fact that no work is done by the Coriolis force. In forntidas (2.10) and (2.11),
u™*t! anda = (4,9, 7) belong to suitable infinite-dimensional function spacesche
variablea™ 1 is approximated as follows

N
+1 ~ +1 _ +1
a aptt =" AT g (x),

Jj=1

whereA’”rl are the nodal values angl; are the polynomial basis functions. The
apprommatmnu’“r1 = (uptt optt gty e Uy, = (Ug, Vs, £), which are finite-
dimensional subspaces @, V, £). Note that the superscriptstands foicontinuous
Following the notation byHughes et aI(2000) the test function& are similarly ap-
proximated byu,, = (uh,vh,nh) S uh = (Mh, Vh, Eh) which are finite-dimensional
subspaces d{f = (u,v,f:). Linear approximations are used for the test functions
and for all variables for the sake of simplicity and for anieamterpretation. Hence,

"“ anduy, are continuous acrossand piecewise linear over each elem@pt We
bear in mind, however, that pressure modes may appear inrtdithaee dimensions
when the same interpolant order is used for the velocity Ardetevation. Experi-
ments with quadratic elements for the velocity and lineamants for the elevation,
as well as linear elements for the velocity and constantefesfor the elevation, have
been conducted. The conclusions are the same as thosetptekereafter.
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In Figure (2.4), we show the elevation field obtained at tiime- 2 using the
forward-backward scheme. Spurious oscillations polluelt00-element and the 400-
element approximations. Experiments with finer meshes baga carried out and no
improvment is brought about by the use of smaller elememissiNevertheless, if
we set off the time integration with a smoother initial cdiai, the use of smaller
elements eliminates spurious oscillations. In that respelayperbolic tangent profile
has been chosen for the initial elevation field, that is,

n(x,0) = tanh(Rz), (2.12)

where R, the steepness parameter, controls how steep the tranistioetween -1
and 1. The larger R, the closer this initial condition will toethe sign function. The
foregoing experiments have been repeated with the hypethalgent initial condition
(2.12), with a steepness paramefer= 100, and results are shown in Figure (2.5).
Note that in the case of a hyperbolic tangent initial el®rafield, coefficientd7,, that
appear in the exact solution (2.7) must be numerically atati

Continuous Galerkin (100 elements)

Figure 2.4: The Galerkin finite-element approximations at dimensionless tise2 with 100
elements (top) and 400 elements (bottom) when the steplike initial elevationsfiedeéd. The
time step is 0.001. The solid line is the exact solution.

The assessment of the finite-element scheme is not triviguse it includes both
time and space discretizations. We do not wish to go intoildetegarding time
discretization techniques here and for the convergenclsasanly the forward-
backward (FB) scheme has been explored. A comparison betmaoximate and
exact solutions at dimensionless time- 1 was performed on gradually-refined uni-
form meshes. It is reported in Section 2.2.5.
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Continuous Galerkin (100 elements)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Continuous Galerkin (400 elements)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 2.5: The Galerkin finite-element approximations at dimensionless time2 with 100
elements (top) and 400 elements (bottom) when a hyperbolic tangerepsofised for the
initial elevation field ® = 100). The time step is 0.001. The solid line is the exact solution.

2.2.3 Discontinuous Galerkin

The Discontinuous Galerkin method (DGM) provides an appgalpproach to ad-
dress problems having discontinuities. Another advantigee DGM is that it is
inherently locally conservative while continuous Galarkiethods are locally conser-
vative provided that subsequent postprocessing be castefHughes et al.2000).
A broad review may be found i@ockburn et al(2000). In the DGM, the solution is
a piecewise-continuous function relative to a meslatferty et al, 2002). As such,
it is not required that the sought solution assume the sarhe \& each physical
mesh node because two computational nodes belong to thearsieal node (in
a one-dimensional mesh — see Figure 2.6). This propertyiggswmore flexibility
in representing steep gradients and discontinuities. plikeinitial condition for
the elevation field will be exactly represented, which is thet case with continuous
methods.

In continuous finite element methods, two neighboring elgsehare a common
computational node. This common node allows informatiobe@onveyed from one
element to its neighbor. In discontinuous methods, all theées lie in their respec-
tive element so that, a priori, there is no transfer of infation between neighboring
elements. One has to keep that in mind when deriving the weakulation. In
that respect, the weak formulation (2.11) will be alterediich a way that neighbor-
ing elements are able to exchange information between tenfor the continuous
case, a variational formulation is obtained from the tineeitized equations. For
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X'i Xi+'l

Figure 2.6: One-dimensional mesh for the discontinuous Galerkin method: theteaiem-
putational nodes (i.e., two nodal valués, andU,") at each physical node;.

the forward-backward scheme, the problem consists in findit! in 24 such that

Ne n+1 n n+1
— 1 0
6521 /QC <uAtqu — 5(’Un+1 + U")ﬁ + 042 739 ’lAL> de

T

NE
+Zfa(a o2 n+1]|dQ o vaed

S1
Ne n+1 n
— 1 A

Z/ (Hf} + *(un-s-l + un)f}> dx -0 Vie v,

7/, At 2
Ne n+1

n -n ) A
;/ﬂe< At 77+”>d“+z|a ‘dQ =0 Vet
Sa
(2.13)

whereN, is the number of elements. An approximatiafit = (u}™!, vt prth)
is sought withinldt = (U, Vi, &), which are finite-dimensional subspacedf
Thed superscript stands faliscontinuousSimilarly, the test function& are approx-
imated by, = (i, on, ) € l:li = (U, Vi, ED), which are finite-dimensional
subspaces di. As for the Galerkin method, a linear approximation is userttie
test functions and all variables. However, because thedisaious Galerkin method

is employed here, the finite-dimensional subspatésanduh allow discontinuities
across elements:

Ul =Uy, = {veL2(Q) | vg, € P ()},

whereP! (2.) is the set of linear polynomials on elemént. Note that the following
relationships hold for finite-dimensional subspaces ofGhterkin and discontinuous

Galerkin methodsZ4 U U andid c U, c U. The role ofS, and S,
in the first and third equations is to weakly enforce continaif n"*+! andv"+!,
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respectively. The vertical bars indicate that expressionst be evaluated along the
boundary of elemen,, that is at the extremities of element for one-dimensional
problems. The function() is defined as

alit) = ()\ - % sigr’(ﬁ)) B

wherern is the outward-pointing normal at each element bound#&ty The interele-
ment jump in the nodal values at a given physical node is défasgu”(X;)] =
U — U;". The parametek € [-1/2,1/2] is tunable in the sense that it allows for
the interelement jump to be weighted. For example, the jlutp evaluated at the
physical nodeX; in Figure (2.6) is weighted by — 1/2) on computational node
~ and by() + 1/2) on computational nod&", given that the signs of the normal
at nodesi— andi*, are+1 and—1, respectively. A centered scheme is obtained by
choosing\ = 0, in which case no preference is given to any of the nadesr i+.
For transport problems, it is common to give more weight tdend (or nodei ™) if
the advective flux is known to travel from left to right (respeely from right to left).
As in Hanert et al.(2004), an alternative formulation can be derived by irdtigg the
spatial derivatives by parts. In so doing, (2.13) expands to

Ne

un+1 —u” ~ 1 n+1 ny 2 n+1 ol
Z/Qﬁ<mu—2(v +oMa — o’y &;)dx

e=1

+a” Z {(™H1(X)) (X)) + [7"1(X0)] (a(X0))
+a22 n+1(Xi)] =0,
Z . ( 0 S o) do = (214

Z/ (7L+1 n B ngz)dx

+ Z {{u™(Xa)) [0(X0)] + [u"(Xa)] ((X:))}

S [alh(X))] [ ()] = 0,

=1

where N, is the number of physical nodes anfi X;)) denotes the average ¢fat
X;, thatis

(f(X0) = 5 (F(X7) + F(X50)-
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By combining all the terms involved in the summations, theedwing formulation
reduces to

Ne

un+1 —u" ~ 1 n+1 n 2 n+1 ot
> (m“‘N i oty | de
e=1 Qe
+a? Z X)) [A(X)] =0,
(2.15)
Z/ ( n+1 nf} n l(un+1 =+ u"’)ﬁ) dQ? =0
2 - b

5 / (Wﬁ_ungz)dx+z<un<xi>>x[ﬁ<xi>] =0,
e=1 e ‘

where(f(X;)), is the weighted average ¢fat X;, defined as

1 1

(f(Xi))y = (5 + (X)) + (5 - N f(XH).

In appendix A.2, we show how formulations (2.14) and (2.18)derived.

The discontinuous finite element formulation (2.13) hasnbeged to solve our
benchmark problem with 100 and 400 elements. Results amgnshioFigure (2.7)
where approximate and exact solutions are compareéd=a. A centered scheme
is employed hereX = 0). Severe oscillations pollute the solutions. The classi-
cal forward-backward time scheme is employed for bettdyiléita properties when
boundary termsS; andS, are involved. In Figure (2.8), the top panel reproduces the
400-element solution with = 0 while the bottom panel shows the solution obtained
with A = 0.001. Hence, Figure (2.8) permits to compare a centered and latlglig
off-centered scheme. The aim of these numerical expersriemivofold. Firstly, we
wish to verify whether weakly enforcing continuity aft andn” ensures stability of
the formulation (2.13). Secondly, we would like to lower theel of arbitrariness as-
sociated with the weak enforcement of continuity by apjmgishe sensitivity of the
parameter\.. Looking at Figure (2.8), we see that both choicesXor the centered
and the slightly off-centered schemes — do no prevent spsidscillations. Moreover,
the off-centered scheme makes it even worse, suggestinggegtance of symme-
try in the problem. Other experiments have been performeesiohigher values (as
well as negative values) of, only to further conclude that = 0.0 gives rise to the
least severe oscillations. In Figure (2.9), we show how theti®n behaves when the
hyperbolic tangent (2.12) is used as initial condition (Wit = 100). The same exper-
iment as with the continuous Galerkin method has been cdeddnere. Figure (2.9)
is to be compared with Figure (2.5) showing the solution ioletdwith the continuous
Galerkin method. The latter clearly outperforms the DGMe Phesence of spurious
oscillations for all values of\ suggests that the wrong field is upwinded. The fol-
lowing question thus arises: What variables should we weakfgrce the continuity
of ?
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Discontinuous Galerkin (100 elements)

Figure 2.7: Discontinuous Galerkin finite-element approximation with 100 elements &iugh)
400 elements (bottom) at dimensionless tiime 2 with a steplike initial condition. The time
step is 0.001. Continuity is weakly enforced usig- 0.0.

Discontinuous Galerkin (A = 0.0)

Figure 2.8: Discontinuous Galerkin finite-element approximation with 400 elements ardim
sionless timg = 2 with a steplike initial condition. The time step is 0.001. Continuity is
weakly enforced using = 0.0 (top) and\ = 0.001 (bottom).
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Discontinuous Galerkin (100 elements)

Figure 2.9: The discontinuous Galerkin finite-element approximations at dimens®titas

t = 20 with 100 elements (top) and 400 elements (bottom) when a hyperbolic tamgdite is
used for the initial elevation field{ = 100). The time step is 0.001 and continuity is weakly
enforced withA = 0. The solid line is the exact solution.

2.2.4 Discontinuous Riemann - Galerkin

To answer the previous question, a closer look at the wayrimdtion is propagating
is advisable. Since information is carried along charéstiercurves by characteristic
variables, a better approach would be to enforce contimfithose very variables
that transport information. In addition, we know the difectof propagation of those
variables so that weighting can adequately be adapted. appioach is commonly
referred to as a Riemann solvé&tde 1981;Aizinger and Dawson2002; Schwanen-
berg and Harms2004; Remacle et al.2005). A variational formulation similar to
(2.13) may be derived. The difference will lie in the way douity is enforced. The
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problem consists in finding” in U such that
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(2.16)

where functions (@) andb(4) are defined as follows:
oL 11 o\
a(t) = 3 (2 A Slgn(n)> @
b(a) = it + Asign(n) | @
u) = 5\ 3 gn(n) | u,

where we usually take = 1/2. Again, an alternative formulation can be obtained
by integrating the spatial derivatives by parts and connigithe sums, as we have

27



achieved for the previous DG formulation. It can be shown (B4 6) is equivalent to

Z w1 dil
- = n+1 n 2 n+1
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+(1=2)) ) [u"(X:)] (7(X3)) =0.

=1
Setting\ = 1/2 further reduces the foregoing formulation and we obtain
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Formulation (2.18) is elegant. In the first equation, the sation involves an aver-
age of characteristic variables at each physical n¥deln particular, the average is
computed by taking the characteristic variables+ v andan — v at nodesX;” and
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X;", which merely reflects the way information propagates. Allsintomment can
be made on the third equation where jumps of characteristialbles make up the
summation.

Now, to understand the seemingly complicated formulatib®), let us evaluate
the expressions that weakly enforce continuity of the dttarestic variables. We
focus on the first equation and assufne- ¢; , that is the shape function associated
with computational nodé—. We further assume that the shape function is evaluated
at nodeX, .The outward-pointing normal i$1 so that the functiona andb take on
the following expressions

=)
—~
<
=
~

I

(1/2=4),

| =N

7 (1/2+X),

and the expression associated with nodés
1 n 2 n+1 1 n 2 n+1
5(1/2—)\)[0411 +a‘n ]+§(1/2+/\)[au —an" .

If we take X = 1/2, the latter expression simply becomggvwu™ — o?n"*!]. Con-
cretely, this is what has to be added to rowof the linear system. The same reasoning
applied to node™ (i.e., shape functio;") gives rise to} [au™ + a?n™*1]. One can
see that in both expressions, a linear combination of oneeoélharacteristic variables
is involved. The jump ofx(u — an) is associated with node™ while the jump of
a(u+ an) is associated with node . This pattern consistently translates the way in-
formation is conveyed. So as to compare with the previousodiinuous method, the
same experiment has been performed (a 400-element meshsahdian analyzed at

t = 2) with the Riemann-Galerkin formulation (2.16). Resulte ahown in Figure
(2.10), where the superiority of the Riemann-Galerkin folation is manifest when
compared with Figure (2.7). Let us emphasize that the qualithe approximate so-
lution suffers from numerical dissipation when long timéegration is performed, a
trend already observed Buo and Polvan{1996) with their shock-capturing numeri-
cal methods. This effect is illustrated in Figure (2.11) vehthe approximate solution
is unable to capture higher-frequency features that makieeugxact solution. Higher-
order time discretization schemes should be able to tabideptoblem, though, and
it is indispensable to investigate the effect of such tegies on the accuracy.

2.2.5 Comparison between methods

Before comparing methods, it is of interest to assess theecgance rate of each of
them by computing thé&2-norm of the error on gradually-refined meshes. The time
step used in the following experiments is very small in orffderthe time discretiza-
tion error to be negligible in contrast to the space diszagitbn error. A time step
of At = 107° is used and the error at timte= 1 is computed. Meshes containing
25, 50, 100, 200 and 400 elements are used. The results obtivergence analysis
are reported in Figure (2.12). The hyperbolic-tangenighttondition may be used to
compare the three methods for different values of the sespparameter. Results are
shown on the top graph of Figure (2.13) where we can obseatddhsmooth initial
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Discontinuous Riemann-Galerkin (100 elements)

Discontinuous Riemann-Galerkin (400 elements)

05}
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Figure 2.10: Discontinuous Riemann-Galerkin finite-element approximation with 100 ele-
ments (top) and 400 elements (bottom) at dimensionless time 2 with a steplike initial
condition. The time step is 0.001.
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Figure 2.11: Discontinuous Riemann-Galerkin finite-element approximation with 300 ele-
ments at dimensionless tinie= 200 with a steplike initial condition. The time step is 0.002.
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conditions, the Galerkin method performs the best whilesfarp initial conditions,
the discontinuous Riemann-Galerkin method yields the dgstoximation. It should
be pointed out, though, that the errors remain close to oothnanand that none of the
methods could be immediately ruled out based upon this gative analysis. More-
over, the gap between the errors obtained for sharp iniadlitions does not increase
when using higher-resolution meshes. The bottom graphmfrgi(2.13) shows the
L?-norm of the error computed on the restricted donsgin= [—0.25, 0.25] that does
not contain any of the discontinuities, as can be seen inr€i¢14). In so doing,
the error for the discontinuous Riemann-Galerkin methoabies very close ta0—*
while it increases up ta0~2 for the two other methods. This behavior is caused by
the spreading of spurious oscillations toward the innet giathe domain, where the
solution should remain smooth. These oscillations do nist éor the discontinuous
Riemann-Galerkin method, thereby leading to an error giatd orders of magnitude
smaller for sharp initial conditions. A last comment may bade regarding the use
of the L2-norm. The latter may be misleading in the sense that, by agithe top
graph of Figure (2.13), we are tempted to conclude that alhots are equivalent for
sharp initial conditions. This is untrue and the problenhat the error is closely con-
centrated around the discontinuities for the discontisugiemann-Galerkin method
(and reaches aboub—?2) while it remains as low as0~* away from the disconti-
nuities. By contrast, as we can observe on the bottom graptigoire (2.13), the
error reaches0~2 away from the discontinuities for the Galerkin and discomtius
Galerkin methods.

In Figure (2.14), the Galerkin and the discontinuous Riem@alerkin FEM are
compared when solving the same problem with different mesblutions, starting
at 0.1 and increasing it to 0.02 and 0.005. For the discoatiatRiemann-Galerkin
method, using a coarse mesh does not produce spuriousatieo#, even though
high-frequency features are filtered out due to numericaigation. The same exper-
iment has been carried out with the continuous Galerkin F&hNly to conclude that
oscillations that characterize the method amplify whernrdélselution decreases. They
do, however, remain finite. Note that no stabilization wheat®r has been used for
the continuous Galerkin method so that care must be taken wdraparing the latter
with the Riemann-Galerkin method where characteristi@des are upwinded. As a
final note, it must be stressed that such high resolutionscsetpreviously employed
are never used in large-scale ocean models. This is why shexaeriment, carried
out on low-resolution meshes, was presented. Namely tdigighihe usability of the
discontinuous Riemann-Galerkin method on low-resoluti@shes. Nevertheless, it
must be stressed that the use of discontinuous methodssriptireasing the number
of unknowns compared with continuous methods on meshead#ve same resolu-
tion.

Finally, another way of comparing the three finite elementhoés is to determine
the CFL condition for each of them. A von Neumann stabilitalssis allows to find
— after quite tedious and lengthy computations — the maxir@amrant numbe€' =
aAt/Ax that guarantees numerical stability. For the continuousi®a method, we
haveC < 2\/3/3 ~ 1.15. For the discontinuous Galerkin method — that involves
the determinant of a 6-by-6 matrix —, we have< 0.5. Finally, the discontinuous
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Riemann-Galerkin method yields the following conditiof: < 0.2564. The latter
was determined numerically while the first two were deteadianalytically.
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Figure 2.12: L?-norm (|e||o) of the error in the elevatiom on gradually-refined meshes
for the three FEM with the hyperbolic-tangent initial conditioR & 10) att = 1. Notice
the second-order rate of convergence obtained with the Galerkin arwhtisuious Riemann-
Galerkin methods while the discontinuous Galerkin method yields a first-oatie The dotted
lines represent least-square approximations to experimental effoeserror is plotted versus
the number of elements.

2.3 Conclusions

A benchmark for the propagation of Poineaxaves within a one-dimensional fi-
nite domain has been proposed and a comparison betweendmarical methods
to resolve it has been accomplished. The use of a steplikelthars discontinuous
— initial elevation field makes it challenging for numeri¢athniques to capture the
traveling discontinuity without spawning spurious ostilbns. Because the equations
describing the physics of the problem are hyperbolic, théhowkof characteristics
is a suitable way of solving for the wave propagation. If disightly accurate time
scheme is employed, this technique is able to solve the Ipesxthvery satisfyingly.

More commonly used numerical methods were then presentethelconsidera-
tions that follow, we bear in mind that the issue of time d#i@ation must be thor-
oughly investigated as well. As we already said it, this wasthe subject of this
chapter. The classical continuous Galerkin FEM has diffiesiicapturing steep gra-
dients, let alone discontinuities. This was revealed byettperiment carried out with
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Figure 2.13: The top graph shows the?-norm of the error in the elevatiopon a mesh con-
taining 100 uniform elements for increasing steepness paraietith the hyperbolic-tangent
initial condition att = 2. The bottom graph differs from the top graph in the calculation of the
error: the error is computed on the restricted donfajn= [—0.25, 0.25] that does not con-
tain any of the discontinuities. The same symbols are used for both grapba$ottom graph
shows that for the Galerkin and discontinuous Galerkin methods, osciliayead out to reach
the inner region while the latter remains devoid of spurious oscillations fodigw@ntinuous
Riemann-Galerkin method.
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[ Continuous Galerkin for h = 0.1 [ Disc. Riemann-Galerkin for h = 0.1

w

[ Continuous Galerkin for h = 0.02 [ Disc. Riemann-Galerkin for h = 0.02

[ Continuous Galerkin for h = 0.005 [ Disc. Riemann-Galerkin for & = 0.005

Exact solution

Figure 2.14: Comparison of the Galerkin and the discontinuous Riemann-Galerkin REM a
time ¢t = 20 for a time step 0f).001. Left and right panels are the solutions for the Galerkin
and the discontinuous Riemann-Galerkin method, respectively. Theséiond and third rows
show results for meshes containing @ = 0.1), 50 (b = 0.02) and 200(h = 0.005)
elements. The bottom graph is the exact solution.
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the hyperbolic tangent initial elevation field. Increasihg number of elements is not
really a solution by itself, for an infinite number is necegda resolve the discon-
tinuity. In that respect, the discontinuous Galerkin (D@&thod is appealing for its
ability to exactly represent discontinuities. Howeveistimay constitute an asset as
much as a drawback in the sense that one has to carefullyetiomsariable of which
continuity is weakly enforced. That statement is illustchby comparing the classi-
cal DG method and the so-called discontinuous Riemannr@al(DRG) method. In
the former, we enforce continuity of the variables whoseiapderivatives appear in
the formulation. Usual DG schemes where upwind weightingaisely applied to
the primitive variables (velocity and elevation) appeaptwrly perform for all val-
ues of\. It is then mandatory to impose the continuity of suitablenbanations of
the primitive variables. It is well known that enforcing thweeak continuity of the
so-called Riemann variables would perform quite bettechSan approach is known
as the DG method with a Riemann solver and its numerical pagfoces have been
well documented in the literatur®6e 1981;Schwanenberg et al2000; Cockburn
et al, 2001;Aizinger and Dawsaon2002; Flaherty et al, 2002; Schwanenberg and
Harms 2004;Kubatko et al. 2006a;Remacle et aJ.2006). In the one-dimensional
framework, this established method is presented as the D@ufation expressed in
terms of Riemann variables. The main contribution of thisdhenark is to show that
the one-dimensional counterpart of the DGM with a Riemarinesas the optimal
technique. It is hardly feasible to extend the method of attaristics to 2D and
3D cases and the definition of Riemann variables in higheedsions is not obvi-
ous. Hence, the classical approach consists in consideréigplified version of the
one-dimensional Riemann problem along the normal direativeach segment, the
functioning of which has been detailed in this chapter.

The continuous Galerkin and the discontinuous Galerkirhog can be both eas-
ily extended in higher dimensions without too much effortl &ine extensions of our
results can be immediately derived. This benchmark apgedss very illustrative
of the numerical behavior of wave propagation problems thadlel the barotropic
systems of ocean models.
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Chapter 3

Finite element methods for
geophysical fluid flow
Instabilities

~ Summary o o
The mesoscale variability in the ocean originates from baroclinic

and, to a lesser extent, barotropic instabilities. The equations de-
scribing those instabilities are inviscid, rendering their numerical
modeling particularly challenging. In this chapter, some finite ele-
ment formulations to model these instabilities are presented.

The numerical modeling of physical instabilities is pronemany difficulties and
constitutes an interesting candidate for evaluating thiBppeance of a method. Both
space and time discretizations must be performed with gezatto avoid any artificial
amplification or damping of physical instabilities. In thgd of problems where
physical dissipation is absent from the equations, thisives challenging. Among
physical instabilities observed in ocean flows, barotropéroclinic and a mixture of
both are the most commonly encountered in the literateedlpsky 1964;Kuo, 1973;
Hart, 1974;Killworth, 1980).

The study of barotropic shear flow instabilities dates badkito (1949). Kuo took
one step further from the classical Rayleigh stability peab by incorporating the
effect of latitude variation in the Coriolis parameter, theffect, whereby necessary
conditions for instabilities are altered as compared wlibse derived for flows on
an f-plane. These necessary conditions can be fouritLim(1973) andCushman-
Roisin(1994) and are recalled in Appendix B. When a flow is unstahke guestion
that comes to mind is how fast perturbations grow. As growths are generally not
derivable for arbitrary zonal currents — only bounds canXtiaeted Pedlosky 1979)
—, many authors have investigated specific basic flows indlsewith the aim of eval-
uating growth rates. The zonal currents generally consitieerve as an idealization
of observed oceanic and atmospheric patterns. In thateggtpe hyperbolic-tangent
profile has been used quite oftedichalke (1964) studied this profile on afrplane
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(no g-effect) system whileDickinson and Clarg(1973) andKuo (1973) computed
perturbations growth rate and phase speed dependent omuvaker and a dimen-
sionlesss parameter. Another typical basic state is a jet-type valquiofile, usually
represented by a cosine squared or hyperbolic-secanteshifaro, 1973, 1978Kill-
worth, 1980). Further idealization of the hyperbolic-tangenifile as a piecewise
linear profile is of interest for two reasons. First, as show@ushman-Roisi1994),
an analytical solution exists for the growth rate on faplane. Second, it is more
amenable to numerical resolution, insofar as the profile@c#y represented — i.e.,
there is no truncation error — by low-order polynomial iptation.

In this chapter, both the hyperbolic-tangent profile andiritsar simplification are
employed to investigate the behavior of a free-surface dnivo rigid-lid finite-
element formulations. The free-surface formulation seltlee primitive shallow-
water equations. The rigid-lid formulations are the staddsorticity-stream func-
tion and velocity-pressure formulations. Even though tteam modeling community
seems to depart from rigid-lid ocean models (Kébvorth et al., 1991;Griffies et al,
2000, for discussions about rigid-lid and free-surfaceaaamodels), this formulation
is used here to compare our results with those theoretipadiglicted using the same
set of equations. By doing so, all differences with theogdtiesults come from the
numerical treatment of the equations and not the physios nTdin goal of this chapter
is to appraise the finite element method in the way it reptsdearotropic and baro-
clinic instabilities. To that end, it is first tested thattallee finite element formulations
are capable of maintaining the steady-state geostrophidilrgum without artificial
generation or dissipation of energy, nor distortion of tlesvfl We then compare all
three methods within the scope of small pertubations solitiesdr stability analysis
remains valid and, aside from intercomparison, a referanedytical solution exists.
In particular, the influence of the free-surface is to be nicaly assessed, since all
theoretical results have been derived for the rigid-lictiedy - stream function for-
mulation. We finally extend the investigation to timescalest allow for nonlinear
advective terms to play a more significant role, permitting tlevelopment of ed-
dies. In that respect, the way advection is numericallytéek#s pivotal because the
quest for numerical stability more often than not precluttiesunfolding of physical
instabilities.

3.1 Problem formulation

Since we will limit ourselves to motions whose scale is ondhder of a few hun-
dreds kilometers, the problem can be formulated in a caresbdordinate system
rather than in a spherical system. That is, the so-calledlasrapproximation will
be made Pedlosky 1964): the two-dimensional domain of interest is deemethltp
infinite while the meridional extension remains finite. Theffect is retained and
flow occurs over a flat bottom. The unboundedness of the doimaire zonal direc-
tion is tackled by imposing periodicity in that directionhi$ design choice is mostly
dictated by numerical feasability but hardly constrainsfeamework: the basic flows
only vary non-periodically in the meridional direction awdvy disturbances are, by
nature, periodic. To further set out the framework, we deffireecoordinate$z, y)
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to be positive eastward and northward, respectively, while) are the correspond-
ing velocity components. The system is assumed to be devYoitsaosity and all
frictional effects at the bottom and the surface are negtectateral boundaries are
impermeable. The inviscid nonlinear shallow-water eaqueiwill be used to model
the system:

ou B an
E+U~Vuffv = 95, (3.2)
Ov B on
E +u-Vu+ fu = fga—y, (3.2)
n
5 +V-(Hu) = 0, (3.3)

wherey is the free-surface elevation with respect to an undistlireference levelf is
the Coriolis parameter and is linearized about a referatitadle so that = fy+ 30y,

g isthe acceleration due to gravity aflx, y, t) = h+n(z,y, t) is the total fluid layer
thickness withh being the constant undisturbed fluid thickness. In mostthzpc
shallow-water models, it is generally assumed that. h so that the divergence of
the transporf{u in (3.3) can be linearized to becorRé: (Hu) ~ AV - u, assuming
also that the depth is constant, as indicated above. Lettihghbe a characteristic
length scale, the nondimensional form of (3.1)-(3.3) is

Ju B on
o Tu V- (1+8ye = - (3.4)
v o on
a+u.w+(1+ﬂy)u = 5y (3.5)
n 2 _
E + « V-u = 07 (36)

where the velocity scale I8 = Lfj, the time scale i§" = L/U and the elevation
scaleE = L?f2 /g is defined so that the Coriolis force and the elevation gradiee
both on the same order of magnitude. Finadlys the ratio of the external deformation
radius to the length scale

Vhg

Lfo

The dimensionless beta parametepis= 3,L2/U. Note that all variables are now
dimensionless. Under typical oceanic shear flow conditieves have,/hg ~ 102
ms!, L ~10* - 10° mandfy ~ 107° — 10~ s~ ! so thata ranges froml0 to
1000 and 8 ranges froml0—3 to 10~!. We see that under such conditions, a valid
approximation to the continuity equation is that of a dierge-free velocity, also
known as the rigid-lid approximation. Within that scope4{3(3.6) become

ou o dp

E‘FUVU—(l‘f’ﬁy)’U = _3726’ (37)

ov op

— . 1 = —— .

ot Vot (14 By)u 3y’ (3.8)
V-u = 0, (3.9)

wherep is the pressure to be applied on top of the fluid layer to keefsthface flat
and it has been nondimensionalized with a pressure deate poL? 2, wherepg
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is the fluid density. The continuity equation now acts as astamt, effecting the
velocity to be divergence-free. In that respect, the serfaressure is a diagnostic
variable.

From (3.7)-(3.9), the vorticity-stream function formudat is derived by first defin-

ing the stream function)(z,y) so thatu = —3% andv = 3% while the relative
vorticity w = % — S—Z = V%. In so doing, the continuity equation is identically sat-

isfied and both velocity components are derivable from aumggralar variable — the
stream function —, which permits to reduce the number ottlimaknowns from three
to one. The vorticity equation is obtained by computiglg(3.8) - 0%(3.7), which

gives rise to
ow i ow L ow P
- tu—+tv— =—pv.
ot Ox oy
Now, the two-equation system, whose vorticity equation igtan in terms of the

stream function, is

Oow  Wow  Wow _,0Y

V3 = w. (3.11)

o

Notice that this system could be collapsed onto a singleteryugor the stream func-
tion, without resorting to the substitution variable However, advective terms would
then take on third-order spatial derivatives, which wowdduire undesirable, high-
order interpolants. Furthermore, using the relative edytipermits to treat the non-
linear terms more easily asdfwere simply be advected by the velocity field, derived
from the stream function. We must bear in mind, though, tB41Q) isnota traditional
advection equation, for the stream function depends ondhecity. Hence, although

it seems like we do away with the nonlinearity, it is concdaed entrenched within
the problem. The stream function needs be specified at ththesouand northern
boundaries, where it has to be set to a constant that depenthe groblem under
consideration. It is also worth unveiling what looks like aadox in (3.10). As far
as the Coriolis term is concerned, only theffect remains. If only thef-plane ap-
proximation were made, the right-hand side of (3.10) wowdish and it would not
be possible to say whether or not flow occurs within a rotafiagrework. In fact,
any solution to (3.10) — witl¥ = 0 — in a rotating framework or in an inertial frame-
work would be the same because both would obey the same equathe vorticity
equation (3.10) is identical to the one derived within thepscof the geostrophic ap-
proximation inPedlosky(1979), where the author concludes that the sole effecteof th
earth’s sphericity on the geostrophic solution is due ehtito the variation off with
latitude but not ory itself.

Considering the rigid-lid approximation (3.7)-(3.9) agaanother formulation can
be had by taking the divergence of the momentum equationsrigech Poisson equa-
tion for the pressure. We first write the momentum equatiBrig){(3.8) in vectorial

form 5
a%:l +(u-V)u+F=-Vp, (3.12)

40



whereF° = (1 4 8y)é. A uis the Coriolis force, withé, being the upward-pointing
unit vector. To derive the continuous pressure PoissontequéPPE), we take the
divergence of (3.12), giving rise to

-V’ =V.[(u-V)u+V-Fe (3.13)

In deriving (3.13), the divergence and time differentiatittave been interchanged so
that use could be made of the continuity equation. The is§ideamann pressure
boundary conditions has been settled®esho and San(1987): take the normal
projection of (3.12) ontd’, namely

% _ —n-g onT, (3.14)
on

where the conditiom - n = 0 onT" was called on and wheggregroups the advection
and Coriolis terms of (3.12). Note thatis the outward-pointing normal to the bound-
ary. The pressure computed from (3.13) is known up to anrargindditive constant.
To summarize, the velocity-pressure formulation is given b

ou Op

o Tu Vu-(1+08yl = o, (3.15)

ov . ap

5 Tu Vot (1+8yu = 3y (3.16)
~V% = V.[(u-V)u]+V. F° (3.17)

Any given zonal flow(a(y), 0) — henceforth called basic state — is solution to the
steady-stateonlinear system of equations (3.4)-(3.6), provided thagievation be in
geostrophic equilibrium. For the vorticity-stream fuwctiformulation (3.10)-(3.11),

a zonal flow is obtained by requiring that the stream functinly depend ory. For
the velocity-pressure formulation (3.15)-(3.17), a zdt@d is solution to the steady-
state equations if the pressure satisfies the geostrophitbeym, as was the role
of the elevation in the free-surface formulation. Depegdin its structure, a zonal
flow may be unstable to small perturbations. Necessary tiondifor instability are
recalled in Appendix B.

The problem we wish to solve may be stated as follogiwen an unstable ba-
sic state and a disturbance of given wavenumhbetrack the evolution of the dis-
turbance and evaluate its growth rate;. Two benchmark shear flows, whose un-
stable modes have been studied in the pagtkinson and Clare1973;Kuo, 1978;
Cushman-Roisir994), will be presented and will serve as comparativestbetween
the three finite element formulations that are outlined welo

3.2 Three finite element models

We now proceed with the presentation of three different reesof wielding the
problem laid out in the foregoing section. The first finitenatat formulation deals
with the free-surface elevation as a prognostic variabliethe last two assume that
a rigid lid is applied onto the top of the fluid layer. The thfeemulations follow the
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same order as that used to introduce the equations in Sextidhat is, we present
the free-surface, vorticity-stream function and velogitgssure formulations, in that
order. Even though for large-scale barotropic systemsdiffierence between free-
surface and rigid-lid flows is marginal, as we will see, th#fedéences bewteen the
corresponding finite element formulations are quite stglkand prone to comparative
analysis. Ironically, the formulations that are analyticenore obedient — the rigid-
lid formulations — bring about numerical challenges. Oujeotive is definitely not
to offer an overview of existing finite element formulatiofts the incompressible
Navier-Stokes equations (see e@resho and Sanil998), but we thought it would
be interesting to linger on two common formulations, notid@st because the Coriolis
term does not appear in the classical Navier-Stokes equgationsidered by Gresho
and Sani and because the computation of the pressure s@aatmains subject to
difficulties.

Py

Figure 3.1: Nodes location for thé® and PV discretizations.

Because we essentially have to solve an initial-value probband because distur-
bances might not grow as fast as one expect them to, all fatioak presented below
must be able to preserve a geostrophic equilibrium (givenital state) with neither
dissipation nor distortion, at least until roundoff errkick in and destabilize the flow,
if the latter is physically unstable. Any violation of thisement would render the as-
sociated formulation questionable, for any numericalbygrated deviation — that is,
not generated by forced disturbances — from this initiakstaould most likely falsify
the analysis. Prior to presenting the finite element fortata, it is worth saying a
few words about the elements that are used to approximaiatteis variables — the
velocity, the pressure, the elevation, the vorticity arel dstream function, depending
upon which formulation is under scrutiny. Linear conforgnamd non-conforming el-
ements will be used throughout the remainder of this secfianllustrated in Figure
(3.1), the linear conforming element (the so-calledelement) has its nodal values
located at each vertex while the linear non-conforming elenfthe so-called’N¢
element) has its nodal values located at the middle of eagh éxke e.gHua and
Thomassetl984;Hanert et al, 2004). Their linear basis functions will be denoted by
¢¥ andoy, respectively, as a reminder that the pressure and elevatéconforming
while the velocity is non-conforming. Conforming interptibn requires interpolated
variables to be continuous across inter-element bourglesfie non-conforming in-
terpolation does not so; continuity is only ensured at thadtei of each inter-element
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boundary. Finally, we abide by the following conventionst & given mesh, it is as-
sumed that there are vertices andV edges. An-subscript indicates that the variable
is time-discretized and evaluated at titfe The domain of interest is denoted By
and its lateral boundary is notéd

3.2.1 The free-surface formulation

Space-discretization of (3.4)-(3.6) is conducted by utireg?¥ ¢ element for each
velocity component and thi, element for the elevation (see elge,Roux et a].1998;
Hanert et al, 2003, 2005, for studies on finite elements for shallow-wétavs).
Opting for the Galerkin finite element method, where testfioms in the variational
formulation are taken to be basis functions, the system-(3.4) mutates to the fol-
lowing system o2 N + M ordinary differential equations:

R
M“%+AR+CR = —GH, (3.18)
MP%—aQDR = 0. (3.19)

In the above equation$* is the non-conforming mass matriR, is the advection
matrix, C is the Coriolis matrix,G is the gradient matrix anMP is the conforming
mass matrix. The divergence matikis obtained after integration by parts (the con-
tour integral vanishes becausg-n = 0 onI’, whereuy, is the discrete velocity field).
Those matrices are written out below.

o | <oiey > 0 2N X2N
MY = _ 0 < ¢§‘¢>}‘ S eR ,

. [ < ¢tuy - Vi > 0 2N x2N
A= 0 < Gruy - Vol > e R
c - | 0 " — < (1+By)oi ey > } € RIVX2N.

L <<1+By)¢i¢j > 0
0
G — < ¢; o > 1 € RINXM
| < oy 8y] >
D = |:<da¢£¢:t]1,>< daq?yf¢y>i| ERMXQN,
MP = [< ¢f¢§7 >] GRJWXM7

where< > indicates integration oveR. It is conspicuous that the gradient matrix
is the transpose of the divergence matrix, because integrhy parts was carried

out in the continuity equation. The classical treatmenthef Navier-Stokes equa-
tions, though, usually implies integrating the pressuigmt by parts but not the

divergence of the velocity, which leads to the same resulitsdever. Our choice

is justified by the fact that we use non-conforming velocigngents. The vector R

contains the nodal values of both velocity components,ishat

-[Y].
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where U and V denote the nodal values of each velocity comporkhe vector H
contains the elevation nodal values. Note that the adveatiatrix A depends upon
the velocity, All three variables of the free-surface fotation — both components of
the velocity and the elevation — are solved for in a couplethifan. This allows for
varying the degree of implicitness of the elevation graté&rd the divergence of the
velocity in the continuity equation. Time-discretizatioh(3.18) and (3.19) leads to

Rt _ R® 1 1 1
Hn+l — H» 1 1
p A2 “pntl pn —_
MiAt aD<2R +2R) 0.

Rearranging the above expressions so that all nodal valtieseastept™ ! appear in
the left-hand side while all nodal values at time steé@ppear in the right-hand side,
we arrive at the following coupled linear system in th€ + M nodal values:

M"Y 1 1 mv 1 1
- Rn+1 - Hn+l _ ~_A—Z R" — ZGH"
(At+2c> +2G At 2C 2G ’
1 2 n+1 Mp n+1 _ 1 2 n Mp n
2chR JrAtH = 2OzDR JrAtH.
(3.20)

The Coriolis term is always treated semi-implicitely so asi6t artificially generate
nor dissipate energy, complying with the fact that the Qifiorce does not physi-
cally do work. The free-surface formulation allows for threpagation of fast surface
waves (e.g., Poincawaves) whose phase speed is on the ordefgdf and can there-
fore reach up to hundreds of m’s If an explicit, foward-backward time scheme is
used (see e.gBeckers and Deleersnijdet993), the CFL condition imposes too strin-
gent of a time step, as compared with climatic timescaleserAismplicit treatment
of the terms governing the propagation of those surface sveslaxes the constraint
on the time step — the scheme becomes unconditionally statid serves the purpose
of modeling large-scale features without resolving fasippgating smaller-scale fea-
tures. There is nevertheless a cost to unconditional gtatiie system (3.20) is fully
coupled and all variables must be solved for together. Nweadvection is explicit.
An alternative consists in treating the advected field initgly while the advecting
field remains explicit, which imposes the reconstructiorhef full system left-hand
side at each time step. Another alternative is to treat bwthativecting and advected
fields implicitely, a method that implies solving a nonlinegistem at each time step.
Both these alternatives are beyond the scope of the prelsapitss.

3.2.2 The vorticity - stream function formulation

Both the vorticity and the stream function are discretizeihg the P, element so
that (3.10)-(3.11) is converted to the following system2df ordinary differential
equations

v nw = B (3.21)

dt
LS = By, (3.22)
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where W and S are vectors of vorticity and stream functiorahealues, respectively.
The matricedN andL and the vectors B and By, take on the following form:

[ o, 088 Oy, 0 o
N = p|_Zrh 7y ZFR T RMxM
<¢’( y 0z " oz dy ” < ’
L = [<Ve Vgl >]  eRMXM
Bu — 75 < stawh >:| G RM,
L Ox
By = [~ <djwn>] eRY,

wherew;, and;, are the discrete vorticity and stream function fields. Nbot the
contour integral emanating from integration by parts oflthplacian vanishes because
only Dirichlet boundary conditions are enforced®n Time-discretization of (3.21)
yields

W"+1 —W" 1 1
MP—— + _NW"! f _NW" = B". 3.23
At 2 *3 w (3.23)
Rearranging (3.23), the full system is
LS" = W
MP 1 MP 1 (3.24)
- - n+1 _ - = n n
[At+2N]W [At 2N}W + B,

and is set off by an initial condition on the vorticity. Natithat the advection matrix

N is always evaluated at time st€pbecause decision was made to first solve for the
stream function and then, for the new vorticity in terms & #iream function. In
other words, the system is sequential in time. This proaedlows for a convenient
way of handling the nonlinear advection term.

3.2.3 The velocity-pressure formulation

Discretization in space of (3.15)-(3.17) must be done céigefA naive approach
is to start with the continuous pressure Poisson equatidir&nd discretize it. In
so doing, the discretized Laplacian takes on the same esipreas that obtained in
the previous vorticity-stream function formulation. Thgtthe matrixL is used to ap-
proximate— V2. This, however, yields an inconsistent — and unstable etigation
in the sense that the discrete pressure and velocity fiesaompatible with one
another, for the velocity boundary conditions are not cstesitly incorporated within
the discrete Laplacian operator. In fact, as showrasho et al(1984), the issue
of deriving the discrete consistent pressure Poisson iequ@PE) must be addressed
the other way around by working on the space-discretizeh fof the momentum
and continuity equations to extract the discrete Laplaojrator. Both components
of the velocity are discretized using t#NC element while the pressure is interpo-
lated with theP; element. Space-discretization of (3.12), together withdbntinuity
equation (3.9), lead to

M”% + AR+ CR —GP, (3.25)
DR = 0, (3.26)
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which consists of a system 2fV ODEs in the nodal values R, subject to the constraint
that the velocity field be discretely divergence-free. Aldtnices and vectors used in
this formulation were defined earlier when dealing with tfeefsurface formulation.
We shall now proceed with the derivation of the so-cattedsistentPPE or CPPE.
From (3.26), we may write

DdR B

dt

and deduce that the discrete acceleration is divergesee{ecause the mass matrix
M" is non-singular, we may isolatéR/dt in (3.25) and substitute it into the newly-
derived statement of divergence-free acceleration, tegidi the following equation:

0,

D% =DM' ' (~AR—-CR - GP),
whose left-hand side may be time-discretized, which, udliregfact that we set the
velocity at time steg™t! to be discretely divergence-free, produces the following
equation
1
At

whereupon P is to be solved for and is the discrete pressure correspgrdithe
discrete velocity field at time stefi. Hence, the linear system is

DR" = DM" "' (—AR" — CR" — GP"),

1
DM! 'GP" = DM} (AtM“R" — AR" — CR”> , (3.27)

where—V? is now approximated bPpM"~' G, which automatically incorporates the
appropriate boundary conditions for the press@eeého et al.1984). The previous
expression loses its effectiveness if the maM¥ is not diagonal beacaudd" '
will, in general, be dense. It is common practice to lump tlassnwhen this occurs.
This is where one of the key properties of tR'“ element comes into play: its
basis functions are orthogonal to one another, which rentiermatrixM" diagonal
without having to resort to mass-lumping. Once the presisuteown at time step?,
we may march in time and use (3.25) to compute the velocithanhext time step.
Time-discretization of (3.25), together with (3.27), yielthe full consistent velocity-
pressure formulation:

DM'~!GP" = DMU ! <1tM"R” — AR" — CR") ,
MY 1 My 1 (3.28)
- n+l _ . n_ n
( t+2C)R ( - —A 2C>R GP".

The algorithm is started by specifying an initial velocitglfl, from which the initial
pressure may be computed.

3.3 Two benchmark shear flows

The first basic state is a shear-zone type flow, consistingmparallel and uniform
currents on both sides of the shear layer, one oriented aastmd the other westward.
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Both currents have the same magnitude and the dimensicaedgtical expression
to represent this first basic state is

u(y) = — tanh(y), (3.29)

The zonal flow (3.29) is represented on top panels of Figu).(Ihe second basic
state is a piecewise linear function, whose expression is

1 if y>1
ay)=qy if-1<y<l1 (3.30)
-1 ify< -1

and is featured on bottom panels of Figure (3.2). Panels etefih of Figure (3.2)
show the meridional extent of the domain used in numericpegrents. In that
particular case, the extension is 10 times larger than thardlhyer width so as to
emulate the absence of boundaries. Care will have to be takensure sufficient
mesh resolution within the shear layer. The basic flow (3i8®ss realistic than the
hyperbolic-tangent (3.29) — the first derivative is disammbus — but this simplifica-
tion presents two advantages. First, an analytical exjpresr the dispersion relation
of perturbations exists when the problem is formulated oyfi-ptane in a zonal chan-
nel of infinite width. Therefore, the growth rate of any wakeldisturbance of a given
wavenumber if known. Second, because the profile is linezanibe interpolated with
low-order elements without any truncation errors. Thisue@s that no spurious sur-
face waves propagate due to the inexact representatior dfitfal state. For such a
profile, the issue of determining whether or not those spisrBurface waves have an
influence on the growth rate is obviated.

3.4 Numerical experiments

As already mentioned, any of the presented finite elememntdtations is to be
ruled out, were it not able to preserve the unperturbed gtetade basic flow (in
geostrophic equilibrium). The three methods, togetheh wieinconsistentelocity-
pressure formulation, are hereafter tested for their dgpecmaintaining the steady
state without artificial generation or dissipation of eryerwr distortion of the flow. It
should be borne in mind that, since the free-surface fortimmallows for the prop-
agation of surface waves, distortion may occur but it ougtig energy-preserving.
In Figure (3.3), the relative deviation of the total energyshown for a 140-day run
starting with an unperturbed hyperbolic-tangent basic.fldtve mesh contains 8192
triangles and the time step is 2500 s. Whereas the rigid-liticity-stream function
formulation is energy-preserving (up to roundoff errotttle free-surface and con-
sistent velocity-pressure formulations yield coincidmgves and feature maximum
deviations of abou®.01%. The inconsistent velocity-pressure formulation is shown
for illustrative purposes an is found to lose ab80% of the initial total energy and
is thus highly dissipative. It must be eliminated on thatug. The fact that the
free-surface and consistent velocity-pressure formudatiare not as accurate as the
vorticity-stream function formulation is caused by a treant of advective terms that
is explicit in time. In what follows, wavenumbers wavelengths\ and growth rates
¢ are always dimensionless, unless otherwise specified.
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Figure 3.2: Top and bottom panels show the hyperbolic-tangent and piecewise liasar b
shear flows, respectively. Panels on the right are blowups of thotedeft, where focus is on
the sheared zone.
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Figure 3.3: Relative energy deviation with respect to the total initial enedg$)(for the four
formulations, starting with an unperturbed hyperbolic-tangent profifé ic the total energy
at stepn). Whereas the vorticity-stream function formulation exactly consermesyy (solid
line), the deviation for the free-surface and consistent velocity-presermulations reaches
about0.01% (dashed line). The inconsistent velocity-pressure formulation seesuitatin
attain an unacceptable level 2% (dash-dotted line), and keeps increasing.

3.4.1 The hyperbolic-tangent shear flow

The hyperbolic-tangent profile has been investigated byyraaithors in the past.
For exampleMichalke(1964) has determined the unstable eigenvalues gfi@ane
(6 = 0) while Dickinson and Clarg1973) considered thg-plane system. All these
studies are based on the rigid-lid, inviscid, equationg){g.9) in an infinitely-wide,
zonally periodic channel. Without delving into details e 8&10 (1973, 1978) instead
—, we now give some key features. The hyperbolic-tangertcitgl profile (3.29)
is unstable to long waves, with a cutoff dimensionless wawgrer ofx = 1 when
8 = 0. That is, the basic state will not grow unstable with a distunce whose
wavenumber exceeds = 1. On ag-plane, asG increases, the instability region
narrows and fors > 3475 = 0.7698, the flow is stable. The wavenumber of the
most favored disturbance — i.e., the disturbance whosetbrmates is the largest —
is 0.4449 wherg = 0 and shifts to higher values @sincreases. On afi-plane, the
dimensionless growth rate of the gravest mode+s0.188. On ag-plane, the growth
rate of the most favored disturbance diminishes down to®iasreases.

When g = 0, instability may occur with disturbances characterizedvayenum-
bers ranging from 0 to 1. The basic state is disturbed with\aewd#the form

v =0 (3.31)
v o= Ae_TyZSin(fix), .

whereA is the perturbation amplitude anrds the wavenumber. The exponential func-
tion multiplying the sine wave confines the perturbatioruaiby = 0. Wavenumbers
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Figure 3.4: Evolution of perturbations kinetic energy for the vorticity-stream functitastied

line) and free-surface (solid line) formulations when the hyperboligganprofile is perturbed
with (3.31), wheres = 0.4. Note the presence of oscillations on the free-surface curve, caused
by propagating truncation errors. The theoretical growth rate is thapetad byKuo (1978)

for the vorticity-stream function formulation in an infinitely-wide channel.

ranging from 0.1 to 0.8, with an 0.1-increment, are choseah for each of them,
the growth rate is determined by computing the perturbakioetic energy. This
procedure is repeated for each formulation, namely thecityrstream function, the
velocity-pressure and the free-surface formulations. Wthenformer is employed,
the vorticity is to be perturbed. We do so by taking thel of (3.31). The am-
plitude is taken to be one percent of the maximum value of #mscbstate speed.
Finally, the length of the numerical domain is, = n\, wheren is an integer and
A = 27 /k is the wavelength to ensure that the perturbations be densiwith the
periodic boundary conditions. In Figure (3.4), the evalntof perturbations kinetic
energy is shown for the vorticity-stream function and theefsurface formulations
when the hyperbolic-tangent profile is perturbed with (3.8&herex = 0.4. A log-
arithmic y-scale emphasizes the exponential growth rate. The dsmiltavisible on
the free-surface curve are spawned by the propagationmfdtion errors. These are
dominant until perturbations overcome them, which occuosied time 9.

To directly compare all three formulations, an initial hylpalic-tangent velocity
profile is prescribed, for which the shear layer occupies tem¢h of the total do-
main width. The structured mesh used in this experiment aost subsequent ones
is shown in Figure (3.9). It will be shown below that the sampegiments carried
out on meridionally extended meshes hardly alter the coegpgtowth rates. Hence,
a shear layer filling one tenth of the domain suffices to emaula¢ absence of north-
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Figure 3.5: Growth rates for the three formulations on the same structured meshingsthe
shear layer with about 6 elements (see meghin Figure 3.9). The shear-layer width is a tenth
of the domain width and the basic state is the hyperbolic-tangent profilesdllikline is the
theoretical growth rate for the vorticity-stream function formulation.

ern and southern boundaries. This modeling aspect needrawtalr attention as
of now. The shear layer is resolved with about 6 elements.ulReare shown in
Figure (3.5), where it clearly appears that both the veyggiessure and free-surface
formulations yield growth rates that are smaller than thmaimed with the vorticity-
stream function formulation. The latter gives rise to gitovettes that are very close to
theoretical ones. The mean relative deviation amountsstotiean 1 percent of theo-
retical growth rates while the mean relative deviation fer free-surface formulation
is about 10 percent. The influence of the free surface andatiom errors can be fur-
ther appraised by conducting the same experiment with geedurface formulation
on gradually-refined meshes. In particular, meshes ragplie shear layer with 5,
6 and 10 elements are employed and growth rates are reporkggure (3.6). Con-
vergence towards theoretical growth rates is achievedsasutéon increases and we
obtain mean relative deviations of 18, 10 and 5 percenteasly. With increased
resolution, truncation errors decrease and do not have ak ahility of altering the
linear unfolding of instabilities. Nonetheless, it shobllkept in mind that, however
high the resolution might be, the free-surface formulatEmains intrinsically differ-
ent from rigid-lid formulations and should not be expecteth¢have identically. The
time derivative of the elevation is present and only can wegehto converge to theo-
retical growth rates in the limit of an infinite, multiplying the velocity divergence in
the continuity equation (3.6).
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Figure 3.6: Growth rates for the free-surface formulation with gradually-refiedctured
meshes. In all experiments, the shear layer width is a tenth of that of thaido As the
mesh is refined, convergence towards theoretical growth rates isveliseTruncation errors
associated with the initial basic state decrease with refinement. The value=fo0.1 with
the highest resolution is missing because the model grew numericallyblengbeecause of
advection) before physical instabilities had time to develop. The basic st liyperbolic-
tangent profile.
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As already mentioned, theoretical results are valid fonitély-wide zonal chan-
nels but the numerical domain contains northern and sautheundaries. Those,
however, should be located far enough from the shear lay#ragdheir presence is
hardly felt by the shear flow. An extended mesh is used to cautythe same ex-
periments as those reported in Figure (3.5). That is, therdhger width remains the
same but the meridional extent of the domain is three timegsottthe original domain.
The domain extension uses a coarser resolution. In Figure, @owth rates com-
puted within the original and extended domains are repddethe vorticity-stream
function and free-surface formulations. No significanfaténce can be brought to
light between both domains. Thus, taking the shear-laydthwib be one tenth of the
computational domain width ensures that the boundaries @y little influence on
the shear flow behavior. In our quest for the appraisal of tmtaries influence, a se-
ries of runs are now performed with shear flows containediwithriable-width shear
layers. Concretely, the shear-layer width increases wh#ecomputational domain
remains unchanged. The vorticity-stream function forrmaitais employed for three
different shear-layer widths: one tenth, one fifth and ol tbf the domain width.
A shear-layer width of one third is depicted on the top righmhg of Figure (3.2). As
can be seen in Figure (3.8), the general trend is a gradualization as the domain
is more and more restricted by the presence of solid bowglaflibis observation is
in agreement with theoretical results presentedibyard (1964), where it is shown
that the restriction of the domain raises the eigenvalugeoturm-Liouville prob-
lem associated with the Rayleigh equation (B.4). Unstaliddes correspond to neg-
ative eigenvalues, which in turn correspond to positiveemavnbers. When the solid
boundaries get closer to each other, the eigenvalues sem@ad the wavenumbers
decrease, leading to slower growth until boundaries getecemough to completely
stabilize the flow.

Unstructured meshes are inherent to the use of the finiteegiemethod. They are
very attractive for their flexibility in representing coneglboundaries and in refining
regions of interest. We first consider the uniform, unsured mesh\/, in Figure
(3.9) containing roughly the same number of elements asttbetsred mesh\/;.
However, since the dynamics of instabilities takes pladhiwithe shear layer, this
is where the mesh should be refined. Meshgsand M, in Figure (3.10) both have
their resolution increased within the shear layerdfigtcontains much fewer elements.
Now, the experiment with the hyperbolic-tangent profiledpeated by using the un-
structured meshe&/,, M3 and M,. The shear-layer width is a tenth of that of the
domain. Results obtained with the vorticity-stream fumectiormulation are depicted
in Figure (3.11). The mean relative deviations for meshks M3 and M, amount
to 9, 7 and 5 percent, respectively. It should be stress¢avhget more accurate re-
sults with the mesli/; than the mesli/,, even though the latter contains 60 % more
elements. However, the uniformity of mesh, also implies that the same amount of
computation is done within the dynamically-active shegetand in the outer part of
the domain, where the flow remains almost uniform. Refineche®slegantly avoid
this drawback. The same experiment was performed with geegurface formulation
but for all three unstructured meshes, growth rates for allemumbers were crudely
overestimated and were close to that of the gravest modei{@b3). The reason
might be the following. As the basic flow is perturbed, inteeinces between wave
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Figure 3.7: Experiments conducted on an extended mesh are compared with theesame
periments conducted on the original mesh. No significant differentvecled the use of both
domains can be reported. The shear-layer width is one tenth of the ddgimain width (hence
30 times thinner than the extended domain). The basic state is the hypedanglant profile.

troughs and peaks that occur by propagating truncationsemay do so in random
directions, unlike structured meshes for which propagatimstly takes place along
they-axis. When this occurs, the perturbation wavenumber is sioefinite and the
system is free to grow unstable with a mode that is closertgthvest one. Results re-
garding these experiments are not shown. This is a by-ptadunstructured meshes
but should in no way discredit them. So far, no special treatnof advection terms
has been done (only surface integrals were performed). fepeat the computations
with an enhanced advection scheme based upon streamliniedyyeighting — whose
details of implementation can be foundhtanert et al.(2004), we obtain the results
shown in Figure (3.12). Overall, growth rates are too low byt 20 %. In spite of
this, not only do they respect the trend of the theoreticalebut they are also more
accurate with meshe¥/; and My, as expected. Therefore, the new advection scheme
improves the results but is clearly too numerically dissygacompared with, e.g.,
Figure (3.6). The effect of including streamline upwindfiiters out high-frequency
oscillations, hence damping out the scattering of faspagating waves but also has
the undesirable consequence of slowing down the growth ysiphl instabilities.

3.4.2 The piecewise linear shear flow

We push further the idealization of the zonal flow by usingdieeewise linear shear
flow. As in the case of the hyperbolic-tangent shear flow, tain is a periodic,
infinitely wide zonal channel. As shown f@Bushman-Roisif1994), the dispersion
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Figure 3.9: The structured mesh on the leftfy) contains 8192 triangles and the unstructured
mesh on the rightX{/;) contains 8124 triangles. Both meshes have a resolution of about 0.020
Note that the aspect ratio of length to width is 1:1 in the illustration but other tisgiéxs are
used for computations to ensure periodicity of perturbations ¢e.), In that case, anisotropic
elements are used.
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Figure 3.10: The unstructured, non-uniform mesh on the I&ffs) contains 4984 triangles and
is locally refined within the shear layer. The mesh on the righii) contains 8150 triangles
and should be compared with the unstructured uniform mé#h) (n Figure (3.9) containing
roughly the same number of elements. The resolution in the outer par dbthain is about
0.050 for both meshes but within the shear layer, the resolution is appatety 0.015 forMs
and 0.010 forM,.
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Figure 3.11: Growth rates for the vorticity-stream function formulations on the unstradtu

meshed\Vlz, M3 and M4 shown in Figures (3.9) and (3.10). The shear-layer width is a tenth of

the total domain width and the basic state is the hyperbolic-tangent proféesdlid line is the
theoretical growth rate for the vorticity-stream function formulation.
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Figure 3.13: Evolution of perturbations kinetic energy for the vorticity-stream functaastied
line) and free-surface (solid line) formulations when the piecewise lipegfile is perturbed
with (3.31), wherex = 0.4. This should be compared with Figure (3.4) where oscillations
made up the onset of the free-surface curve.

relation for perturbations, providing the wave velogitin terms of the wavenumber
k, may be derived. The growth rade= xc is then given by

1
Besides the possibility of deriving an analytical expresdor the growth rate, the ve-
locity is exactly interpolated with linear elements. A sevdrawback of such a profile,
though, is its lack of realism. However, the aim is here to lble o compare rigid-
lid and free-surface formulations without having to deahwiavelike propagation of
truncation errors. To illustrate this statement, the emfuof perturbations kinetic
energy is shown in Figure (3.13), where the absence of asoifls at the onset of the
free-surface curve is to be remarked. At this point, it messtressed that, unlike the
zonal velocity field and because the vorticity is discondusl across the shear-layer
frontiers, the vorticity cannot be interpolated exactlyrtass the discontinuous finite
element method is employed (s€eckburn et al(2000) for a comprehensive review
of discontinuous finite element methods). This situatioddpicted in Figure (3.14)
and explained in detail in the caption.

e — (1-2k)? V2

In Figure (3.15), growth rates computed for all three foratiohs are shown and
compared with the analytical results. The mesh resolvestibar layer with 5 ele-
ments (the meridional resolution is 20 km). The mean redadieviations are 4, 2 and
3 percent for the vorticity-stream function, free-surfacel velocity-pressure formu-
lations, respectively. Hence, none of them may signifigdvelcategorized as yielding
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vorticity

Exact profile

— — — — Interpolated profile

Figure 3.14: Since the zonal velocity is continuous, it is exactly interpolated with linear ele-
ments. On the other hand, the discontinuous vorticity cannot be interpalatethe disconti-
nuity is, at best, linearly represented (see the dashed line). This leagetoea representation

of the shear layer. The growth rate is directly proportional to the shgar-laidth and it is
unclear which length scale is to be used to compute the dimensionless gatevtlihren such

an approximation prevails. Filled and empty circles represent vorticityalotity nodes, re-
spectively.

better results. The only trend, however, is a slight ovarede obtained when using
the vorticity-stream function formulation. This might beedto the discontinuous na-
ture of the initial vorticity field. A last experiment is cad out on a coarser mesh
resolving the shear layer with 3 elements and having a noevéadiresolution of 50 km.
Results are reported in Figure (3.16) and mean relativeatiens are 8 and 6 percent
for the free-surface and vorticity-stream function foratidns, respectively. Because
large-scale ocean models do not easily run on meshes withutiesis as high as 20
km (unless local refinement is implemented), the last erpant has been carried out
to show that the use of a coarser mesh yields decent results.

3.4.3 Evolution on longer timescales

So far, all runs have been conducted over timescales thabdialow for nonlinear
advective terms to become significant. Typical dimensgskein times were on the
order of 20. That is, real run times of about 4 months. We noterekthe dimen-
sionless run time up to 100 (i.e., about 20 months). The phena that we witness
in this case are not faithful representations of what coalpigen in the real ocean or
atmosphere, because no physical process would have so imecto tdevelop without
interacting with external processes. Bearing that in mivelnow show the unfolding
of eddies on meshekl; and M, (see Figures 3.9 and 3.10) for the vorticity-stream
function and free-surface formulations. Recall that bo#tshes have approximately
the same number of elements df is refined within the shear layer with a resolution
that is about twice that of/; .
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Figure 3.15: Growth rates for the three formulations on the same mesh resolving the she
layer with 5 elements (meridional resolution is 20 km). The shear-layehvisd tenth of the
domain width and the basic state is the piecewise linear profile. The solid linettsethestical
growth rate for rigid-lid vorticity-stream function formulation.

In both series of experiments, advection in the free-serfacmulation is treated
with streamline upwind weightingHanert et al, 2004) as it was already the case for
previous experiments on unstructured meshes presentésl ear (see Figure 3.12).
With this advection scheme, some numerical dissipationlded, without which the
scheme would be unstable. In comparison, the vorticitgastr function formulation
does not include any dissipation, be it physical or numeériéastriking difference
between both formulations on medlf;, as can be seen in Figure (3.17), is that ed-
dies do not tend to merge in the free-surface formulationatt be hypothesized that
numerical dissipation is too substantial for this mesh,clvhinhibits the coalescence
of eddies. When the same experiment is carried out on mésghk with increased
resolution within the shear layer —, two important featwpgear (Figure 3.18). First,
the merging of eddies also occur with the free-surface fdatian, although delayed
compared with the vorticity-stream function formulatioBecond, the dynamics of
the merging for the latter formulation appears to be megiedéent, as it is not iden-
tical to that observed with mestl; (compare left panels of Figures 3.17 and 3.18),
although all other parameters are the same. Some explasatiothe coalescence of
eddies may be found iNichalke (1964). The first feature stresses the importance of
using an adapted mesh to resolve the dynamics. For the dréseze formulation, nu-
merical dissipation added to the flow diminishes as the ef¢isize decreases. Nev-
ertheless, as can be seen by comparing panels in Figure),(&h&8e is still some
dissipation whose main effect is to delay the coalescenegldies. Despite all this,
it should be kept in mind that all ocean models include somacphdissipation. In
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Figure 3.16: Growth rates for the vorticity-stream function and free-surface fétatians on a
coarse mesh resolving the shear layer with only 3 elements (meridigwitien is 50 km).
The shear-layer width is 0.15 times the domain width (i.e., slightly wider thgprémious
experiments) and the basic state is the piecewise linear profile. The solid theettgeoretical
growth rate for rigid-lid vorticity-stream function formulation.
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that respect, the rigid-lid, vorticity-stream functiorrficulation devoid of any kind of
dissipation might not be closer to reality than the fredeste formulation with some
dissipation proportional to the mesh size, as in our sibuati

3.5 Conclusions

The objective was to compare free-surface and rigid-liddielement models of
barotropic instabilities. For large-scale ocean modelihg time derivative of the sea
surface elevation appearing in the continuity equatiof)(& at least two orders of
magnitude smaller than the velocity divergence, hence @igtistifying the rigid-
lid assumption. Therefore, any differences in the growtegavere expected to be
small. Two series of experiments were conducted to assesslthof the free surface
and both were aimed at computing growth rates and compahnemg to theoretical
solutions valid for the vorticity-stream function formtian. In the first series, the
hyperbolic-tangent profile was used and it was shown thafréeesurface formula-
tion yielded growth rates that converged to theoreticabasethe mesh was refined.
For coarser meshes, initial truncation errors are fairlpaniant and are allowed to
propagate as surface waves. Growth rates thus computecgmaiier than theoretical
ones and more so for low-resolution meshes. It is believatiglopagation of trun-
cation errors as surface waves allows for energy to be régistd and carried away
from within the shear flow towards the boundaries. The vgjggiessure formulation
yielded results that were roughly identical to that of theefisurface formulation. The
surface pressure merely plays the role of elevation by giegienough pressure to
keep the sea surface flat. This formulation thus allows fesgure waves to propagate.

Because theoretical results were derived for infinitelgevchannels, it was im-
portant to carry out a sensitivity analysis with respectii® lbcation of boundaries.
The original computational domain was ten times wider than ghear-layer width
(an aspect ratio of /10). Growth rates were then computed for increasing aspect ra-
tios. The vorticity-stream function was utilized to perfothis analysis. The general
trend is a decreasing growth rate for an increasing asptiet @radual stabilization
is thus observed as the domain is more and more restricteldebgresence of solid
boudaries, which agrees with the theoretical result$ibyard (1964). Finally, an
experiment using a mesh having an aspect ratio/80, with coarser southern and
northern mesh extensions, was shown to yield the same semuthat obtained with
the original mesh.

In order to do away with this issue of truncation errors, a@igse linear pro-
file was then used. Although velocity was exactly interpadatvith linear elements,
the discontinous vorticity could not be so. This permitteccdncentrate on the free
surface, not as a carrier of truncation errors but as a Varjdr se. On a moderate-
resolution mesh (meridional resolution of 20 km), all thfeemulation gave rise to
growth rates close to theoretical ones and, most impoytamtl one furnished results
that could have allowed us to choose it as the right one.
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Figure 3.17: Comparison between the vorticity-stream function (left panels) anésiieface
(right panels) formulations on longer timescales on the structured mgsiThe stream func-
tion is shown. Dimensionless snapshot times are 0, 20, 30, 50, 70,000 Distances
between twar-tics and twoy-tics are 500 km and 100 km, respectively. The time step is 0.01.
The basic state is the piecewise linear profile.
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Figure 3.18: Comparison between the vorticity-stream function (left panels) andsineface
(right panels) formulations on longer timescales on the unstructureduniform meshM,

The stream function is shown. Notice how the increase in mesh resolutian thighshear layer
limits the numerical dissipation incurred by the advection scheme and pehaitaerging of
eddies for the free-surface formulation, although more slowly thandticity-stream function
formulation. Dimensionless snapshot times are 0, 20, 30, 50, 70,4004 Distances between
two z-tics and twaoy-tics are 500 km and 100 km, respectively. The time step is 0.01. The bas
state is the piecewise linear profile.
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All experiments were carried out with = 27. In order to have a grasp on the role
of the free surface, one should work wittclose to 1. However, only two parameters
may vary: the layer depth and the shear-layer length scdle To achieve a value
of 1, those two parameters have to assume values that wdabkt &ireak down the
assumtions underlying the model upon which theoreticalltesre drawn, or render
the domain unphysical. Decreasihgdown to a few tens of meters while keeping
the domain width att000 km is certainly numerically feasible but would produce
unapplicable results. At the other end of the spectrum,egsing the shear-layer
width by a factor of 10 implies having a domain width of tenukand kilometers,
whereupon thg-plane approximation does not hold any more.

Unstructured meshes were then employed and it was showrbyhagfining the
mesh in dynamically-active regions, it was possible to édase the computational
cost while performing better in terms of accuracy. This ipafamount importance for
ocean modeling where unstructured meshes and the finiteertenmethod make their
way in the community. By locally increasing the resolutidth® mesh, we easily con-
centrate the computational cost onto regions that requéategr accuracy. To achieve
numerical stability with the the free-surface formulatimmunstructured meshead-
vection terms were computed with streamline upwind weightiThe growth rates
followed the theoretical trend and a higher accuracy waaioet with refined meshes
but numerical dissipation had the effect of slightly slogvitown the growth of insta-
bilities.

The coalescence of eddies was then examined by extendimgrthiene up to 100,
that is, 10 times longer than in all previous runs. This expent proved very illus-
trative of the necessity of using adapted meshes for oceateling. On the struc-
tured mesh, the merging of eddies characterized the soltdiothe vorticity-stream
function formulation while this did not occur for the frearface formulation, pre-
sumably due to numerical dissipation accompanying thastiee upwind weighting
treatment of advection terms. However, when the unstradtanesh was used, the
free-surface formulation was able to reproduce the coatescof eddies by limiting
the numerical dissipation thanks to an increase in reswlwtithin the right region of
the domain. The growth of eddies was slowed down in companigith that for the
vorticity-stream function formulation. Nonetheless, thiter, which does not include
dissipation of any kind, does not necessarily comply withlitg and actual ocean
models. To summarize, we showed that the finite element rddithrofree-surface
models was effective at representing barotropic instaslwhen it is combined with
an appropriate advection scheme and, most importantiptedaneshes.
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Chapter 4

Three-dimensional tracer
conservation

Summary
Sufficient conditions to consistently achieve global tracer conser-

vation are derived. This entails a discrete compatibility beteween
the elevation, continuity and tracer equations. This compatibility
constraint, together with the use of a numerically stable scheme,
severely restricts the choice of usable three-dimensional spatial
discretizations. The issue of time discretization is touched upon.
Some illustrative three-dimensional test cases are presented where
the method is shown to satisfy all conservation properties. We also
carry out a few experiments where consistency breaks down and
investigate the consequences thereof.

Despite the many recent achievements of the FE method, nieatlerges still lie
ahead of us. Admittedly, switching from structured mesleesritstructured meshes
requires developers to build new models from scratch rdttear converting existing
ones piece by piece. Quite ironically, with this approach,find ourselves in need
of addressing issues that have been solved in finite differéRD) models but that
remain somewhat problematic or controversial with finiteneént models. Ensuring
global tracer conservation while preserving consisteney, compatibility) between
equations in finite element shallow-water models is one e$¢hissues and the core
of this chapter. This very issue has already been thorouwaydyessed in FD models
(Deleersnijder 1993;Roullet and Madec2000; Griffies et al, 2001;Campin et al.
2004, Griffies 2004). A common deceitful criticism of the CG method is thel of
elementwise conservation. Several attempts at provinsgtledaticisms wrong have
been made by defining interelement fluxes appropriatelygusiacalled nodal fluxes
(Hughes et a].2000;Berger and Howingtoy2002). Those efforts, however, have not
really mitigated the widespread belief that the finite elatmaethod is not conserva-
tive and, thereby, not suitable for ocean modeling.

In this chapter, we demonstrate how to achieve global tremeservation and con-
sistency in a three-dimensional, free-surface FE shallater model on a moving

67



mesh. Global tracer conservation is attained if the volumegiral of any tracer con-
centration within the domain is fixed in time, in the absentbaundary fluxes and
source/sink terms. It is unquestionable to us that any onezdel aimed at running
over climatic timescales must achieve global conservat@onsistency or compati-
bility is meant in the following sense: in a discrete model, & tracer concentration
to a uniform value throughout the domain and let the freeaserfundulate, yet do
not add boundary fluxes; the tracer concentration must miaithe same uniform
value at all time. If this property is not satisfied, artifidieacer extrema might ap-
pear with the indirect effect of generating unphysical eats (in case the tracer is
the temperature or the salinity). For this reason, it isspdnsable that any ocean
model solve the elevation, continuity and tracer equatiomasconsistent way. That is,
they must be discretely compatible. Note that in FD mod@issistency is commonly
referred to as local conservatio@&iffies et al, 2001;Campin et al. 2004; Griffies
2004). This is so because ensuring conservation at theewell in terms of fluxes
does imply consistency. This is not necessarily true in FHet®where the scheme
could be locally conservative in terms of nodal fluxes withsalving the equations
consistently. In addition to these properties, we optedaffree-surface formulation.
Rigid-lid formulations are nhow deemed obsolete for severasonsKillworth et al.,
1991;Deleersnijder and CampjriL995;Griffies et al, 2000), one of them being the
inability to easily account for surface freshwater fluxemally, the domain is time-
dependent to accommodate the free-surface motions. Adtsayithin the domain are
free to move in the vertical so that the free-surface disgtant is distributed over
the vertical to avoid the occurrence of overly thin layeramthe surface. As will
be shown, the volume change due to freshwater input (ougpugmatically leads to
dilution (concentration) of salt without having to resartsalt fluxes.

Using a formalism applicable to both the CG method and the x&od, we de-
rive sufficient conditions regarding the spatial discriian to ensure global tracer
conservation and consistency. We show that the same ifdipoin the horizontal
must be used for the elevation, the vertical velocity andttheers. Moreover, the
same interpolation in the vertical must be used for the e&rtielocity and the tracers.
It is also demonstrated that computing the vertical vejoeia the continuity equa-
tion, integrating it upwards or downwards subject to onerlglany condition, is well
posed and does not lead to an accumulation of errors as Wees saggested by some
authors Lynch and Naimigl993;Muccino et al, 1997;Danilov et al, 2004). This re-
mains true as long as the upper boundary of the domain caseiith the free surface
and a consistent horizontal velocity is used. Some illtisgdest cases are presented
where the method is shown to satisfy all conservation pt@serWe also carry out
a few experiments where consistency breaks down and igagstthe consequences
therefrom.

4.1 Mathematical formulation
We shall now describe the minimum set of equations neededristady. In this

section, all classical conservation properties are ietefrom the continuous equa-
tions. In section 4.2, we will derive a set of conditions fdrigh these properties carry
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Iy

Figure 4.1: Notations used to describe the three-dimensional time-dependent dGmaime
seabed and the free surface are denoted'pogndT';, respectively. The unperturbed plane
defined byz = 0 is noted7 and is represented by the dotted lines. The lateral boundary is
notedl',,. At any location(z, y), the depthi(z, y) and the elevation(z, y, t) are both defined
with reference t&/. The displacement of the free surface is exaggerated.

over to the discrete equations. Left) be the three-dimensional, time-dependent do-
main of interest. It is bounded below by the seabed, definefi,bgnd above by
the free surface, defined Wy, as depicted in Figure (4.1). The seabed is consid-
ered time-independent. The free surface, on the other hatidhe-dependent. The
lateral boundary, defined Hy,, is parallel to thez-direction. Note that because the
free-surface elevation varies in time, so does the laterahtary. However, it has a
constant(x, y) position. For simplicity, we do not consider open boundaiiethis
work. The domain boundary can thus be writteroés = I",, UT', U I';. The un-
perturbed surface defined hy= 0 is noted7. We work within the scope of the
Boussinesq and hydrostatic approximations.

4.1.1 Equations and boundary conditions

Letu(zx,y, z,t) = (u,v) be the horizontal velocity, with componentsandwv in
the z andy directions, respectively. The vertical velocity is the gmmnent in thez
direction and is denoted hy(z, y, z, t). The free-surface elevatiorix, y, t) does not
depend orr and is defined with respect to the reference |&lel The unperturbed
depthd(z, y), also defined with respect b, is assumed to be time-independent, does
not depend or and is everywhere nonnegative. The layer thickn&sss the sum of
the depth and the free-surface elevatiéf(z, y,t) = d(z,y) + n(z,y,t). With those
notations, the lower and upper domain boundaries are @raet byl', = z = —d
andl'y =z = 1.

For the purpose of deriving the statements of volume anéti@mservation, there
is no need to write out the full horizontal momentum equatiowe simply assume
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that the horizontal velocity is known in€2(¢) and that it satisfies the impermeability
condition on the lateral boundaty,, that is

u-n=0 onT,, (4.1)

wheren = (n,, n,) is the unit outward-pointing normal f,,. We will also noten.

the vertical component of the normal. In hydrostatic modils vertical momentum
equation reduces to hydrostatic equilibrium. Hence, tier® prognostic equation
for the vertical velocity. However, the vertical velocisyéomputed diagnostically via

the continuity equation
V-u+6—w:0 inQ, 4.2)
0z

where V is the horizontal gradient operator. Eq. (4.2) is a stateéroérvolume
conservation. Another statement of volume conservationbeaobtained by depth-
integrating Eq. (4.2). This yields the following prognaséquation for the free-
surface elevation:

on K

—+ V- udz = Gw on T, (43)

ot —d
for which use has been made of the impermeability of the skabhd the free sur-
face. Note that in (4.3) is the projection of the three-dimensional dom&in the
horizontal plane defined by = 0. These impermeability conditions (the so-called
kinematic boundary conditions) read

w=—-u-Vd onTly, (4.4)
wZ%—i—u-VU—qw only, (4.5)

whereg,, is the net freshwater volume flux per unit area (with units eékcity) due
to precipitation ¢, > 0), evaporationq,, < 0) and river runoffs ¢,, > 0), if not
formulated as lateral boundary conditions. Note that bamndonditions (4.4) and
(4.5) are equivalent to

u-n+wn, =0 onTYy, (4.6)

u-n+wn, = (g’z - Q'w) n on FSa (47)

In (4.6) and (4.7), the unit outward-pointing normals taketee following expressions

_9d _dd _q
ox’ 0Oy’

Mgy Mgy Ny ) = onl, 4.8
(s g mz) = e , (4.8)
_0n 9n 4
( Ov 0y ) onTl. (4.9)

(N iy, nz) = ==t
’ VIIVal?+1

and we also assume that the orientation of the freshwateidflthe same as that de-
fined by the normal at the free surface. The notatiohsnd||v|| denote the transpose
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and the Euclidian norm, respectively, of the veatoiFinally, a given tracer with con-
centrationC' obeys an advection-diffusion equation (with no sourc&/g&nm and no
boundary fluxes) of the form

oC 0(wC) 0 oC .
E+V'(UC)+ 52 7V-(/-$VC’)+$ (naz> inQ, (4.10)
with a condition of no boundary flux:
n@ =0 onof?, (4.11)
on

whereg—g is the normal derivative.

4.1.2 Conservation properties

From the equations presented above, we may now derive tleengtats of volume
and tracer conservation and check the consistency betwedanaicer and continuity
equations. We also set the freshwater flux to zego—= 0.

\olume conservation

By integrating Eq. (4.3) over the time-independent, twarelisional domaid and
using the divergence theorem to compute the second injegeaibtain

n
—dT—&—/ u-ndl =0,
faier ).

which, by using the boundary condition (4.1), further reshito

d
3 /T ndT = 0. (4.12)

Eq. (4.12) is the statement of volume conservation.

Global tracer conservation

Integrating Eq. (4.10) ove®(t), using the divergence theorem for the advection
and diffusion terms and enforcing the boundary conditioh{#eads to

/ a—Cd(H—/ u-nCdF+/ (u-n+wn,)Cdl
o) Ot T, Ty (4.13)
—|—/ (u-n+wn,)Cdl =0.

r

s

The integrals ovel',, andI';, vanish by enforcing boundary conditions (4.1) and (4.6).
Using the Reynolds transport theorem, the first term of tipeession above becomes

@dﬁzg/ CdQ—/ C@nzdf,
Q(t) ot dt Q(t) T, ot
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reducing Eq. (4.13) to

E CdQ+/ (u-n—&-wnz—an)CdF:O.
dt Jou r. ot

Now, using boundary condition (4.7) yields the statemerglobal tracer conserva-
tion:

9/ C dQ = 0. (4.14)
dt Q(t)

Consistency

The property of consistency is equivalent to verifying thabnstant tracer concen-
tration is solution to (4.10)-(4.11). Setting = C, # 0 in Eq. (4.10),Cy being a
constant, we simply obtain

OQ(V'U—F&U):O in Q.
0z

Therefore, the continuity and tracer equations are caTgigor compatible) with each
other when the following relation holds true

CO<V~u+gZ]):O<:>V~u+gZ:0 in Q and forCy # 0. (4.15)

4.2 The discrete conservation laws

The purpose of this section is to derive the discrete copates of Eqs (4.12), (4.14)
and (4.15). We start by describing the mesh topology andduoiring a few useful
notations. We then present the variational formulatiortk@klevation, continuity and
tracer equations, followed by their discretization baspdnithe Galerkin procedure.
The discrete conservation laws will then be inferred from discrete equations. In
order to keep notations more concise, all subsequent dewelots are carried out for
the CG method. The equivalent for the DG method is presentégpendix C.1.

4.2.1 Mesh topology

The numerical solution is sought in the three-dimensiomahain Q. The latter
consists of an approximation of the physical domain, oleihy interpolating the
boundaries of topographical features and the bathymetithiWthis framework, all
boundaries are also interpolated so that we e~ 00" = Th UT? UT?. The
three-dimensional finite element mesh (Figure 4.2) is abtaby first partitioning "
into V; open non-overlapping triangl€s. That is, we have

Ny
Th=|J7. and T.NT;=0 (e#f),
e=1
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|~

E, Qak

Qh

Q

Figure 4.2: Main notations used to describe the mesh topology. In two dimensions, tenipin
edgeE. is shared by two triangle& and7;. In three dimensions, any interior vertical faEe

is common to adjacent prisnis. andQ (lying within a common layer). Two stacked prisms
Q. andQy share an interior triangular fact.. A unit normal vectorn®, n%) is associated to
each of these interior geometric items, with the superseriptlicating that it is oriented from
eto f (withe > f).

where 7, denotes the closure df,. Extrusion of each triangl€, into prismatic

columns is then performed so as to exactly fit the sea boftprand the free sur-
faceI'?. The domair2" is then naturally partitioned int&/,, open non-overlapping
prisms(,:

=2

Q=[]0 and Q.NQr=0 (e#f).

e=1

4.2.2 \Variational statements

The variational statements involve integrations over getoical items in two and
three dimensions. The following notations are used:

/D dS): 3D integration over prisms
/ OdI: 2D integration over rectangular faces (vertical faces) (4.16)

/D dr: 2D integration over triangles
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Free-surface elevation equation

For the free-surface equation (4.3), the variational statd for any given time
consists in finding;(x, y,t) € H such that

on K . .
/ a+v- /dudz ndr=0 VnpewH, (4.17)
Th —

where’H is the Sobolev spacé,(7") defined in Appendix C.2. Integrating the di-
vergence term by parts leads to

n
/ {87777—</ udz>~Vﬁ}dT+/ u-npdl =0. VieH,
Th 875 —d Fﬁ

By using the fact thaW is independent of and by enforcing the impermeability
condition (4.1), the above expression reduces to

n

/ fﬁdT—/ u-vVadQ=0 VyeH. (4.18)
Th Ot Qh

Continuity equation
For the continuity equation, the variational statementafoy given timet consists
in findingw(z, y, z,t) with (u, v, w) € Hai, (") (See Appendix C.2), such that

/ <V~u+aw)wdQ:O Vi €W, (4.19)
Ok aZ

whereW is defined in Appendix C.2. By integrating the above expmsbiy parts,
we obtain

—/ (u-Vﬁ)—l—waw> dQ—|—/ wu-ndF—l-/ w(u-n+wny)dr
Qh 0z rh r

h
b

1 2

—|—/ wu-n+wn,)dr=0 VibeW.
rh

3

A closer look at the terms labeled 1 to 3 will shed light on thmeaning. By en-
forcing the impermeability condition of the lateral boungand the sea bed, namely
conditions (4.1) and (4.6), integrals 1 and 2 vanish. Irgke8rdoes not vanish and
must be computed in order to determine the vertical velomity'”. Note that the
boundary condition (4.6) at the seabed is a natural boundamgition that is auto-
matically incorporated into the variational statement.e Tontinuity equation must
then be integrated from the seabed upwards. This can be donsitg upwind-
biased test functions for the CG method or upwind-biasecfidar the DG method
(the latter approach is described in detail in Appendix Cliijan intuitive interpreta-
tion, the continuity equation can be viewed as a steadg-stitection equation (with
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the advective velocity equal to one) with source term (thezoatal velocity diver-
gence), which might help clarify the approach describeélhefiore. We end up with
the following variational statement:

f/ <u~V12/+waw>dQ+/ @(u-n+wn,)dr=0 Y eWw.
Qh 825 FZ
(4.20)

Tracer equation

We now turn our attention to the tracer equation (4.10). &the domain of inte-
grationQ)” is time-dependent and a time derivative appears in Eq. Y4altle more
work is needed prior to deriving the variational statemaife will recast the origi-
nal equation into the so-called arbitrary Lagrangian-Eafe(ALE) form. With this
formulation, the mesh is neither fixed in space, nor doedlavicthe fluid. It is there-
fore neither Eulerian nor Lagrangian. A good review of ALEthwzals is presented by
Donea et al(2004). FollowingFarhat et al.(2001), we define a reference fixed mesh
QfF and a mapping functior betweer2? and2":

A:Qp - QMg — A(Et) =x

This mapping simply associates a three-dimensional coatelg of the reference
mesh(2 to a three-dimensional coordinate= (x, y, z) in the physical moving mesh
Q. We further assume that this transformation is invertible:

ox
= (65) 0

where J is the Jacobian of the transformation. We also require thatnapping
associate the boundary of the reference mesh to the boun€itng physical mesh,
i.e., A(0Q%) = 0Q" without any other constraint on interior coordinates agiden
some smoothness requirement. The conservative ALE forngo{4£10) then reads
(Formaggia and Nobilg2004):

a(JC)
ot

o (wC)
€+JV-(uC)+J 5
0

JV - (kVC) 4 J = (nac) in Qb

(4.21)
0z 0z

where all terms are computed in the reference dorf¥in In particular, the time
derivative is computed with respect to a fixed positiof2jn We have defined) =
w — w,, Where the mesh velocity,, is given by

0z

= 5. (4.22)

Wm

With the presence of the mesh velocity, vertical advectiorelative to the moving
mesh. The variational statement for the tracer equatiohtaiwed by multiplying Eq.
(4.21) by a test functio’, integrating the result over the reference mesh and using
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the fact that € = Jd)y. We seekC € G such that

5/ CC‘dQ+/ [V-(uC’)—Fa(wC)]CdQ:
dt Qh (1) QR (t) 82

/ [V (kVC) + 9 (na(]ﬂ cdo vCeg,
Qh(t) 5‘2 82

whereg is the Sobolev spack; (") defined in Appendix C.2. The first term in the
above expression was obtained by using the following result

/ 8(‘10)‘ ¢ dog = E/ JCC dQy = E/ cc do,
Qg 8t £ dt Qg dt Qh(t)

(4.23)

where we used the fact that the test function does not depetithe in the reference
mesh. It does, however, depend on time in the physical dof4inThe advection
and diffusion terms can be integrated by parts, which yields

/ {V~(uC)+a<wC)]C‘—/ ¢ (u-ve+a2% ) do
QR (t) 0z JQh(t) 0z (424)

+ CC (u-n+wn,)dr
rh

and
1o} ocC

/mm [V (RVO) + 5 <n(9z)] Cdo =

aC aC (4-29)
—/ n(Vé-VC’+>dQ,
QR (t) 0z 0z

where we used the no-flux conditions (4.1), (4.6) and (4.Nbte that the left-hand
side of Eq. (4.24) is nothing but the variational statemérnhe continuity equation
(see Eg. 4.20) in which the velocity is multiplied by the #aconcentratior”, the
test functiond is replaced by’ and the modified vertical velocity is used in place
of the vertical velocityw. Now, using Eq. (4.24) and Eq. (4.25) in Eq. (4.23) gives
rise to

E/ cC dn — C u~VC'+1D% )
dt QR (t) QR (t) 0z
+ [ COC(u-n+n,)dr (4.26)

rh

+/ K Vé-vc+a—ca—c d=0 vCeg.
QP (t) 0z 0z

4.2.3 Finite element discretization

We now seek approximationg ~ 7, w" ~ w andC” ~ C in finite-dimensional
subsets of{, W andg, respectively. Each of those subsets, marked by a suggrscri
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h, is spanned by a finite number of polynomial basis functioftse basis functions
will be notedy. The finite element approximations are

N,

noo=at = H0w] e Ht =span{ul, v, ., wf bR,
Jj=1
N’w

w o o~wh =)Wty e Wh=span{yl, oy, ..., Yk} CW, (4.27)
Jj=1

Nc
C ~C"=3"Citw§  egh=span{y, vf, ... v, } C 6.
j=1

Note that, strictly speaking, the three-dimensional bfagistions depend on time due
to the mesh motions. This, however, only has an implicatiothe tracer equation
where a time derivative occurs. We now opt for the Galerkithoe, which is equiv-
alent to the following procedure. Consider each variafiatatement, Eqs (4.18),
(4.20) and (4.26), in which the sought variablg ¢ andC) is substituted for its ap-
proximations ¢", w" andC", respectively) and hold it true when the test function is
substituted for any of the basis functions spanning theesponding subset to which
the test function belongs. We also assume that we possegpanxinationu” of the
horizontal velocity field, the obtention of which is beyortscope of this chapter
(see Chapter 5 instead).

The discrete formulation for the elevation, Eq. (4.18), remmsists in finding)” €
H" such that

o'

atl/)?dT—/ u" - vyldo=0 Yi=1,2, ..., N, (4.28)
Th Qh

For the continuity equation, the discrete formulation dstssin findingw”" € W"

such that
— / {uh SVYr + whaq/}l} do
Qh aZ

(4.29)
+ ¢;“(uh-n+whnz)d7'=0 Vi=1,2, ..., Ny.
rh

Finally, the discrete variational statement for the trasguation consists in finding
C" € G" such that

d b1 C qO) b . h. o -n0vf
C"p;7 d2 c"(u" VY +w dQ
dt Jon( Qh(t) 0z
+/ Chy¢ (uh’~n+whnz) dr
re

C h
+/ n(vwf-vcuawi 8C>dQ:O
QP (t) 0z 0z

(4.30)

Vi=1,2, ..., No.
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4.2.4 Discrete conservation laws

Starting from the discrete formulations (4.28), (4.29) &h80), we now investigate
under which conditions global volume and tracer conseswadis well as consistency
(i.e., compatibility) are achieved in the discrete sense.

Volume conservation

Since Eq. (4.28) must be valid for ary/, it must hold true for)] = 1 as well
(which belongs td{"). Settingy)} = 1in Eq. (4.28) and using the fact th@" is
time-independent gives rise to

d h
d 4.31
dt /Th ' dr =0, ( )

which is the discrete statement of volume conservation.fliidment of the latter is
assured by the way we wrote the variational statement fdréleesurface elevation. It
is readily shown that the volume variation can only be caligefdeshwater fluxes. By
including the latter in the discrete variational statenfenthe free-surface elevation,
Eqg. (4.28), the expression above simply becomes

d h
&/Thn dT—/ThqwdT.

Global tracer conservation

The property of global tracer conservation is investigdtgdetting)¢ = 1 in the
discrete variational statement for the tracer equation(&£80). We then obtain

d / ChdQ + ch [uh ‘n+ (wh — wﬁl)nz} dr =0, (4.32)
dt Qh(t) 1’*?

where we used” = w" —w! . In view of Eq. (4.32), providing that the integral over
the free surfac€&” is discarded, the tracer is globally conserved, namely

5/ ChdQ = 0. (4.33)
dt Qh(t)

However, discarding this integral consistently, that islevpreserving the discrete
compatibility between the elevation, continuity and tra@guations, brings about ad-
ditional constraints as we will now see.

Consistency

According to the definition presented earlier, consistaa@guivalent to requiring
that a constant concentration be solution to Eq. (4.30)%irget” = Cy # 0 in Eq.
(4.30), factoring outCy and separating out the terms depending on the mesh velocity
(and integrating them by parts) from those that do not, weugnigiaving to satisfy the
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following equation

d / c / o Oowh
— Cd— eZm g0
dt QR (t) w QF (t) w 82

Ay Az
e
h c rOWY;
- -V +w'—=+ | dQ
/m@ (“ v et ) (4.34)
By
+ wic(uh-n—i—whnz)dT:O Vi=1,2, ..., No.
rh
B>

The A,-labeled term is the result of integrating by parts all temwslving the mesh
velocity. The set ofB-labeled terms in the above expression and the discrete-vari
tional statement for the continuity equation, Eq. (4.283,identical under the follow-
ing two conditions:

1. the subset¥V" andG" are the same (in which case we haw# = ¢ Vi =
1,2, ... N* = N©),

2. theB-labeled terms and Eq. (4.29) are computed on the same @fdgh

These two conditions may be summarized by simply demandiaigEq. (4.29) and
the advection terms in Eq. (4.34) be discretely compatibleondition that we will
call discrete compatibility between the continuity ancdcéniaequations. Concretely,
this entails that the same elements must be used to compugsad C". Note that
this condition is conceptually the same as that derived wiséng finite differences
(Griffies et al, 2001). Now, the fulfillment of this condition does not nexady
ensure that Eq. (4.34) is satisfied. The following relatietween thed-labeled terms
of Eq. (4.34) must also hold true :

h

d Y dQ = 0 m Q). (4.35)

d Caw
dt QR (t) Qh(t) ¢ 0z

When using a discontinuous representation, the above expnesiust be true for
each elemenf, (t) individually whenw¢ = 1, which a stricter condition. When
discretized in time and expressed for an individual elerfenEq. (4.35) becomes

tn+1

h
voL (Q2F) — voL (QF) = / (/ Own, dQ) dt, (4.36)
tn Qe(t) 0z

where the time step shall be defined&s = t"*! — t*. Eq. (4.36) is known as
the Discrete Geometric Conservation Law (DGCExihat et al, 2001;Donea et al,
2004;Formaggia and Nobile2004) and states that the variation in volume of a given
element over\t must be equal to the volume swept by the element boundarids (w
velocity w,,) during that time interval. Note that if the volume is comguiexactly,
then the time integration in the right-hand side of (4.36)strhe exact. Depending
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upon the hypotheses made regarding the time dependengg, @ proper quadrature
rule must then be used. Hence, to ensure consistency, theiftg two conditions at
least must be fulfilled:

1. the continuity and tracer equations must be discretatypadible (i.e., the way
we compute the vertical velocity must be discretely contpativith the way we
compute the advection terms in the tracer equation),

2. the mesh update procedure must comply with the DGCL (sed Bf).

It should be emphasized that these conditions involve théraaity and tracer equa-
tions as well as the mesh update procedure. So far, nothsxgden said regarding
the free-surface elevation equation.

Conserving the tracer globally while preserving the cdesisy between the conti-
nuity and tracer equations requires that the surface iategi™" automatically vanish
whenC” = 1in Eq. (4.32). This will happen only if the computation of thertical
velocity guarantees it. We now verify that this is the caset us now return to the
continuity equation and focus on the discrete variatiotatesnent, Eq. (4.29). Since
the mesh is made up of prisms with vertical faces, we can lseadd up the com-
ponents of Eq. (4.29) written fap}” sharing the same two-dimensional support. We
note! the set of indices corresponding to the basis functiop$ aligned on the same
vertical. By definition, all these basis functions satisfg following two properties:

D ey, 2) = 7 (2, y),
i€l

oy’ _
Z 82 (J},y’Z)—O,

iel

where?*" is simply the projection ofy* (i € I) onto the plangz,y). With

an abuse of notation, this projection is identified byWith the first summation, the
vertical dependences of all basis functions cancel out.,lddding up the components
of (4.29) in the vertical gives rise to

- / u - vyPPdo + [ P (W onwhng) dr = 0. (4.37)
Qh FLL

The similarities between the above expression and thealéseariational statement

for the elevation, Eq. (4.28), are clear. By choosing thésfasctions for the vertical

velocity such thaﬁp}”’w = 97, wherey] is the two-dimensional elevation basis

function, the second term in the discrete elevation eqndt@. 4.28) is identical to

the first term in Eq. (4.37). This leaves us with the followetgality:

h h
w}u,QD (uh ‘n+ ’U}hnz) dr = / w?ai dr = / w;} 877 n, dr
Th 8t F}; at

i
NG

wheren, is the Jacobian of the transformation of coordinates f@hto I'?. The last
expression thus becomes

h h 577h
/ pPeu" -n+ (w" — —— | n, pdr =0, (4.38)
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where we used the fact that” reduces to its two-dimensional structureidh Eq.
(4.38) is the discrete counterpart of the kinematic boundandition on the vertical
velocity, given by Eq. (4.7). Most importantly, this resdeémonstrates that global
conservation can be achieved without breaking down cansigt When setting'” =

1in Eq. (4.30), the surface integral aif vanishes if the mesh velocity at the sea
surface isw! = aai: and the same interpolation is used in the horizontal for the
elevation and the vertical velocity. Under these two cdadd, the surface integral
can be discarded consistently in Eq. (4.32).

The discrete surface kinematic boundary condition iseetd by adding up the dis-
crete components of the continuity equation in the vertigals is a consequence of
the elevation and continuity equations being discretematible. And they should
be since they express the same principle of volume consenvat then turns out that
the surface kinematic boundary condition is redundant,ptgimg with the first-order
nature of the continuity equation. In Appendix C.3, we shbat integrating the con-
tinuity equation downward (with the imposition of the suwdaboundary condition)
allows for automatically retrieving the seabed boundarydition, provided of course
that the continuity and elevation equations are discreteiypatible. Both directions
of integration yield equivalent results (the correct baanycdcondition is retrieved) and
the tracer conservation does not depend on it (the tracemisistently conserved in
both cases). It is easy to conjure up a way of breaking dowsistamcy while pre-
serving global conservation. By enforcing the surfaceerdhix to vanish, global
conservation is ensured. However, if there is no compdgitbetween the elevation
and the continuity equations, this surface integral doésaturally vanish and consis-
tency breaks down. Now, an opposite scenario can be imag@musistency is easily
achieved by ensuring that the tracer and continuity egoatioe discretely compati-
ble. Nevertheless, if the surface integral does not vanishiscomputed (to ensure
consistency), global conservation will break down for aéradistribution different
than a constant value throughout the domain.

The key results regarding conservation are summarizedvbdlo the absence of
source/sink terms and boundary fluxes, sufficient conditionconsistently achieve
global tracer conservation in free-surface flows on movimgies are the following.

1. The continuity and tracer equations are discretely coilmpa which comes
down to having the discrete advection terms in the tracerntou reduce to
the discrete continuity equation whétt = 1 (see Eq. 4.34).

2. The DGCL is satisfied elementwise (see Eq. 4.36).

3. The elevation and continuity equations are discretetypatible. This condi-
tion entails that the discrete surface kinematic boundangdition is retrieved
when adding up all components of the discrete continuityagqao in the verti-
cal (see Eq. 4.38).

4. The mesh velocity at the surfaté is upwards and has a magnitudg, = %

Note that, in the interior, the mesh motion is not constrinaless element
shape regularity requires it.
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4.2.5 Which elements should we use ?

The above conditions restrict the choice of finite elemebssts and, thereby, the
choice of elements that should be used. These restricaiistd the following guide-
lines:

1. The same element must be used for the vertical velocitytanttacer.

2. The nodes location in the horizontal must be the same &eligvation and the
vertical velocity.

3. The two previous statements also imply that the nodesitoci the horizontal
must be the same for the elevation, the vertical velocitytaedracer.

4. In the vertical, the nodes location for the vertical vépand the tracer is un-
constrained, yet it must be identical for both variables.

In addition to these considerations, the mixed formulatised for the horizontal ve-
locity and the elevation must be numerically stable. Theeaiformulation should
be devoid of spurious elevation and velocity modes. In thesgmce of spurious el-
evation modes, a stabilized formulation can usually filtetr the modes. However,
this requires to add a term to the discrete elevation equatiith the consequence of
breaking down the discrete compatibility between the ¢iemsand continuity equa-
tions. Velocity modes are less problematic insofar as alssnabunt of momentum
diffusion is usually sufficient to filter them out. Based om tmost recent studies,
the two mixed formulations that turn out to be the most usédulhydrostatic ma-
rine modeling based on the primitive equations are¢’ — P1 and theRT, pairs
(Hanert et al, 2003;Le Roux2005;Le Roux et a].2005, in press). The first pair was
originally used byHua and Thomass€1984) for shallow-water flows and consists of
a linear non-conforming interpolation for both componagitthe velocity and a linear
interpolation for the elevation. It does not support anyrigus oscillations. This pair
has been used byanert et al.(2005) andWhite et al.(2006a) in two dimensions and
by White and Deleersnijdefin press) in three dimensions. The second pair is called
low-order Raviart-Thomas element. The normal velocity porents are located at
the middle of each side of the triangular element and theagtavis constant on each
element. Shallow-water models using this formulation aecdbed byMiglio et al.
(1998) andwalters(2005).

Using theP]N¢ — P, pair requires to opt for @, representation in the horizontal
for the tracer and the vertical velocity (in order to coreigly ensure global conserva-
tion). To fulfill the same property with th&T}, element, the vertical velocity and the
tracer must be constant in the horizontal on each elemertiotim cases, there is no
constraint for the vertical interpolation: it could be ofjhiorder and discontinuous.
Both schemes have advantages and disadvantages. A limgarumus representation
for the tracers is not optimal for advection-dominated flowsabilization could be
necessary (without impact on conservation). The finite mawscheme pertaining to
the RT;, element is certainly more stable but might be overdiffusi®Regarding the
elevation,P; is more accurate thaf, with the latter leading to twice as many de-
grees of freedom. Moreover,/ interpolation for the elevation leads to a piecewise
linear (and continuous) representation of the moving mé&shally, when using the
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PN — Py pair, to be computationally competitive, the matrices & fystems to
compute the vertical velocity and the tracer must be rembatréeast banded diagonal
through mass lumping

Note that these compromises arise because of the need tb&stable mixed for-
mulation. If stability were not in jeopardy, the best choigguld probably consist of a
linear non-conforming representation for all variabledl. cdnditions to consistently
attain global conservation would be satisfied. Due to theogdnality of the linear
non-conforming shape functions in the horizontal, all sgstmatrices would be at
most banded diagonal (tridiagonal in case of a linear caotis interpolation in the
vertical) without resorting to mass lumping. This integ@n would be ideally suited
for advection-dominated flows. The momentum equation winterit all conserva-
tion properties developed for the tracer equation. Fordtlieme to be usable, though,
we would need to stabilize the elevation equation with amgakloss of mass con-
servation. This would be quite paradoxical since this péation choice would have
been made to ensure conservation in the first place ! The seo@ntinuous (linear
or higher-order) interpolation in the horizontal for allrizbles would also work out,
as far as conservation is concerned. However, stabilitfyaes in the lines of that
presented by e Roux and Careg2005) (but in two dimensions) would be necessary
to sanction this choice.

4.2.6 The issue of time stepping

In light of the developments carried out above, time diszagibn does not appear
to be an issue. However, there is more into conservation ttiamproper choice of
elements for spatial discretization. To ensure a discretepatibility between the
free-surface elevation and the continuity equations — had, tto consistently ensure
global tracer conservation —, the following property musshtisfied. The horizontal
transport whose divergence is responsible for the chantieifree-surface elevation
must be equal to the horizontal transport associated witthtmizontal velocity used
to compute the vertical velocity. These transports are aoessarily equal and when
that occurs, the three-dimensional horizontal velocitystrhe corrected so that its
transport is equal to that used to compute the free-surfavateon. The main cause
for this discrepancy originates from the choice of time pirg. If a semi-implicit
scheme is considered for the inertia-gravity wave termsh(ef without mode split-
ting), the horizontal transport causing the elevation glednom time steps ton + 1
is the mean transport computed from those at time stepadn + 1. The three-
dimensional horizontal velocity must then be correctedetiagly. Following this
procedure, linearizing the elevation equation poses nblg@no as far as conservation
is concerned. However, it has been suggested in the paghibatpproach prevents
tracers to be conserved because the domain does not Roubdt and Made2000).
In fact, when we opt for such a linearized elevation equatiom may still alter the
domain geometry according to the free-surface motions. ré&squve the property of
consistent conservation (i.e., discrete compatibilitiween the elevation and conti-
nuity equations), the three-dimensional horizontal vijomust be corrected to yield
a transport in the deformed domain that is equal to the tamgin the undeformed
domain) used in the linearized elevation equation.
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Figure 4.3: Location of nodes within a column split into prisms. The top triangle is the cairfa
triangle. The free-surface elevatigrnis linear and continuous. The horizontal velocity is linear
non-conforming in the horizontal and linear discontinuous in the vertiodiqated by two
nodes sharing a common physical edge). The discontinuous rafatse in the vertical is
particularly well suited for shear regions, as it commonly occurs indbiaiio flows. The vertical
velocity and tracers are linear everywhere, yet discontinuous in thiealer

4.3 lllustrative experiments

A few numerical experiments are now presented. In its cticenfiguration, the
model conserves the volume and any tracer globally up to magbrecision in a
consistent way. We first discuss the Goldsbrough-Stommetileition, induced by
freshwater fluxes and invetigate the effect on salt conagatr. We then illustrate the
implications of a consistency breakdown.

4.3.1 Model description

The full description of the model is provided in Chapter 5méwer, for the current
chapter to be self-contained, we briefly describe here thst mmportant features. The
dynamics is split into a two-dimensional depth-averagestesy for the evolution of
the fast-propagating surface waves and a three-dimenssgatem for the vertical
structure of the velocity. The same time step is used for bg#ems and all terms
governing the propagation of inertia-gravity waves areigemlicit in time. After the
computation of the external mode and the three-dimensioodontal velocity, the
latter is corrected so that its horizontal transport is étp#he transport causing the
change in the free-surface elevation. The elements usaterpolate the elevation and
the velocity are depicted in Figure (4.3). The mixed forniola PN¢ — P is used
for the horizontal velocity and the elevation, respectivdh order to be consistent
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with this choice, a linear continuous interpolation is ut@dhe vertical velocity and
all tracers. The latter, as well as the horizontal velogitg interpolated with linear
discontinuous basis functions in the vertical.

4.3.2 The Goldsbrough-Stommel circulation

The Goldsbrough-Stommel circulation discussedHiopang and Schmit1993) and
Huang (1993) arises from freshwater forcing and is absent in +iigiinodels. A
decent rendition of the barotropic flow induced by freshwébecing alone in the
North Atlantic basin is obtained by assuming the followimggle linear profile for
the freshwater fluy,, (see Eqg. 4.3):

Guw = —qwo |:]- - Q(ny)] 3
(yn - ys)

where y is the meridional coordinate apd and y,, are the southern and northern
coordinates of the basin, respectively. The freshwaterrflagnitude is given by,
(with units of a velocity). A negative value fqt, indicates evaporation and a positive
value indicates precipitation and river runoffs. This &ngrofile is an idealization

of observationsffuang and Schmittl993) and integrates to zero over the domain so
that the total volume remains constant. We aim at comparimg@sults with that
previously presented biyluang(1993) andGriffies et al.(2001). In both studies, the
models were set up in spherical coordinates on a basin cdrfieieveen the equator
and 60N and extending 60zonally. Our model was run on a square basin of size
5000 km and constant depth of 4000 m. Followhigang(1993), the coefficients of
horizontal and vertical viscosity are>6 10 m? s=! and 10-* m? s~ !, respectively.
The equations are solved in Cartesian coordinates @rpkane centered at 3N.
Neglecting the earth curvature on these scales is quebtmridowever, the objective

of this experiment is twofold. First, we want to assess theelie ability at naturally
handling freshwater fluxes as a simple forcing term in theaglen equation. Second,
we want to evaluate the model’'s response in terms of surfalggtg due to a local
volume variation.

As shown in Figure (4.4), our results compare well to thaHofing (1993) and
Griffies et al.(2001). It should be noted, however, that the barotropieastifunc-
tion does not render the full picture of the flow because tkteras not divergence-
free. Three meshes were used, each one with increasedti@salong the western
boundary (see caption of Figure (4.4) for details on mesbluésn). Both the anti-
cyclonic subpolar and cyclonic subtropical gyres are weglresented. The separation
between both gyres lies at three fifths of the domain extaergpbd agreement with
results byHuang (1993) andGriffies et al.(2001). The barotropic volume transport
is less than one Sv (1 Sv = 40n3 s~!), which is only a few percent of the wind-
driven and thermally-driven transport. However, as hiriigdrigure (4.5) represent-
ing the surface salinity after three years, this tiny freatenflux can potentially drive
a strong three-dimensional baroclinic circulation. Theshwater input and output lo-
cally causes an increase and decrease, respectively,acd¢ha volume. This, in turn,
locally dilutes and concentrates the salt and a horizoataligy gradient builds up at
the surface. This dilution/concentration effect is onlgda a variation in the volume
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Figure 4.4: Barotropic streamfunction in Sv (1 Sv =4en® s™1) for the freshwater-induced
Goldsbrough-Stommel circulation on meshes with decreasing elemest sThe freshwater
forcing q., varies linearly iny between -1 and 1 m/year, respectively corresponding to evapo-
ration in the south and precipitation in the north. Numerical experimentsaared out in a
square basin of size 5000 km and depth 4000 m. Equations are solegétplane centered at
30°N. The coefficients of horizontal and vertical eddy viscosity ase $0' m? s~ and 10°*

m? s~1, respectively. Meshes are refined along the western boundary bésie. Resolution
varies from 250 to 1000 km for the coarse mesh, from 125 to 500 kithéointermediate mesh
and from 62.5 to 250 km for the fine mesh. The coarse mesh contaihel@hents. Upon
refinement, the number of elements roughly quadruples.
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Figure 4.5: Deviation in psu of surface salinity from the reference value after a-4ygaerun.
In this experiment, salinity acts as a passive tracer: it does not feédtmflow. The salinity
gradient buildup has the potential of driving a strong baroclinic circulation

of the ocean. The tracer flux at the sea surface is zero. Inxparienent, salinity acts
as a passive tracer: it does not feed back the flow. The caefticdf horizontal and
vertical eddy diffusivity are 1dm? s—! and 10-* m? s~ !, respectively. For thorough
studies of the freshwater-driven baroclinic circulatiseeHuang(1993),Huang and
Chou(1994) andRahmstorf(1996).

4.3.3 When consistency breaks down

The results shown thus far have been obtained by solvingdhsistent discrete
equations, with nodes location depicted in Figure (4.3).nde study cases in which
the elements for the vertical velocity and the tracet” are different and whereby
consistency breaks down. In all experiments describedisnsiection, the elements
used for the vertical velocity and the elevation are thogeatied in Figure (4.3). We
use different elements for the tracer.

In Figure (4.6), three situations are compared. The modelnin a 10 km wide
and 20 m deep square basin. The initial elevation field is a gm@Gaussian that we
let freely evolve as a gravity wave over 1000 time steps of. 7the Gaussian magni-
tude decreases to one percent of its peak value over 3 km.arhe imitial condition
is used in all experiments. The initial tracer concentrai® 1 and should remain
equal to 1 at all time (there is no boundary flux and no sourdeterm). The surface
integral in Eq. (4.32) is discarded to ensure global tracerservation in all situa-
tions. In the first experiment, we use the same elemenbfandC'. All consistency
conditions are fulfilled and this is verified numerically. éftleviations in the surface
tracer concentration are zero (up to machine precisiorthdsecond and third exper-
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ELEMENTS FOR THE VERTICAL VELOCITY w (@) AND THE TRACER C' (Q)

SURFACE TRACER CONCENTRATION (DEVIATION FROM 1)
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Figure 4.6: lllustration of consistency breakdown incurred when using differéarhents for

the vertical velocityw and the trace€. In all simulations, the tracer concentration is initially
set to 1 and should remain equal to 1 at all time. The surface flux terenEge 4.32) is
discarded to ensure global conservation in all experiments (see lanels). The domain is 10

km wide and 20 m deep. The initial elevation field is a 2-meter high Gausstamtiffie step

is 72 s. We use th@; element for the elevation in all runs. We clearly see that using the same
elements forw andC' consistenly ensures global conservation (surface deviations arénzer

machine precision).
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Figure 4.7: Convergence analysis of consistency errors on a tracer initially setwithin
the domain. The errors are computed on structured meshes acctodiitg (4.39). The
convergence rate is nearly quadratic (the slope is 1.8).

iments, the element faf' is linear non-conforming and remain linear discontinuous
in the vertical. The non-conforming representation in tleizontal is particularly
well suited for advection-dominated flowiddnert et al, 2004), which is the reason
behind this choice. When solving the advection equationfferttacer (i.e., without
diffusion), the deviations at the surface reach very highesthat are unbounded nu-
merically and they grow unstably (see second experimeniguar€ 4.6). In the third
experiment, horizontal diffusion is added £ 10 m? s—1), which drastically reduces
the deviations at the surface. Since the largest deviasiomgypically confined within
the upper layers of the domain, they could be alleviated lmosimg an appropriate
diffusion coefficient.

To quantify to which extent consistency is lost, we may coteghe following a

posteriori estimate
L (Ch = 1) d0
ce:\/fﬂ/( % ) (4.39)

whereV is the domain volume. In Figure (4.7), valuescefare plotted against the
element size when the model is run in the same configuratitmeasonsidered previ-
ously (a 10 km by 10 km, 20 m deep, square basin starting witmaigjh Gaussian).
The mesh is refined in the horizontal only, which is the diettvhere consistency is
lost. The rate of convergence is nearly quadratic.

89



lel+ " le2 N x> + le3+4 .
J%Q ) 7 “mb Op g o Y
Ly (i o RERO . 5
SRR NS PRk X 5
= 2 3 SRR o R
2 e
B,
o« |
' 0 b . SRRTS
: SN ;
Sz 0 o e :
e 5 s :
3 B . g
X g B . g
X ) R e
bR 0005, e e : 3 :
0 lel 00 1é2 Ob 1e3
10 km x 10 km 100 km x 100 km 1000 km x 1000 km
20 m deep 200 m deep 2000 m deep
O(n/d) = 101 O(n/d) = 1072 O(n/d) = 1073
1000 time steps (At = 72s) 1000 time steps (At = 720s) 1000 time steps (At = 7200s)

Figure 4.8: The above panels show the deviation of the tracer concentration at faeesof
the domain. The tracer is initially set to 1 throughout te domain and shouldimezqual to 1
at all time. (a) Shelf scale: contour drawn for deviations of -20 and20Intermediate scale:
contour drawn for deviations of -0.005 and 0.005. (c) Basin scaletocr drawn for deviations
of -0.001 and 0.001. The corresponding simulation features aes dpiglow each panel. The
initial elevation field is a 2-meter high Gaussian.

Finally, in Figure (4.8), similar experiments (without fdi§ion) are carried out on
domains with spatial scales ranging from 10 km (shelf s¢al&00 km (basin scale)
with increasing depths, yet setting off all experimentdwtite same 2 m high Gaus-
sian (the parameters of the simulation are recalled in thed)g These runs were
carried out in an attempt at getting some insights on theeffiea consistency break-
down on flows spanning a wide range of spatial scales. As we alagady seen, the
consequences are quite dramatic for the smallest domaiictjvirthe same experi-
ment as that corresponding to the middle panel of Figure 46} larger domains,
the surface deviations remain below one percent. Sincedtiatibns of the tracer
are caused by the inconsistent treatment of the the adweims, it might be ex-
pected that as soon as those terms grow larger in magnitdse deviations will
increase. For the small domain, the flow speed is on the ofd@B3om s! while
it decreases to roughly 0.08 nt'sand 0.01 m s! for the intermediate and larger
domains, respectively. If we set the order of magnitude efativection terms to 1
for the small domain, advection has a relative magnitude »f10~3 and10~° for
the intermediate and larger domains, respectively. Theslslight on the results ob-
tained in Figure (4.8). It could be argued that for such wealotsopic flows in large
domains, the inconsistency is not problematic and couldaséyetackled by adding
some horizontal diffusion. For the larger-scale basinutéions, advection is typi-
cally quite small in most of the domain (the Rossby numbeypsctlly on the order
of 1073). However, in those regions where advection becomes irmpb(typically
where boundary currents prevail), severe inconsistenmight arise, leading to un-
physical effects. Finally, modeling flows in coastal andifstegions where advection
is dominant definitely requires to use a consistent spatt@me. Failing to do that
may not only generate spurious currents but also numeristlilities.

90



4.4 Conclusions

In this chapter, we have synthesized sufficient conditiongims of the finite el-
ement spatial discretization of a three-dimensional, byttic, free-surface, marine
model to consistently conserve any tracer globally. A cstesit (or discretely compat-
ibility) spatial scheme is defined as one that maintains tifeum tracer concentration
set initially (when there is no boundary flux and no sourcé&/sérm). The following
conditions must be fulfilled to satisfy those propertiesT(ie same interpolation must
be used in the horizontal for the elevation, the verticabey and the tracer. (ii) The
same interpolation in the vertical must be used for the e&lrtielocity and the tracer.
(iii) The mesh update procedure must satisfy the Discreten@&tric Conservation
Law. (iv) The mesh velocity at the surface must be equ%gtoThese considerations
must be complemented by the necessity of choosing a staltke-diement pair for
the primitive shallow-water equations.

Several numerical experiments were carried out to show thaefis ability at re-
sponding to freshwater forcing. In particular, we showed libe variation in the
domain volume naturally leads to dilution and concentratibsalt. We finally per-
formed a series of experiments in which consistency betweewertical velocity and
the concentration was deliberately broken down. If coaaisy must be ensured for
advection-dominated flows typical in coastal and shelfaegj it was shown that us-
ing an inconsistent scheme for larger-scale applicatiaridcbe a viable alternative.
However, even for those problems, diffusion-based rensecti®ld not work out in
regions where advection becomes more important (e.g.,dawyrcurrents regions).
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Chapter 5

A three-dimensional finite
element marine model

Summary
The full three-dimensional model is presented. An in-depth de-

scription of the spatial discretization of the momentum equation
is given. The time-stepping algorithm is detailed. The model is
validated against an analytical solution and against a realistic flow
around a shallow-water island for which field measurements are
available.

The full three-dimensional model is presented in this alapthich is written to
be self-contained. In that respect, all equations are ptedeas well as their finite
element discretization. Unlike Chapter 4, which addresseservation issues within
a general framework, the current chapter details the madlel fiven choice of ele-
ments, namely those depicted in Figure (4.3). The horizaefacity is linear non-
conforming in the horizontal and linear discontinuous ie trertical. The vertical
velocity is linear continuous in the horizontal and lineecdntinuous in the vertical.
The elevation is linear continuous. Since the elevationa@minuity equations have
been given more focus in the previous chapter, an in-deptbrage of the momentum
equation is considered in this chapter.

5.1 Governing equations

The equations will be formulated in a Cartesian frameworikh the assumptions
of constant fluid densityp(,) and under the hydrostatic approximation. The spatial
coordinates are, y andz and the three-dimensional velocity componentsareand
w, respectively. We also define = (u,v) to be the horizontal velocity vector. The
free-surface elevatiomy is defined with respect to the constant reference height)
taken to be the mean sea level. The main notations are givEigime (4.1). With
these assumptions, the horizontal components of the tireeasional momentum
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equation read:

Ou 0 0 Ou

—+V. — Au=—gVn+D+— (v.— |, 5.1
5V o)+ fe nu=—gVn+ D+ - (v52). 6)
where f is the Coriolis parameteg, is the upward-pointing unit vectoy is the
gravitational acceleration;, is the vertical eddy viscosity coefficient aM is the
horizontal gradient operator. Horizontal momentum diffass parameterized bip.
Equation (5.1) is complemented with the continuity equatio

V-u+8—w:0, (5.2)
0z
and the free-surface evolution equation
an K
at—l—V-(/_(judz)-O, (5.3)

whered is the local unperturbed depth so that the total layer théskris defined as
H(z,y,t) = d(z,y) + n(z,y,t).

The momentum horizontal diffusion terid and the vertical diffusion term both
parameterize the effect of unresolved, small-scale psesesn the resolved scales
(Blumberg and Mellor 1987; Griffies and Hallberg 2000). However, momentum
horizontal diffusion is generally employed both for phydiparameterization and to
ensure numerical stabilityG(iffies and Hallberg 2000; Griffies et al, 2000). With
unstructured meshes, it is not uncommon to have the meshvaigeby up to two
orders of magnitude between different parts of the domagn,fereman et al.1995;
Legrand et al. accepted, 2006). The range of unresolved scales thusswaitkely
within the domain of interest, which motivates the use of acumstant viscosity
coefficient ¢;,). The Smagorinsky viscosityS(nagorinsky1963) is a function of
the local horizontal rate of deformation times the local msize. In our model, the
following expression is used:

vp = csA? (e 6)1/2 , (5.4)

wherec, is a nondimensional constand is the local mesh size andis the two-
dimensional strain-rate tensor expressed in terms of tipghe®veraged horizontal
velocitya = (@, ?):
ou 1 (0oa ov
ge 1(g+g)
1 (o0 ., ou ov
2 (aﬁva + 3y ) b7
For triangular mesheg\? is taken to be the surface area of the trianglkiig et al,
2003). A Laplacian form is considered for the momentumifsictermD:

0 ou 0 Ju
D= % <Vha'1;> + 87y <Vh8y) . (56)

The Smagorinsky scheme enhances momentum diffusion ioneof large horizontal
shear while reducing it in regions of smaller mesh spacirigufe 5.1). Enhanced

€ =

(5.5)
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Figure 5.1: Horizontal viscosity coefficient;, [m? s™!] at ebb (left panel) and flood (right
panel) on the intermediate mesh of Figure (5.6). Notice the larger valuegiions of high
velocity shear in the island’s wake where eddies form and in regionsiciesized by a lower
mesh resolution.

versions of the model should consider the strain-rate tarssd in Eq. (5.4) defined in
terms of the local velocity, which is more appropriate fordzdinic flows that may be
characterized by large shears in the vertical. The advardhdefining (5.4) in terms
of the depth-averaged velocity is that it allows part of tleptti-averaged diffusion
term to be time stepped in the equations for the external nmadeer than diffusion
entering the external mode as a coupling term only. This meg®the numerical
stability of the external mode.

Similar to Fischer et al.(1979) andDeleersnijder et al(1992), for unstratified
shallow seas, the vertical eddy viscosity is defined as

v, = Ky (d+ 2) (1—0.6d;;z), (5.7)

where is the von Karman constant and is the bottom friction velocity, which
obeys the following equality
u? = M (5.8)
Po
In the right-hand side of (5.8), - || is the Euclidian norm anet denotes the constant
bottom stress. The latter is parameterized by the folloiaggrithmic law:

K

2
o 8)/m = || @), 69

in which &, is the distance to the seabed where the appropriate bottlmtityeu,, is
defined and., is the roughness length. It should be pointed out that thtsutance
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closure remains very simple. It was however designed fotratified, shallow seas
(Fischer et al, 1979) and we believe it can be employed for modeling the fimumad
Rattray island, which lies in well-mixed waténplanski et al. 1984) and consists of
the main application presented in this chapter.

5.2 Boundary conditions

Although most boundary conditions depend on the physicatest, some of them
remain invariant. The horizontal velocityis subject to a condition of no normal flow
and full slip on the closed lateral bounddry:

u-n=0 and yha—u:O on I, (5.10)
on

whereg—;1 is the normal derivative ofi, defined as

g—z = %nx + g—;lny, (5.11)
with n,, andn,, thez andy components, respectively, of the three-dimensional oatwa
pointing unit normal tod€). Note that we could also assume partial slip along the
lateral boundaries, amounting to a loss of momentum thrdaighal stress. At the
bottom, a slip condition is enforced on the horizontal vigjoby relating the bottom
momentum flux to the bottom velocity:

2, M o0, (5.12)
on 0z  po

wherer/py is given by (5.9). At the free surface, the wind stress mayakert into

account: X
ou ou T°

— —=— on T 5.13
Vhp, an + Vs 8z 0 ) ( )
whereT? is the surface wind stress. For the vertical velocity, weehtére usual kine-

matic boundary condition at the bottom
w=-u-Vh on T, (5.14)

and top
_on

Y
or, equivalently (4.6) and (4.7). The open boundary coodgidepend on the problem
at hand and usually involve prescribing the normal veloaitg/or a linear combina-
tion of the normal velocity and the elevation such as a rahatondition. For the
sake of simplicity, we will not deal with open boundary caratis in the discussion
that follows.

+u-Vyp on Iy (5.15)
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5.3 Numerical procedure

In this section, we describe the numerical technique usesblie the equations
presented above. The mesh topology has already been debanitsection 4.2.1
and Appendix C.1 and will not be reproduced here. There is pdaai constraint
on the location of vertical nodes but we currently requira tlvo adjacent columns
comprise the same number of prisms. Hence, the three-diamahsnesh contains
the same number of layers throughout. This constraint coelcelaxed in the future
by allowing adjacent columns to contain different numbepo$ms, the transition
being assured by non-conforming prisms (e.g., with hangioges). All nodes are
free to move in the vertical, which allows for tracking thedrsurface and preventing
the occurrence of overly thin layers near the surface byioantedistribution of the
nodes. By permitting such freedom in the mesh motion, weititiyl allow for the
use of generalized vertical coordinate systems (&gsahara 1974;Deleersnijder
and Ruddick1989;Gerdes 1993;Adcroft and Hallberg2006;Song and Hop2006).

5.3.1 Variational statements

The variational statements will be written for the elemelt@picted in Figure (4.3),
which are those suggested in Chapter 4. The horizontal ilsclinear and non-
conforming in the horizontal and linear discontinuous ia Hertical. The elevation
is linear continuous. The vertical velocity is linear in ditections, but continuous in
the horizontal (to be compatible with the elevation) anaaliginuous in the vertical.
The variational statements involve integration over mesdngetrical items in two and
three dimensions. The notations (4.16) are used.

Momentum Equation

Since the mesh is allowed to move in the vertical, we write Ah& (Arbitrary
Lagrangian-Eulerian) form for the variational statemefnthe momentum equation.
The derivation is similar to that giving rise to the ALE forrhthe tracer equation,
Eq. (4.23) in Chapter 4. For the momentum equation (5.1)y#hniational statement
consists in findingi(x, y, z,t) € U x U such that

AL N,
— .udQ
ez_:ldt/ne(t)u ! +§_:1/ﬂ

+gV7}fD—g Vza—u -udQ =0 Yaeld xU,
0z 0z

[V~(uu) + %(wu)—kfez Au

«(t) (5.16)

wherel{ xU is the suitable infinite-dimensional Sobolev space sudiitha H! (Q").

A definition of this functional space is given in Appendix C.2he test functionm
belongs ta/ x U and is sufficiently well behaved that the integrals in (5.4@)ke
sense. The vertical velocity is modified to take into accabhiatmesh motion so that
vertical advection is relative to the moving mesh:= w — w,,, wherew,, is the
mesh velocity, defined by Eqg. (4.22).
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Because the horizontal velocity is discontinuous, it isvement to further manip-
ulate the variational statement of the momentum equatidi6f5o that interelement
boundary terms appear. This also permits to naturally eefthre boundary conditions
(5.10)-(5.13). To do so, the horizontal advection term dhdifiusion terms may be
integrated by parts, which gives rise to

e(t) 0z

Ny g N,
— u-ad?+ /
;dﬁ /szem ; Q
ou Ou du 94 du du

‘*‘(fez/\u)'u‘f‘gvn'u‘f'l/h%'%+V}L@'@+Vzaz 92

. ou ou - N
— a-(vy,— +v,—n, | dr+ (uw-n+an,)u-adr
rhurp on 0z reury

oo v o 2

dQ

1 2
Ou ki
—|—/F% <(u~n)u—yhan> -ﬁdl“—i—ez_;/Fc <u-n®><u>,-ad
3 4

N,
—|—Z/ <u-n®+wnf ><u>,-[udr
e=1 Se

5
—ﬁs:/ Va—u—i-ua—une - [a) dr
= Js, hon " TFoz 2

6

N
+Z/S ofu] -[a]dr=0 Vaeld xU,
e=1 e

7
(5.17)

where the diffusion terms have been spelled out for clanty @l seven underbraced
integrals (labeled 1 to 7) arise after integration by paftgither the advection or
diffusion terms. These terms are explained hereafter.

1. The first integral is an expression of the diffusive mormeanflux through the
sea bottom and sea surface. Use can be made of boundaryiacosdi.12)-
(5.13) to compute the integral.

2. The second integral expresses the advective fluxes of mtamethrough the
sea bottom and sea surface. Since those interfaces aremegige, this in-
tegral is discarded. In light of Chapter 4, we may ask oueselvhether this
integral automatically vanishes when we set 1, in which case discarding
this integral is consistent. However, this will be the casly if the spatial dis-
cretization used for the horizontal velocity is discreteympatible with that
used for the elevation and vertical velocity. For reasonsusherical stability,
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this is not the casge In other words, the momentum equation does not inherit
the properties of consistency derived for the tracer eqonati Chapter 4.

3. The third integral comprises both the diffusive and ativeenomentum fluxes
through the closed lateral boundary. This term vanishdstivé enforcement of
boundary condition (5.10). Note that any condition of @rlip could be nat-
urally enforced by computing this integral, given an expi@s forv,du/on.

4. The terms labeled 4 and 5 arise by assembling all coniiteibf interelement
boundary integrals from advection terms. Each one ofXheintegrals is an
expression of the momentum flux by advection through theéozdface shared
by two adjacent prisms. Similarly, each one of fkigintegrals is the advective
flux through triangular faces shared by prisms stacked upoh ether. Using
the same notations &tanert et al.(2004), we note< f > the mean value of
on any face shared by two adjacent prisms and >, its weighted average.
That is,

< f>= %fme +%f|9f7 <[ >a= (;4'/\) Sioe + (;_)‘> fiey

for all three-dimensional elements. and Q2; sharing a common face. The
jump across the latter is noté¢fl] and is defined by

[f] :f\Qe _f|Qf7

with fo_ being the restriction of on(2.. Note that the quantity being advected
iS < u >,. In expression(5.18), the adjustable parametare [—1/2,1/2]
allows for orienting the flux. In particular, taking= %sigr‘(wn) is equivalent
to an upwind-biased flux. This advection scheme was showddnert et al.
(2004) to be particularly effective in two dimensions. Hexe generalize it in
three dimensions.

5. The terms labeled 6 and 7 (involving integrals over tridagfaces shared by
stacked prisms) originate from the integration by partdhefrnomentum diffu-
sion term.Hanert et al.(2004) showed that the non-conforming nature of the
interpolation in the horizontal ensures that no boundam teeeds be computed
across vertical faces as far as momentum diffusion is coecerThe sixth sum
involves integrals of centered diffusive fluxes. There ipneferred orientation
associated to it. The seventh term is a weak continuity cain$tand involves
the discontinuity-penalization parametewhile solving problems that are not
purely hyperbolic Houston et al.2002). The expression fer is proportional
to the diffusivity coefficients.

To summarize, by discarding integrals 2, 3 and by using thetary conditions
(5.12) and (5.13) to compute integral 1, the variationaesteent for the momentum

1This is so because the element used for the horizontal vgliscie/¥ ¢
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equation reduces to
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(5.18)

In the statement above, the surface integral'r(I'}") is positive (negative) because
n, is positive (negative) there. This respectively corresisoio a positive influx of
momentum due to wind stress and a negative influx due to battoess. It is worth
mentioning that in Eq. (5.17), boundary integrals 5 to 7 heednly means by which
information is conveyed in the vertical between elementisest integrals need not
be calculated in case a continuous representation is eestotin the vertical. For
flows that do not feature strong vertical shears, a contiauepresentation is likely
the most cost-effective choice. Yet, for baroclinic flows shear in the vertical may
be large and a discontinuous representation may be monmalptespecially if the
mesh resolution is low in the vertical.

Free-surface equation

For the free-surface equation (5.3), the variational statd, which is the same as
that derived in Chapter 4, consists in findin@:, y, t) € H such that

/ 877%17—/ u-Vidd=0 VijeH, (5.19)
Th
whereH is the Sobolev spacé, (7 "), defined in Appendix C.2.

Continuity Equation

The variational statement for the continuity equation Y%s2readily obtained by
considering the variational statement derived in Apper@ik for a discontinuous
representation in all directions. With the element choseriHe vertical velocity, the
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interpolation is continuous in the horizontal so that thedtkerm of Eq. (C.4) simply
vanishes, giving rise to

N, .
—Z/ (u-VzI)—I—waQU)dQ—i—/ w(u-n+wn,)dr
e=1" 92 rL

(5.20)
Ns N
+Z/ (u-n°) [@]de/ (0] wy, nidr =0 Y € W.

e=1"5e e=1"YSe i

5.3.2 Space discretization

Finite element approximations to Egs (5.18)-(5.20) canlitained by substituting
u, n andw for their respective approximations®, n" andw”. Those approximate
fields belong to finite-dimensional subspaé#s x U" ¢ U x U, H* ¢ H and
Wh c W, respectively. We have

Ny
u zuh :ZUJ(t)q/);(z,y,Z),
Jj=1
N,
j=1

Nﬂ]
w =w =Y Wi (2,y, 2),
j=1

whereU;, H; andW; are the time-dependent nodal values arfd v/ and}’ are
the associated polynomial basis functions. Finally, th@ahealues are computed by
resorting to the Galerkin method, which comes down to stultstg the test functions
u, w andq for ¢é, + ¢ié,, ¥ andy)] in (5.18) fori = 1...N,, in (5.19) for
i=1...N,andin (5.20) for, = 1... N, respectively.

5.3.3 Time-stepping algorithm

In order to lighten the notations, it is preferable to camy the time discretization
of Egs (5.1) and (5.3) rather than their space-discretipedterparts. Since the verti-
cal velocity is computed diagnostically, we shall not tia&t continuity equation (5.2)
here. Once time discretization is performed, it is strdiard to achieve discretiza-
tion in space of the semi-discrete equations by followirg phocedure described in
the previous section.

The most fundamental choice that we make in this model raggttie time dis-
cretization is to resolve all processes with the same time. 9h order to circumvent
the stability constraint incurred by the propagation ofriiaegravity waves, a semi-
implicit or implicit (or any level of impliciteness in betwea) free-surface method is
required Pukowicz and Smith1994). Hence, Egs (5.1) and (5.3) must be solved
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simultaneously fou™*!, n"*1), which leads to

n+1l _ ..n o
u u +V- (unun,) 4+ = (wnun) 4 féz A un+9
At 0z (5.22)
+ V n+6 Dn _ 2 l/" aun—i-l =0 .
A 02 \'* 0z ) 7

for the momentum equation and

7]"+1 B 77” 7" L
7+(1—9)V~/ u dz+0V~/ wtld:=0,  (5.23)
At —d —d

for the free-surface equation. In (5.22) and (5.28),is the time step and
9"t = 09"+ (1-0)g",

where0.5 < 6 < 1.0. The choice = 0.5 yields a semi-implicit scheme while= 1
leads to an implicit scheme. Unless otherwise stated, wsidena Crank-Nicolson
(CN) schemed = 0.5). This scheme is strictly energy-conserving for the prapiag
of linear inertia-gravity waves. In Eq. (5.22), the adventand horizontal diffusion
terms are explicit in time while the vertical diffusion tefsimplicit (with the vertical
eddy viscosity coefficient taken at the previous time st&pg second integral in Eq.
(5.23) can be split into an integral over the depth at timp stand an integral over
the change in depth. Neglecting the latter, we simply obtain

n+l _ . n

u—|—(1—9)V~/77 u"dz—O—GV-/n u"tldz =0 (5.24)
At —d —d

In most applications, it is safe to neglect the nonlinearptiog term between the
elevation at time step + 1 and velocity at time step + 1 because; < h. How-
ever, doing so was shown byodges(2004) to reduce the formal accuracy of the
CN discretization to first-order in timédodges(2004) proposes to add a correction
term to restore second-order accuracy but also shows tbatdturacy order of the
CN scheme degrades to first-order in time when the Couraethichs-Lewy (CFL)
number is greater than unity and whether or not the cormettion is added. For typi-
cal time and space scales in ocean modeling, the CFL numbeciated with surface
gravity waves is far greater than unity and the CN accuradyces to first-order in
time. We therefore chose to neglect the nonlinear coupémy in Eq. (5.24).

The solution(u™*!,7"*1) can be found by solving the coupled system (5.22)-
(5.24) involving the nodal value§U™*!, H"*1). For large-scale applications, the
computational overhead incurred by the resolution of thétesn becomes quickly un-
bearable. This is even more so considering the mesh is mavidghe left-hand ma-
trix of the system must be recomputed at each time step. A daigein performance
may be obtained by splitting the dynamics into a two-dimemai depth-averaged sys-
tem for the evolution of the inertia-gravity waves and a ¢hdémensional system for
the vertical structure of the velocity (e.&imons1974;Blumberg and Mellor1987;
Killworth et al., 1991). Those systems are sometimes called external agchéht
modes, respectively.
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The external mode equations are the traditional shallotemequations, obtained
by integrating the momentum equation (5.1) over depth angblaty the result with
the free-surface equation (5.3) written in terms of the ldegeraged velocityi:

% + fe;Au+g9gVn = B, (5.25)
0
£ +V.(Hu) = 0, (5.26)

whereB regroups the forcing and coupling terms originating frorpttieintegration

of advection and diffusion terms (see Appendix D). It is imtpat to note that some
of these terms may be expressed in terms of the depth-avkxadecity — i.e., in
terms of prognostic variables — and therefore can be tingpstewith the left-hand
side of (5.25). However, it remains unclear which terms sthbe time stepped and
which terms should act as depth-averaged, forcing ternisctintext-dependent and,
in this study, advection and horizontal diffusion are tintepped. The finite ele-
ment resolution of the shallow-water equations is well doented e Roux et al.
1998, 2000Hanert et al, 2003, 2005) and will not be reproduced here. We use the
scheme proposed Byanert et al.(2005). In particular, the nodal values of the depth-
averaged velocity are located at the middle of the edgesijuigelevation nodes. So,
the depth-averaged velocity is interpolated with the dtedaP¥© element Hua and
Thomasset1984). Note that this choice is coherent with the locatibnaales for the
three-dimensional horizontal velocity (see Figure 4.3jhéta-scheme applied to Eqgs
(5.25)-(5.26) gives the following time discretization

ﬁnJrl _ ﬁn

At fe, Anut? 4 gt = BT, (5.27)
nn-‘rl _ ’f]” et
— Vv (H™a"t?) = o. (5.28)

Itis worth noticing that, unlikédanert et al(2005), Eqg. (5.28) is not time stepped with
a leap-frog scheme. The latter is to be avoided due to théeexis of computational
modes. Those could be time-filtered at the cost of breakimgnamnsistencyGriffies,
2004), which, in our opinion, is highly undesirable.

A closer look at Eq. (5.28) indicates that the transpdrt(defined as the depth-
integrated horizontal velocity) whose divergence causeshange in the free-surface
elevation is given by

M=H" (6’ﬁ’”rl +(1- e)ﬁ") . (5.29)

Even by takingd = 0.5, the linearization in time of the termifu in Eq. (5.28)
precludes the transport from being formally centered iretiffor being so, we ought
to compute the divergence éf"+?a"*?, with § = 0.5. Although this computation
would yield a time-centered transport, it has two drawba(iké requires the solution
of a nonlinear system and (ii) it requires to hold in memory @smthat is centered
in time in addition to the meshes at timesandn + 1. Therefore, we are instead
favorable to solving the linearized Eqg. (5.28) for which #fenge in elevation is
caused by a transport computed on the geometry at timenstéyat is Eq. (5.29)
with & = 0.5. This leads to a much faster algorithm at the cost of a veryldoss
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of accuracy. This design leads to the time staggered ahgoréxposed in Section
5.3.4. The three-dimensional horizontal velocity stroet(i.e., the internal mode) is
determined by solving the following equation

wherek = n — 1/2 and in which the depth-independent elevation gradient ierm
discarded because its effect on the velocity field is takemaiby the depth-integrated
system (5.27)-(5.28).

The transport computed from the three-dimensional hot@melocity field is not
equal to the transport given by Eq. (5.29):

n

n H"
/ u"t /2 dz £ - (@' +u") (5.30)
—h

The origin of this discrepancy is twofold. First, we do natlirde the elevation gra-
dient in the equation for the three-dimensional horizow&hbcity field. Second, the
separation between the external and internal modes is act exd, even if the ele-
vation gradient was added to Eq. (5.30), the discrepan8@)svould still exist. This
is due to the nonlinear coupling terms includeddrin Eq. (5.27). Hence, the three-
dimensional horizontal velocity field must be correctedoadingly. Only in doing
so will the vertical velocity be compatible with the freersice elevation and tracer
conservation consistenly ensured, as exposed in Chapter 4.

5.3.4 Overall time staggered algorithm

A schematic illustrating the time staggering of the ovesddjorithm is depicted
in Figure (5.2). The elevation and tracers are known at ertéigne steps while the
velocity is known at half-integer time steps. The mesh gdomeeeds to be known
at integer time steps only. This follows from the lineariaatin time of the free-
surface equation (5.28) and the fact that the three-dirnaakhorizontal velocity field
is corrected on a mesh geometry known at an integer time stapkqg. 5.30). To
describe the sequence of computations, we will assume thanaw the variables
at the following stepsa™, n™, u™~ /2, w"~1/2 andC", whereC is any passive or
active tracer. The mesh geometry is known at steps1 andn. We will note these
geometriesm”~! and M", respectively. The overall algorithm is given hereafter.

1. Computga™ ™, n"+1) knowing (@", n™) by solving Egs (5.27)-(5.28).

2. Computgu™t'/2) on M" kowing (u”~ /2, w"~1/2) on M"~ by solving Eq.
(5.30).

3. Correctu™t'/2 so that the horizontal transport is equal to (5.29).

4. Computew™*'/2 on geometryM™ knowingu™*'/2 on the same geometry by
solving Eq. (5.20).

5. Update both geometries. At this point, we haw® and M™+1.
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n—1 n n+1 u,n,C

n—1/2 n+1/2 u,w

Figure 5.2: Schematic of the staggering used between elevation and tracers (o tirrege
steps) and velocity (on half-integer time steps). The mesh geometrys nedzk known on
integer time steps only, which is a consequence of the transport comiputed. (5.28) not
being formally centered in time. The effect is that the veloa;iliyw)"“/2 is computed on
mesh geometry.. The symbolC' denotes any active or passive tracer.

6. Compute any trace?™ ! on geometryM™+! knowing the traceC’” and the
velocity (u+1/2,w"*+1/2) on geometryM™.

7. Return to step 1.

The first action undertaken to improve efficiency — namelyasating the dynam-
ics into the slow and fast modes while using a single time stéjas already been
described. Upon inspection of the time-stepping algorithurtiined in the previous
section, we may identify five main computational tasks: tet fnode, the horizon-
tal velocity, the vertical velocity, the tracers and updgtthe mesh geometry. A few
important comments can be made regarding those tasks. WeéVagthe number of
two-dimensional triangle vertices arddthe number of layers (a mesh containihg
layers means that the total number of verticefi6 — 1) x Nog for L > 1). Ina
Delaunay two-dimensional mesh, the number of horizontgeésdends t8 Noy. The
overall computational cost of the algorithm may be esthblisin terms of these two
variables:

1. The computation ofa, n) requires to solve a system @fVo; unknowns. In
a number of large-scale applications, it is legitimate tgleet the free-surface
elevation in the divergence term of Eq. (5.26). Hence, tfiehiand side matrix
of the system is constant in time and needs only be factodred at the onset of
the time integration. The computational cost and memomag®requirement
depend on the solver.

2. The computation of either componentwofequires to solve a system 2f, x
3Nyy = 6L N>y unknowns. The factdL is a consequence of the discontinuous
representation in the vertical. Due to the orthogonalityhef non-conforming
basis functions in the horizontalila and Thomasse1984), the left-hand side
matrix is banded diagonal, with a bandwidth of two. Note tihout vertical
momentum diffusion (which is implicit in time), the left-hd side of the linear
system reduces to a tridiagonal matrix.
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3. When solving Eq. (5.20) fap, we lump the left-hand side matrix of the system
in the horizontal to obtain a tridiagonal matrix. The numbé&unknowns is
2L x Noy = 2LN,, and the computational cost scales [(R€LN5;). Note
that, although the scaling is the same as thatifdhe cost of solving the system
for w is roughly 10 times smaller than for either componentiofThe reason
is that there are three times fewer unknowns:@athan foru andv and that a
tridiagonal matrix needs be factorized foinstead of a banded diagonal matrix
for v andw.

4. In case we have a tracer, the number of unknowfd.is No; = 2L Ny, and
the computational cost scales lik& LN»,) if the left-hand side matrix of the
system is lumped horizontally.

5. The cost of updating the mesh geometry (i.e., computiaghttrmals, the ele-
ment Jacobians and the new coordinates) is proportionaetotmber of ele-
ments, which scales lik&(LNyy).

Therefore, the overall computational cost of the algoriduales likeD(LNoy). Dou-
bling the number of triangles (i.e., doublidg;) and doubling the number of layers
will quadruple the computational cost. The total numberrdénowns (with two trac-
ers) is18 LNy + TNoy.

5.4 Convergence analysis

The numerical solution to the two-dimensional linearizbdl®w-water equations
is now compared with an analytical solution to the propageatf gravity waves in
a square basin of sizé. The linearized shallow-water equations are obtained by
substitutingH™ for the unperturbed depthin Eq. (5.28). We tak@d = 1000 m and
L = 1000 km. The initial conditions are = 0, v = 0, w = 0 andn = 7o, where the
latter is a one-meter high Gaussian:

no = exp [—R (22 + ¢?)]

with R controlling the stiffness of the initial Gaussian. The-norm of the error om,
v, n andw is computed and reported in Figure (5.3) for a series of &irad meshes
with descreasing element size The L,-norm of the functiore in 7" is defined as

lell Ly = 1// ¢ dr.
Th

Since we solve the two-dimensional shallow-water equatitime horizontal velocity
is depth-independent and the vertical velocity is lineaaching its maximum at the
surface. We therefore choose to evaluate the error on tliealarelocity at the surface
only. At the cost of a slight decrease in accuracy, a sigmifigain in performance
is achieved by resorting to mass lumping for the verticabeiy. However, mass
lumping is only performed in the horizontal, transformirg tmatrix of the system
into a tridiagonal matrix. As the mesh resolution is incezhsall errors decrease
quadratically (Figure 5.3).
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Figure 5.3: Convergence analysis of tHe-norm of the error on, v, n andw on structured

meshes. The vertical velocity is computed withay)tdnd with (x) mass lumping. A quadratic
rate of convergence is observed for all variables (the slope is indinatédo each variable).
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5.5 Application to a shallow-water island

Seeking to validate the three-dimensional barotropic aomept of our model, we
opted for a realistic test case. The latter had to be threesional (without baro-
clinic effects) to be able to observe clear vertical motidFise momentum horizontal
advection scheme had to be severly evaluated, so a probtarifeg flow sepration
and recirculation was deemed appropriate. We also wantednipare the model re-
sults with that of previous finite difference models and shbe effect of increased
mesh resolution. Finally, we did not want the benchmark tbstaort of physical
interpretations. Hence, it had to be of interest for oceeaquuers and biologists.

In shallow coastal regions, flow disturbances caused bygrapdical features, such
as islands, headlands, reefs and narrow passages, cantimngeffects on marine
ecosystems. Topographically generated circulation &fféhe distribution of sedi-
ments and can significantly influence the local dispersagtzgic organismsH{amner
and Hauri 1981;Wolanski and Hamne988;Wolanski et al.1988;Wolanskj 1994;
Coutis and Middleton1999, 2002). Of particular concern are the stable shaliater
eddies generated in the wakes of islands by oscillating fiidas. By shallow water,
itis meant here that the ratio of the water depth to the islaidth (facing the current)
is much less than one. Among shallow-water islands for whiable tidal eddies are
observed, Rattray Island (Great Barrier Reef, Northeastralia — Figure 5.5) has
been the focus of many studies in the past two decadesafski et al. 1984;Fal-
coner et al, 1986;Black and Gay1987;Wolanski and Hamnerl988;Deleersnijder
et al, 1992;Wolanski et al. 1996, 2003White and Deleersnijdetin press). Aerial
photographs (Figure 5.4) show turbid water in the wake ofrBatisland both at ris-
ing and falling tides, suggesting upwelling capable ofyiag bed sediments upwards
during the life span of the eddies.

5.5.1 Model setup

The domain of interest is shown in Figure (5.5). Becausesdfritited extent, the
f-plane approximation is made with the latitude bein§220The roughness length
is taken to bety = 5 x 1073 min Eq. (5.9) Black and Gay1987). Because the
last velocity node lies on the seabed, the bottom stresyi€bc®@mputed by using the
mean value of the last two velocity nodes. The distance tedlabed;, is calculated
accordingly. We neglect surface stress as there was ndisantiwind during the
field survey Wolanski et al. 1984). The constant; used in the parameterization of
the horizontal momentum diffusion coefficient, Eq. (5.4pitally lies in the range
0.05 — 0.1. Itis on the same order of the value recommande&imagorinsky1963)
and smaller than that used in usual finite element models asithat ofLynch et al.
(1996).

The currents are dominated by the tides, whose ellipsedraregty polarized and
essentially oriented from northwest to southe&gvlénski et al. 1984). They-axis
of the domain is rotated to be parallel to the major axis ofalipses. We may thus
assume the side boundaries to be impermeable. The soudimeasbrthwest bound-
aries — hereafter referred to as lower and upper boundegssectively — remain open.
Using available field measurements, the depth-averagedatoelocity and the eleva-
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Figure 5.4: Eddy formation in the wake of Rattray Island during flood tide (photo ceyirtéd
Eric Wolanski).
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Figure 5.5: Rattray Island is located in the Great Barrier Reef (Northeast Austrdlia)the

right panel, the domain of interest is represented in(they) reference framework. Rattray
Island is the black area at the center. Depths are in meters.
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tion are imposed at both the lower and upper boundaries Iscpbing the incoming
characteristic variable,, — n+/g/h, whereu,, is the depth-averaged normal velocity.
This is the so-called Flather boundary conditi&father, 1976;Ruddick et al.1994).
The phase lag between both boundaries is small and negledteel model. Forcing
used in the model corresponds to a 3.5 m spring tide recorei@eelbn 23 November
1982 and 4 December 1982. Rising tide flows southeastwaide#ults below are
presented on 4 December 1982. This is the only day (with 2 be€) for which all
currentmeters were deployed.

5.5.2 Results and discussion

The model was run on mesh@s,, M, and M3 of Figure (5.6) with 6, 8 and 10
layers, respectively. The time stepis 10 s, 3s and 1 s, réeplgclt is constrained by
advective processes off the island’s tips where the spegaghes 1 ms! where
the mesh resolution is typically the highest (e.g., lesa tttameters on mesk/s). In
all experiments, the Smagorinsky constanis equal to 0.08.

Flow pattern

In Figures (5.7)-(5.8), the velocity field predicted by thedwal is compared with
that measured at 25 locations where current meters wereydEband at three differ-
ent times during rising tide. As can be seen in Figure (5.Agmusing mesi/; (the
coarsest), the model is unable to faithfully predict thércetation pattern in the wake
of the island. In particular, at 9h30, the model predicts iy wbuggish flow close to
the island whereas a swifter flow, parallel to the island, maasured in the field. At
11h30, the model reproduces the clockwise-rotating eddlyerisland’s wake. How-
ever, the recirculation strength closest to the islandasaeak by roughly 50 percent
and the eddy is too narrow. As depicted by field measuremant$ guggested by
aerial photographs), the right-hand side eddy should exésmoss the entire wake
and should keep growing until the time of tide reversal. Heevea vector plot of the
modeled velocity field (not shown) accounts for two coumtgating eddies within
the island’s wake. The left-hand side eddy is too large apthétime of tide reversal
(about 13h45), it has grown to a size and intensity similathtd of the right eddy.
However, the velocity field taken at measuring sites doesuggest the existence of
an eddy of that size on the southern side of the island agrisile.

Results obtained on mesW, and shown in Figure (5.8) present a higher degree
of similarity. All features pertaining to the measured il field are found in the
model. The recirculation intensity is larger than that oled with the coarser mesh
and quite similar to that of the measured field. The rightehaide eddy is larger
and well reproduced by the model. It extends across theegstand’s wake. This is
particularly obvious at 13h45. The velocity field obtaineithwneshM/; (not shown)
is basically the same as that obtained with m&gh which corroborates the previous
model output.

In Figure (5.9), we compare the predicted velocity field foe three meshes on
4 December 1982. The circulation patterns obtained withhe®s/; and M, are
quite different, as was already made obvious through coisgraof Figures (5.7) and
(5.8). Although two counter-rotating eddies are prediet@tl both meshes, the right-
hand side eddy is larger for mesli,, complying with field measurements as we have
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Figure 5.6: From left to right, the meshes contain approximately 6100, 14,000 aj&0a8
triangles, respectively. The resolution for the left mesh ) varies from 80 m to 600 m. The
resolution for the center mestif;) varies from 40 m to 600 m and for the right mesty),

it varies from 20 m to 400 m. The main difference between the centerightimeshes is
a higher resolution around the island and a smoother transition (from thmel igdavard the
domain boundaries) for the right mesh. At the bottal; -extruded, three-dimensional mesh
with smaller vertical spacing near the seabed.
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Figure 5.7: Comparison between the measured velocity field (left panels) and #wditfed by
the model (right panels) on medl; (the coarsest of the three meshes) at three different times

on 4 December 1982. High water level occurs just before 13h45.
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Figure 5.8: Comparison between the measured velocity field (left panels) and thaicfed
by the model (right panels) on meatf, (the intermediate mesh in terms of resolution) at three

different times on 4 December 1982. Hight water level occurs justrbeif3h45.
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Figure 5.10: The total vertical velocityw can be split into a topography-induced component,

the so-called upsloping velocityu(,

from left to right) on 4 December 1982 at 13h10. Notice how the circulgt@mitern differs
welling mechanisms.

between meshek¥/; and M, and is barely altered when using a finer mekh). The velocity

field has been interpolated on a 160x1L60 m structured mesh.

Figure 5.9: Comparison between the numerical predictions on the three mesheto (M3

) and the upwelling velocityw..,), due to intrinsic up-

s

the island. This is a clear indication of the convergenceeriies of the model for
this application. It should be borne in mind that both thehpatetry and the island
geometry play a role in shaping and sizing the eddies. Rgntiia model without

to that obtained on mesh,, even though the resolution is halved in the vicinity of
bathymetry (not shown) gives rise to two eddies of similaesi

already stressed above. The circulation pattern obtainedesh)M; is very similar

Upwelling and downwelling

In a three
can be detected by resorting to the concept of upwellingoityldescribed byeleer-

snijder (1989) and used bipeleersnijder(1994) andWhite and Deleersnijdein

dimensional model, intrinsic upwelling and dewetling mechanisms

press). The upwelling velocity is the component of the eaftivelocity from which
we subtract the topography-induced component (see Figaf.5In what follows,

the upwelling velocity is always computed at mid-depth.

we show the upwelling velocity on the threeshes. For the

In Figure (5.11)
top panels, we consider a range[ef20, 10] mm s~! while for the lower panels, we

restrict the range t¢—6,3] mm s !. The coarse mesh is unable to capture any of
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Figure 5.11: Upwelling velocity in [mm s'] for the three meshes. Notice how the coarse
mesh fails at capturing the intense vertical motions off the right island’s tip.

the intense downwelling and upwelling processes that a@wed on the two other
meshes (see the top panels). In particular, we can see taas@upwelling extends
further downstream — and recirculates within the wake — wdmnputations are car-
ried out on the finest mesh. Note that much less intense zdnpsvelling are already
predicted on the coarse mesh (see bottom left panel). Thigllipg is on the order
of 1to 2mm s, which is at least one order of magnitude smaller than thealling
predicted off the northern island’s tip.

Upwelling and downwelling at four different times duringirig tide is depicted
in Figure (5.12) for the finest mesh. A key feature in all siayps is the presence
of an intense upwelling zone>( 20 mm s™!) off the northern island’s tip. Strong
downwelling also occurs downstream of the right tip and isficmed by observa-
tions Wolanski, personal communication, 2008/eaker upwelling is also predicted
downstream of the left tip (not visible with the range coesétl).

A comparison between five three-dimensional, finite-défere models for rep-
resenting the tidal flow around Rattray Island is reported\mfanski et al(2003).
All models used the same bathymetry, the same horizontalutazn (200 m) and the
same forcing at open boundaries. They all predicted an Uipgeaiear the center of
the eddies on the order of 1 mm'’s According toWolanski et al(2003), the up-
welling intensity near the eddy center must be at least 5 mht® account for the
presence of bed sediments near the free surface (the eddyidivabout 2 hours). The
results obtained with our finite element model shows thgamiess of the horizontal
mesh resolution, we predict upwelling of less than 2 mmh sear the eddy center.
However, during both tidal phases, intense upwellin@gd mm s™! is predicted off
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Figure 5.12: Upwelling velocity [mm s''] at four different times on 4 December 1982 during
rising tide on mesh\/;. Notice the intense upwelling off the right tip in all spapshots.
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the island’s northern tip. This upwelling could be respblesfor carrying bed sedi-
ments upwards, given that this vertical motion exists fdeast two hours (see Figure
5.12). Once reaching the surface, those fine sedimentsageet in the flow and re-
circulates within the wake. This could explain the high tditly of the water observed
during rising tide. These findings confirm the results oladirecently bywhite and
Deleersnijder(in press), who used a diagnosis based on the age to qudraityne
needed for bottom water masses to reach the surface.

5.6 Conclusions

We have presented a new three-dimensional, unstructursl fimite element ma-
rine model. The current configuration is suitable for stadyfiows without baroclinic
effects. The model has a free surface and is hydrostatic.miésh is unstructured in
the horizontal and moves in the vertical to track the fredese motions. We have
described the numerical treatement of the hydrodynamiga&tions with the finite
element method. The model was validated against a redlisticaround a shallow-
water island for which field measurements were availableghAsnesh resolution was
increased, the model was able to predict the correct vglielt] in the island’s wake.
Very intense upwelling was also predicted off the northslarid’s tip during ebb and
flood. We suggested that this upwelling might be the maine&misthe presence of
mud at the surface, rather than the much weaker upwellingigiezl near the center
of the eddies.
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Chapter 6

Diagnosing vertical transport in
a 3D marine model

Summary
Diagnoses based on the concept of age are considered to quantify

vertical transport in a three-dimensional finite element model for
the tidal flow around an island. Two types of age for the bottom
water are defined. The first age is a measure of the time elapsed
since the bottom water left the seabed. The second age is the time
required for the bottom water to travel from the seabed to the sea
surface. Results are interpreted.

Marine flows are so complex that it is often very difficult toimgansight on their
functioning by simple inspection of the model results. Tdtesr are typically analyzed
by resorting to two-dimensional cuts at some given timesctivice of which are left
to the user’s appreciation and feeling. All processes atenly three-dimensional
but also time-dependent and a big picture of the flow is ugumi$sing when opting
for this simplistic approach. In addition, focusing on agbénvariable sometimes fails
at taking into account the interactions between procesSes)ling out one variable
merely allows for pinning down one component of a given pssdhat typically in-
volves several variables. In the end, we are left with thergagion that only a tiny
portion of the model results has been exploited.

The use of other interpretation techniques to understamcegults of such complex
models is deemed necessary. Among these techniques aliarguxinescales such
as the age and the residence time. These timescales arerhipeoperties of the
flow and may be evaluated diagnosticalde(hez et al.1999) to help understand the
processes under consideration. In addition, the assdd&gnoses are holistic in that
they account for several processes and for the interadtietvgeen several variables.
A historical review for the use of these timescales is beythedscope of the present
work and can be found elsewher@glhez et al. 1999; Deleersnijder et al.2001;
Delhez et al.2004). In this chapter, we present an application of thetagkagnose
vertical transport in a tidal flow in the vicinity of a shallewater island. We do not
intend on laying out the theoretical framework for the agd eesidence time but
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refer the reader to appropriate contributioB®lgersnijder et al.2001;Delhez and
Deleersnijder 2002)

In the previous chapter, the three-dimensional model SLI&& applied to study
the tidal flow around Rattray Island. The model predicted sapwelling near the
center of the eddies in the wake of the island, both duringifened ebb. However, we
were also able to predict much stronger upwelling off tharidls tips. There is now
little doubt that the flow around the island is strongly thdd¥mensional. However,
if strong vertical motions exist in the vicinity of the iskdnwe might wonder which
one in particular could be responsible for the suspensi@ediments in the island’s
wake. The best answer would probably be provided by a seditreamsport model
that would take into account the buoyancy of the particleswéler, before rushing
into the application of such a model, we might want to resora tsimpler diagno-
sis, yet sophisticated enough to account for all physicat@sses, and their history,
responsible for vertical transport.

6.1 Methods

The concept of age, which is a component of CARDelhez et al.1999;Deleer-
shijder et al, 2001; Delhez and Deleersnijde2002) provides such a holistic ap-
proach. The age of a particle of seawater is defined as thedlapsed since the
particle under consideration left the region in which the &gprescribed to be zero.
The basic observation that the water is turbid in the islkamdike leads to the sim-
ple, following two questions. How much time does it take bttwater to reach the
surface during ebb and flood ? And where does this bottom weaiginate ? In this
context, bottom water is composed by those water particleshing the seabed at a
given time. In that respect, bottom water can be viewed assaiymtracer and its
age is set to zero when it touches the seabed. Note that it isieommon to regard
water masses as passive trac€&ex 1989;Hirst, 1999;Goosse et al.2001). Once
the water particles leave the seabed and rise, carried dpwgrsome upwelling, the
age increases. Depending on the fate of these water pantitien they touch the sea
surface, we end up with two different ages. The first age ofrgpmof water particles
is defined as the arithmetic average of the times that hapsedasince the particles
left the seabed for the last time. The age of a water partedpk increasing as long
as it does not touch the seabed again. Once a water particibes the seabed, its
age is reset to zero. Hence, the first age answers the moitivintyuestion as to how
old bottom water is at the surface. The second age is defineel ttoe time needed to
travel from the seabed to the sea surface. Similarly to teetfipe of age, the age of
a water particle is reset to zero when it touches the seabedevér, once the water
particle touches the sea surface, it is disregarded uttilithes the seabed again. This
key difference between both types of age is illustrated gufé (6.1). From now on,
all variables associated with the type of ageill have a subscript. The ages will be
referred to as age 1 and age 2.

1Constituent-oriented Age and Residence time Theury,p: / / www. cl i mat e. be/ CART
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Sea surface tf\

Figure 6.1: A water sample containing three water particles is taken at the sea surtaoe a
t. Each particle has a different history, as illustrated by their trajectoriesthi first type of
age, the age keeps increasing as long as the particle does not touchiibe again. Therefore,
the first age is1y = [(t —t1) + (¢t — t2) + (¢t — t3)] /3. For the second age, the patrticle is
disregarded when it touches the sea surface. Therefore, onlygtediticle need be accounted
for: ax = (t — tl).

To compute the age, we have to solve advection-diffusiomigs for the bottom
water concentratio; and the age concentratian. Once those two variables are
known, the age:; is given as the ratio of the age concentration to the watecaon
tration:

a; = % (i=1,2). (6.1)
The water concentratiofi; is solution to Delhez et al.1999)
oC; 0 0 oC; .

where K, is the vertical eddy diffusivity coefficient ant? parameterizes turbulent
horizontal diffusivity with a Smagorinsky scheme similariqg. (5.4). The age con-
centrationo; obeys the following equatiorbelhez et al. 1999):

(90&1‘ 0 - 0 (9041‘ .
%LV (o) + 5 (WO = Ci o (Kz “ ) D (i=12), (63)

where the water concentratidari; is the so-called aging term. Note that the water
concentration varies betwe®mand1. Boundary conditions are yet to be prescribed
to close the system. Because the vertical eddy diffusitithe bottom is zero, it is
convenient to introduce a bottom roughness leggtfThis is similar to the roughness
length introduced for the computation of the bottom str&¥e.may similarly define

a surface roughness length The bottom and surface boundary conditions will be
enforced at, = —h + &, andz, = n — &,. At sea bottom, the water concentration is
1 and the age concentration(gor both ages:

[Cl] Yy — 1 and [az] =0 (’L =1, 2), (64)

z=z z=2zp
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which translates the fact that we want to track water padithat leave the seabed
with the age reset to 0. At the sea surface, we have to disshdnetween age 1 and
age 2. Since the free surface is impermeable to the first agbave

ocy

{Kz } —0 and [KZ%} —0, (6.5)
aZ z2=2zg z=z

0z i

which means that age 1 keeps increasing even when wateclesrtouch the free
surface. For the second age, we have to implement the faariba a particle touches
the surface, it is disregarded. In other terms, the watecemnation is zero at the
surface:

[Ca],_.. =0. (6.6)

Now, the age concentration is defined Be(hez et al.1999)

o
OQ:/ CQ(I’,?J,Z,t,T) dTa
0

wherec, is the water concentration distribution function anig the age variable, that
is an independent variable not to be confused with the meam.a&ince the water
concentration is assumed to be zero at the surfads,zero and so iss:

[aﬂz:zs = 0. (67)

The conditions applied on lateral boundaries depend onhgehehey are closed or
open. Along closed boundaries, a no-flux condition is ergdran the water and age
concentrations. At outflow open boundaries, both the watdrage concentrations
are advected out of the domain. At inflow open boundariesntiog water and age
concentrations must be prescribed to compute the advéhtieThe incoming water

(age) concentration is taken to be the mean outgoing wadg) @ncentration. In

other terms, the incoming age is prescribed to be the meayoingt age, leading to

periodic boundary conditions on the age in the mean sense.iSThased on the hy-
pothesis that horizontal age constrasts appear close tsldne and that homogeneity
prevails far away from it.

At this point, two remarks can be formulated.

(i) We will take the vertical eddy diffusivity coefficierit’, to be equal to the vertical
eddy viscosity coefficient,. In other words, the Prandtl number — which is the
ratio of viscosity to diffusivity — is assumed to be equal teeo This hypothesis
is generally accepted for unstratified fluids and it themfapplies to Rattray
Island Munk and Andersqri948).

(i) The computation of age 2 at the surface implies to evaln indeterminate
limit of type 0/0. We have to make sure that the limit exists.

Some numerical issues associated with the computationtbftipes of age, such as
the existence of the bottom logarithmic layer, are addcegseletail byWhite and
Deleersnijder(in press) and are not reproduced here.
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6.2 Results and discussion

For the computation of the age, the coarsest mesh of Figugg \{ias employed
with 16 layers in the vertical based on sigma-coordinatagires (6.2) and (6.3) show
ages 1 and 2, respectively, at the surface, at four difféner@s during a tidal cycle.
Note that experiments on extended meshes (in the free st@antion) have been
made to assess the sensitivity of the predicted age on ttendésat which boundary
conditions are imposed. In all cases, the predicted ageineméthin a few percent of
that computed with the original mesh (not shown). Hencebthendaries are located
far enough from the island. At the onset of the simulatioe, Water concentration
is prescribed to be the solution of the water-column modesg@nted byVhite and
Deleersnijder(in press). The initial age concentration is zero. For agiéd water
concentration is never computed and remains equal to ooeghout the domain and
at all time. For age 2, both the water and age concentratienscamputed.

Let us first concentrate on age 1. A striking feature is vésiblFigure (6.2a) and
(6.2c), where bottom water (the blue elongated patcheshates off the island’s
tips. This water is less than one hour old at both tips. Thetfaat the age of the
bottom water is roughly the same off both island’s tips caeX@ained by the depth
difference. Off the right tip, the depth is about 30 m whilétbk left tip, it is about
15 m. However, upwelling on the right is found to be at leasténas intense as
that on the left, which could explain the resulting symmetWhen the tide keeps
rising, some of the bottom water recirculates within tharisl's wake while the rest
is advected downstream. At the end of rising tide, age 1 isitatve to three hours
downstream of the island, as shown in Figure (6.2b). Fipatlthe end of falling tide,
the age varies between three to four hours with a few exaeptdd younger water
located near the centers of both eddies. The age of thedeggatcabout two hours.
This is shown in Figure (6.2d). Since the age of bottom watihimw the island’s
wake shortly before tide reversal is roughly three hourspitid be hypothesized that
this water mainly originates from the island’s tips whenfilee-stream speed is large
enough to initiate upwelling.

The interpretation of age 2 at the surface is more delicalthoAgh not as definite
as for age 1, we may also discern young patches originatorg the island’s tips
in Figures (6.3a) and (6.3c). Along the downstream edge @fidtand, a patch of
older water is visible (reddish patch). These patches abénwith regions of very
low horizontal velocity, as can be seen on the right panedw/siy the depth-averaged
velocity field. Because of less intense circulation, veltdiffusion decreases, which
has a direct impact on the age. Finally, shortly before telesrsal, age 2 behaves
rather counter-intuitevely. The surface age pattern séeins opposite to that for age
1 (see Figures (6.2b) and (6.3b)). The largest values ofitiace age is found around
the centers of the eddies, where the upwelling velocity rigda This is strinkingly
clear for the left-hand side eddy in Figure (6.3b) and thitrltand side eddy in Figure
(6.3d). This counter-intuitive behavior motivated an tigation on the effect of
vertical advection on the age within eddies. Using a oneediional water-column
model,White and Deleersnijdgiin press) showed that flows characterized by a certain
range of positive vertical Peclet numbers undergo an isergaage 2 at the center of
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Figure 6.2: Age 1 (age of bottom water) in hours at four different times: a. pealdfielocity,
on a structured grid for clarity.
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Figure 6.3: Age 2 (time taken by bottom water ro reach the surface) in hours at fifaremht
times: a. peak flood velocity, b. tide reversal, c. peak ebb velocity, draidgsal. The velocity
field (vectors) is interpolated on a structured grid for clarity.
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the eddies. A typical value for the vertical Peclet numbehimian eddy in the wake
of Rattray Island is one, which explains the predicted bitnav

6.3 Conclusion

The pattern of age 1 at the surface confirms the presenceenisatupwelling off
the island’s tips. Most importantly, the value of age 1 atsheace, downstream of
the island and shortly before tide reversal, suggests lleatvater at the surface orig-
inate from the tips of the island and recirculate within theke. The role of the age
in explaining this circulation pattern is crucial as thedatcould not readily be pro-
posed by a simple look at the upwelling velocity. Furthereainis flow description is
somewhat in contradiction with the sketch proposettyanski and Hamng1988),
in which upwelling only takes place within the eddies. Theutes presented in this
work motivate further research toward a better understayali the three-dimensional
flow circulation around shallow-water islands.

The pattern pertaining to age 2 also exhibits upwelling lndfisland’s tips. How-
ever, within the eddies where upwelling velocity is the &ag the surface age in-
creases. This counter-intuitive behavior was validate lsymplified water-column
model including both advection and diffusion. Neverthg)es this stage, the effect of
advection upon age 2 remains physically not well underst@mawing conclusions
based on age 2 is not straightfoward and, undoubtedly, regjadditional effort.

126



Chapter 7

Conclusion and perspectives

In this research work, conducted under the auspices of thd Sproject, we have
developed a three-dimensional, marine model using thes fei@ment method. The
model solves the hydrostatic primitive equations. Thegkdi#nensional mesh is made
up of prisms and is obtained by extruding an unstructurehdular two-dimensional
mesh. The free-surface dynamics is included in the modettendomputational do-
main is dynamically deformed to accommodate the free-sanfaotions. The interior
mesh motion is unconstrained and can be regulated by amyiaritthat is deemed
appropriate (e.g., isopycnal coordinates). At large scdlee computational domain
motion allows for resolving the dynamics incurred by fresksy fluxes (precipitation
and evaporation). At smaller scales, it allows for takinig iaccount the layers thin-
ning and thickening undergone by tidal dynamics. Potdgtidle mesh motion would
also permit the inclusion of a wetting and drying algorithm.

In its current version, the model lacks a baroclinic compnklowever, it is con-
ceived in such a way that any tracer can readily be added dhelive in a conserva-
tive fashion. In addition, the finite element discretizataf the elevation, continuity
and tracer equations is consistent. Hence, a uniform tremecentration remains
equal to the initial value at all time, no matter which dynesns considered but pro-
vided that there is no source term and no boundary flux. Teeaethihese properties of
conservatiorand consistency while using a stable mixed formulation, théofaing
interpolations are used in the horizontal. The horizontathpgonents of the velocity
are linear and non-conforming?"“). The elevation, the vertical velocity and all
tracers are linearH;). We have almost unlimited freedom regarding the interpmta
in the vertical, except that it must be the same for the \artielocity and the tracers.

The development of the three-dimensional structure ofuheé OGCM SLIM has
always been the main objective. Nevertheless, in fulfillinig objective, secondary
problems were addressed. We evaluated some finite elemémbasefor the resolu-
tion of the equations for the external mode using a challengenchmark. The dis-
continuous Galerkin method outperformed the other metipodgded that the right
numerical fluxes were computed. This very test case was iedlpeenlightening to

1second-generation Louvain-la-Neuve Ice-ocean Mduel,p: / / www. ¢l i mat e. be/ SLI M
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understand how Riemann solvers work in dimensions higher tine by projecting
the equations along the one-dimensional normal to the édg&( or face (in 3D).
We further assessed the barotropic component of the modekiving barotropic
instabilities. The equations solved were inviscid, makinchallenging for numer-
ical methods designed to resolve advective processes wiitie kind of numerical
stabilization. In that case, the mesh resolution must bicgiftly high to prevent
numerical dissipation from inhibiting the growing of phgai instabilities.

During this doctoral research, we have developed sometgtalcomponents of
SLIM. Nevertheless, the model still lacks many featuresfoflefledged OGCM, cou-
pled with a sea-ice model, set out as objective by 2009. THMS$kam, comprising
11 PhD students and 4 supervisers at the time of this writingore active than ever
at fulfilling this objective. In theshort term (within a year and a half), the model must
be enhanced to operate in spherical geometry, with no @nsfrom any horizontal
coordinate system whatsoever. The barotropic componest beufully validated on
the basis of some or all of the seven Williamson test cadéigmson et al. 1992).
Within the same time frame, the baroclinic component musideloped and vali-
dated. This entails devising an advection scheme for tsab@t is as monotonic as
possible to avoid the occurrence of unphysical extrema. Welso need to investi-
gate the necessity of stabilizing (following e.bjinka et al,, 2000) the advection term
for the tracer equation (&; discretization is not optimal for advection-dominated
flows). An adequate element for the baroclinic pressure rlgstbe selected. Ap-
propriate test cases should include realistic benchmémksder to run the model on
large domains without too much constraint on mesh resalutiee current code must
be modified so that the model is able to run on parallel commpute

In the medium term (within two years), the full three-dimensional, barodtini
model will have to be tested in spherical geometry on thedwackan. Preliminary re-
sults should be validated by using diagnoses in terms ofp@nts across typical straits
(Drake, Indonesia, etc.) and poleward heat fluxes. Thislaibn process will require
a long period of fine parameterization tuning and should ataearly as possible. The
aforementioned diagnoses should be performed using agequiarpretation tech-
nigues, such as the agedleersnijder et a].2001;Delhez and Deleersnijdef002),
which should be built-in within the model. The choice of veat coordinates will
have to be carefully thought out. Terrain-following coaralies are better suited for
flows in shallow seas than for the large-scale circulatiothenoceans. An approach
based orx-coordinates is probably more appropriate to avoid nurakarrors in the
computation of the horizontal pressure gradidfariey 1991). However, to avoid a
staircase representation of the seabed and to circumverdotstraint of using the
same number of prisms in adjacent columns, non-conformiiggng (with hanging
nodes, se®iviere and Girault(2006)) could be employed, preferably in the interior
of the ocean where the dynamics is less active and less poanducing numerical
errors. Developments regarding this mesh setup in threerdifons should begin at
the start of the second year. Hence, the technique shoubébiybe first mastered in
two dimensions during the first year. Coupling the finite edatrsea-ice model with
the ocean model should begin during that second year as well.
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In thelonger term (beyond two years from now), steps toward adaptive modeling
will have to be taken. This includes mesh adaptivity with@htch the full potential of
the finite element method will not be unleashed. Howevelyifainic mesh adaptiv-
ity is tempting, it also brings about complications in terafisnterpolations between
meshes that must be mass- and tracer-conserving. Meshvétgapin addition to a
varying mesh resolution in space — raises the question efméting how to dynam-
ically adapt the model subrid-scale parameterizationsonly in space but also over
time. Great care will have to be taken to ensure that the palprocesses we seek to
resolve regulate the numerical method, and not the othean@ynd ! In that respect,
mesh adaptivity is extremely delicate and must be congideith great care. In prin-
ciple, adaptive modeling consists in much more than simg@péing the mesh and the
underlying parameterizations. The set of equations cagimately be adapated in
the course of the simulation to account for those physicatgsses that could be re-
solved as the mesh resolution allows for it. Although thgdascale ocean circulation
is very well approximated by solving the hydrostatic equadi a few non-hydrostatic
processes (e.g., deep convectibtafshall et al, 1997)) could be resolved locally by
adapting the mesh and the equations (we would then locdihg loe non-hydrostatic
primitive equations). Because SLIM aims at being a multippse marine model, ca-
pable of being applied to estuaries, coastal oceans and desins, non-hydrostatic
modeling should be on the agenda in the longer term. Thie sfahind is reinforced
by the belief that the computational power of future comgsiteill allow to run sim-
ulations on higher resolution meshes for which the hydtmstgpproximation might
become questionable.
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Appendix A

Complementary material to
Chapter 2

A.1 Analytical solution

The solution to (2.6) oif0, 1], subject to an arbitrary initial condition on the eleva-
tion, sayno(x), is developed herein. Using the method of seperation oabtes, we
defineu(x, t) to be

u(z,t) = F(z)T(t)

so that replacing by that product into (2.6) yields
T"F +TF = o*TF"

or T// F//
? = a2? — = C

whereC' is a constant expressing the fact that both sides of the §siligy must not
depend upon neither nor ¢. The solution to the time-dependent p&rt;), must be
of the form

T(t) = Asin(wt)

to account for the initial condition on. Note that the constaidt is deemed negative
to avoid growing exponential-type solutions in time. By dwidifferentiatindl’, the
constanC is found to be:.C' = —w?. The space-dependent part,z), obeys

where it is required that? > 1 to avoid an exponential dependencerpmhich could
not satisfy the boundary conditions. For the same reasdutj@us involving cosine
cannot exist. Thus, we have

F(z) = Bsin(kz),
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wherek? = % Now, to satisfy both boundary conditions, we must hiave k,, =
(2n — 1)m, which constrains to w = w, = /1 + a2k2. Combining the time and
space dependences, the velocity, ¢) is given by an infinite sum of those harmonics:

= i D,, sin (wpt) sin (k,z), (A.1)

n=1

where the constarid,, is to be determined. To do so, we may write Eq. (2.3)-at0:

a? (977 _ _@
oz ot
= — Z Dywy, sin (knx).
n=1

This equality is satisfied provided that the initial elewatfieldn,(x) take the follow-

ing form
= Z H, cos (knx),

n=1

where the coefficient&l,, are given by

1
H, = 2/ 1o () cos (k) dx. (A.2)
0
Thus, for each, we have
o’k,
D, = H,
W

and the final expression faf(x, t) is
Z Hn " sin (wpt) sin (k). (A.3)

Now thatu(z, t) is known, we may seek the expression 6z, t) by using Eq. (2.4)
and the initial conditiorv(z, 0) = 0, which yields

ZH

Finally, the elevation field)(x, t) is easily infered from Eqg. (2.3). A few algebraic
manipulations lead to

[cos (wnt) — 1] sin (k). (A.4)

2 2
n

- k
= Z H,, cos (k,x) {1 -
n=1 wi

n

[1— cos (wnt)}} . (A.5)

Depending on the initial condition, an analytical expressian be found fo¥,,. For
the sign function, coefficientd,, amount to




A.2 Details on the variational statement for DG

We focus on the continuity equation to show how formulati¢h44) and (2.15)
are derived. Integration by parts of the term involving tpet&l derivative generates
an extra term, as shown hereafter:

Ne

Z Bu ndx— Z/ u” dx+Z\u filoq, - (A.6)

e=1 Qe
The last sum of (A.6) may be expanded so that the index nowanmhysical nodes:

N

Ne
Dol ilgn, =D {um (X)) — " (X )(X)}

@
Il
-

(A.7)

{{u™(Xa)) (X)) + [w" (X)) (0(Xi)) }

o

Il
—

?

where(f(X;)) and[f(X;)] are the average and jump pht physical node&;, defined
as

) =5 (1) + 7))

[f(XD)] = fX7) = FX).

The last sum of (A.7) is obtained from the following equality
1 1
ac —bd = §(a+b)(c—d)+§(a—b)(c+d).

Next, the sumS; in (2.13) may be rewritten so as to run on physical node ireda=e
well. We have

N
Z la(®) ["]log, =D a (M(Xo)) " (Xera)] = a (A(XD)) u™(Xe)]
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Combining (A.6), (A.7) and (A.8) yields formulation (2.14Finally, we arrive at
formulation (2.15) by putting together both sums. That is,can write

N, N,
Z (u™(Xa)) [0(Xo)] + [w"(Xa)] ((X3)) + Z [a(9(X:))] [u" (X0)]
z—lN =1
=D (W"(X:) [A(X))]
N,
Yt (oo + (A= 3 ) - (g )axn) @)
N, Ny
= Z (u™(Xa)) [(X3)] + Z [u™ (X)) A [7(X:)]
z];1 i=1
= > (X)) (W™ (X)),
i=1
where(f(X;)), is a weighted average:
s = (5+2) 5060+ (5 ) £,
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Appendix B

Complementary material to
Chapter 3

Any given zonal shear floy(y), 0) — henceforth called basic state — is solution to
the steady-stat@onlinear system of equations (3.4)-(3.6), provided thatdlevation
71 be in geostrophic equilibrium. In this case, the equatieasice to

whereupor(y) can be solved for, up to an arbitrary additive constant. Ngiven
such a basic flowu(y), 0,7(y)), and beyond knowing whether it is stable or not, we
are interested in the evolution of perturbatidn§ ', ") of this basic state. We may
recast the problem unknowns in terms of sums of (known) bstsie variables and
perturbations unknowns, the latter being much smaller iplénde than the basic
state variables. We thus rest within the realm of linearibtalnalysis insofar as all
products of perturbation variables may safely be negledteso doing, we have

u(x,y,t) = a(y)+u(z,y,t),
v(z,y,t) V' (2, y,t),
n(x,y,t) = q(y) +n'(z,y,t),

and substituting these variables into (3.4)-(3.6) yieldsfollowing linearized evolu-
tion equations for the perturbations

ou'  _ou  ,du ;o on'
o T Vor +Ud*y—(1+ﬁy)v = T (B.1)
o' o ;o on'
on' 50U’ 5 OV
9T 429 227 — . B.
En +a o + ay 0 (B.3)
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Wavy disturbances in the-direction are solutions to (B.1)-(B.3):

W (z,y,t) = Uly)e™e=e,
V' (z,y,t) = V(y)ereme,
w(z,yt) = H(y)e™=,

wherek is the zonal wavenumber, = ¢, + ic; is the complex phase speed ang
denotes the growth rate. Substituting these expressidgag#11)-(B.3) yields the
following coupled system of ordinary differential equaiso(ODES) inU (y), V (y)
andH (y):

—keU(y) +ikaU(y) — (1+By)V(y) = —ik H(y),
—keV(y) +ikaV(y) +(1+FU(y) = —‘fi—’;f,
— ke H(y) + o? ikU(y)—FaQCCZZ—Z = 0,

to which the trivial solution = V = H = 0 is to be ruled out. In order to have
instability, it is required that the disturbances grow exgatially in time. Deriving
necessary (and sufficient) conditions for instability —enms of the basic state and
the flow parameters — is far from being tractable if we deahuwlite above system
of ODEs, wherei(y) is itself a function ofy. However, it is a very well-known
problem for rigid-lid formulations Redlosky 1979; Cushman-Roisin1994). In that
case, the time derivative of the elevation disappears flancontinuity equation (B.3)
and the pressure gradient replaces the elevation gradi¢iné imomentum equations
(B.1) and (B.2). We are then free to define a perturbatiorastréunction and the
eigenvalue problem reduces to one that involves a singlatiguin the perturbation
stream function,

o 9\ o2, Pa,
(er“a:c)V“’ +(ﬂ—de2)¢ =0,

whose general solution is
W (2,y,) = p(y)e =Y,

with o/ = — 2 andv’ = 22, This leads to an ODE fo(y)

d2 6 _ ﬁ
G SN 7. (B.4)
dy? uU—c
Requiring that;; > 0 to have growing instabilities translates to necessary itiond
on the basic state. Assuming the existence of parallel emiewlaty = y; and
y = yo2, Where the perturbation stream functiphvanishes, integral properties may be
establishedKuo, 1978;Cushman-Roisin1994). Multiplying (B.4) by the conjugate
function¢™* and integrating the result across the entire domain gigestoi

Y2 2 y2 3 g2~ 2
,/” ’d¢ + 2|6 dy+/v = d7u/dy” 16 dy = 0, (B.5)
Y1 dy Y

1 Uu—=c
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whose imaginary part is

R AN
C; - — dy = 0. B.6
/yl < dy2> ‘YTL o 0‘2 Y ( )

Therefore, requiring that; > 0 implies that the integrand of (B.6) must change sign.
This leads to the first necessary condition for instabilitgmely that the expression
B — d*u/dy* must vanish within the domain. Considering the real parBo), we

get
. da\ o ’d¢>
—¢ _ 2= dy = -~
/yl . C)< dzﬂ)mcﬁ ’ / dy

Now, if the flow is unstable, the integral in (B.6) vanishedtsat we may multiply it
by (¢, — up), for any real constant,, and add the result to (B.7) to obtain

N N Ak
/y1 (u — o) (ﬁ dy2> @ dy > 0, (B.8)

which is equivalent to demanding that the expression

be positive in some finite portion of the domain. Hence, fa flbw to be unstable,
the following criteria must be met:

2
+n2|¢2> dy. (B.7)

1. 56— ‘f;TE must vanish at least once within the domain,
2. (a — 1p) (ﬂ — g%}) must be positive in at least some finite portion of the do-
main.

In the second conditiong, is the value ofa(y) where the expression of the first
condition vanishes because it must be true for any real antist
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Appendix C

Complementary material to
Chapter 4

C.1 Derivation of variational statements for DG

We now derive the variational formulations of the elevaticontinuity and tracer
equations for the discontinuous Galerkin method. Therlat¢tguires to evaluate inte-
grals on interior geometric items, which are hereafter éeffiin two dimensions, we
consider the se” of all interelement edge®. = 07; N 07 with e > f (Figure
4.2). This set comprises all edges shared between adjaizerglés belonging ta™".
We thus have

eE and E.NE;=0 (e#f),
1

C =

=

€

whereN, is the number of such interelement edges. To each &ldgmrresponds a
unique normal vectofn®, n¢) pointing from7; to 7;. Similarly to the velocity, the
horizontal components of the unit normal are written in edéorm and denoted by
n°. In three dimensions, we consider the B&tof all interelement vertical rectangular
facesF. = 0Q. N 9Q; with e > f (Figure 4.2). This set comprises all faces shared
between adjacent prisms in adjacent columns but does ngirisethose faces shared
by two prisms within the same column. It is important to keemind that those faces
remain vertical at all time. We have

Ny
Fr=|JF., and F.nFr=0 (e#f),
e=1

where N; is the number of such vertical interelement faces. To eact Fa cor-

responds a unique normal vectai®, ng) pointing from<, to Q. Finally, the set
Sh comprises those triangular faces shared by prisms witkdrséme column, that
is shared by prisms stacked upon one another. Each of thasgutar faces will be

139



notedS. = 9. N 90 with e > f (Figure 4.2). We have
_ Ns
Sh=JS and S.nS;=0 (e#f)
e=1

whereN; is the number of such triangular faces. A unique norfaél n<), pointing
from Q. to 2, is associated to each triangular fee

In what follows, we use the same notation for all the fundispaces as that used
for the continuous Galerkin method. We must be aware, thotingtt the spaces are
different and must be defined elementwise since the sougitbeimtions remain
undefined across element boundaries. We do not want to dalveatiis here and
prefer to refer the interested reader to appropriate neée® Cockburn et al.2000;
Flaherty et al, 2002).

Free-surface elevation equation

Starting from Eq. (4.17), integrating the divergence tegnparts and defining the
depth-averaged velocity as follows,

1 [
:E[dudz,

the variational statement becomes
N,
t a m
Z/ {nﬁ— (/ udz) -Vﬁ}dT
e=1"7Te ot —h

Ny
+) Hu-njds=0 VijeH,
_1 JOT,

=]

whered7, denotes the boundary @f. By using the fact thaV7 is independent of,
the above expression can be rewritten as

Ny ) Np

0 .
E —ndr — E / u- Vi dQ
e=1 /Te atn e=1 Qe !

N (C.1)
+> | Hu njds=0 Vije™H.

— JoT.
The last term in Eq. (C.1) involves integrals on intereletresiges (interior edges)
and integrals on boundary edges. The latter, that is thgriaiten97 ", vanishes by
weakly enforcing the impermeability condition on the tiaoit Hu. The last summa-
tion in Eg. (C.1) thus involves only integrals over intergatges and can be expressed
as the following new summation:

Ny N,

Ne (C.2)
B Z/E (- n) [3] + [Ha - n¢] ()} ds,
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where the following equality has been used
1 1
ac —bd = i(a +b)(c—d)+ 5(@ —b)(c+d)
and the jump and mean operators are defined as
[g} = g\Tg - g|7—fa
1
(9) = 5 (gm +9\7f) )

respectively. In Eq. (C.2), we discard the tefAiu - n¢] (5}) to weakly enforce the
continuity of the fluxi/u - n¢. Therefore, Eq. (C.2) becomes

Ny N,
Hu-nnds = / Hu -n°) [7]ds.
; or ; E€< ) 7]

We end up with the following variational statement:
Ny 9 Ny
M R
—ndr — / u-VndQ

(C.3)
N, .
Hu-n)[nlds=0 VneH.
*;/Ef 0 [f] 7 e

Continuity equation

By integrating (4.19) by parts and after some algebraic mdations (involving
the weak enforcement of the flux continuity across elemeunnbaries), we obtain

Ny N
—Z/ (u-Vu?—l—waw)dQ—i—/ 1I)u-ndF—|—/ w(u-n+wn,)dr
= o 0% r ry

1 2

Ny N,
—&-/Fgu?(u-n—|—wnz)d7'—|—ez_;/pe (u.n€>[w]dp+;/sn (u-n) [&] dr

3 4 5

N
+ Z/S [@] wy, nidr =0 Y € W.
e=1 e

6

A closer look at the terms labeled 1 to 6 will shed light on timeéaning. By enforc-
ing boundary conditions (4.1) and (4.6), integrals 1 andriisia Integral 3 does not
vanish and must be computed in order to know the verticalcgi@n I'". The re-
maining three sums involve integrals over interior geoioétems. Integrals 4 occur
over interior vertical faces, which explains why the vetieelocity does not appear.
Similarly, integrals 5 occur over all interior triangleshiiwh are merely the lower and
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upper faces of each prism). Despite the cumbersome nadaiommations 4 and 5
are intuitive and simply state that the mean horizontal cigfomust be used when
computing the fluxes. Integrals 6 state that whenever thmalorelocity is integrated
over an interior triangl&., we use the vertical velocity lying within the lower element
— that isQ2. according to Figure (4.2) — rather than the mean verticalorgl. This
amounts to integrating the continuity equation from thedrtupwards will full up-
wind weighting on the vertical velocity belonging to theraknt below the triangular
face. In an intuitive interpretation, the continuity eqaatcan be viewed as a steady-
state advection equation (with the advective velocity étuane) with source term
(the horizontal velocity divergence), which might helpridiathe approach described
herebefore. Note that the boundary condition (4.6) at tabee is a natural boundary
condition that is automatically incorporated into the a&tidnal statement. The latter
becomes

N, .
—Z/ <u~V1D+waw)dQ+/ w(u-n+wn,)dr
1 Q. 82’ FZ”
Ny N,
+Z/ (u-n°) [i] dF+Z/ (u-n°) [0] dr (C.4)
e=1 Fe e=1 Se
N
—|—Z/ [W] wy, nsdr =0 Vo eW.
e=1 Se

Tracer equation

Due to consistency requirements, the variational statéfioenhe tracer equation
is very closely related to that for the continuity equatiBecause the DG variational
statement includes a great number of terms, we only incldgeaion. Considering
Eqg. (4.23) and integrating the second term by parts leads to

Np

Z/Qe(t) <V~(u0)+8(§f))édﬂ:

e=1

J . _aC L )
72/ Clu-VC+uo— dQJr/ CC(u-n+ wny)dr
= Jo.w 9z r
Ny R N, X
+ Z/ (Cu - n°) [C]dI + Z/ (Cu-n°) [Cldr
e=1 Fe e=1 Se

Ns
+Z/S [C]Cwy, nsdr.
e=1 e

Note that the left-hand side of Eq. (C.5) is nothing but theateonal statement of
the continuity equation (see Eq. C.4) in which the velodtynultiplied by the tracer
concentratiort, the test functiont is replaced by’ and the modified vertical velocity
w is used in place of the vertical velocity. Now, substituting the second summation
in Eq. (4.23) for Eq. (C.5), the variational statement cstssin findingC € G such

(C.5)
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that

N, N, R
ZE CédQ—Z/ C u.vé+ﬁ]8£ do
e=1 dt Jo. () /) 0z
Ny
+ Cé(u~n+@nz)d72/ (Cu-n°) [C]dl (C.6)
ry

N
—l—Z/S (Cu-n®) dT+Z/ Cl]Cwy, nZdr =0 vCeg.
e=1 e

C.2 Functional spaces

The spacel:(2) contains those functions that are square integrable, i.e.,

a@={r: [Irra<x).

The spacé+; (Q2) contains those functions belonging£g(£2) and whose first weak
derivatives belong t&€,(?) as well. That is

Hl(Q) = {f € EQ(Q) cVi=1...d, 0, f € LQ(Q)},

whered is the dimension of the spacé € 3 for the usual physical space). The space
Hai (€2) contains those functions that belongdg(§2) and whose divergence belongs
to Lo(2):

Hain(Q) = {f = (f1,..., fa) € La()?: gfl € £2(Q)}

Finally, the spac&V involved in the variational statement for the continuityation,
Eqg. (4.19), is defined as

W_{wEEQ /|u—+v——|—w—|d§2<oo V(u,v,w)EHdm(Q)}.

C.3 Downward integration of the continuity equation

In Chapter 4, the continuity equation is integrated upwaftisr imposing the kine-
matic boundary condition at the seabed. By doing so, andigedvthat the conti-
nuity and elevation equations be discretely compatibkedikcrete surface kinematic
boundary condition is automatically retrieved. Herein,shew that an equivalent re-
sult is obtained by integrating the continuity equation desards after imposing the
kinematic boundary condition at the surface. Let us comglue discrete variational
statement for the continuity equation, inferred from Eq.29J, in which boundary
conditions are yet to be prescribed. We have

—/ {uh-Vw;”—i—wh oY ]dQ—l— w;ﬂ(uh~n+whnz)d7
Qn Tk

+/ Y (0" n+w'n)dr=0 Vi=1,2, ..., Ny.
Ik
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Imposing the discrete counterpart of the surface kinentatindary condition (4.7)
gives rise to

—/ {uh.Vw,Z-“—kwh oY ]dQ—F w}”(uh-n—&—whnz)dT
Qh rh

it
ww—thdeO Vi=1, 2, , Ny
r‘h

We may now add up all components of the above expressionimagdo those test
functionsy}” sharing the same two-dimensional support (the indicesnpetio the set
I). This yields the following expression, written for the tdomensional projection
of ¢ (i € I), notedy?*":

,/ V¢}“2Ddﬂ+/ 2P (0 n 4 whn,) dr
Qh
w}“ 2Dinzolf_o

If we choose the basis functions for the vertical velocitgrsthaty 7 2D = = ¢;, where

¢, is the two-dimensional elevation basis function assodiaii¢h the same nodal po-
sition in the(z, y)-plane, the first and third terms of the above equation argiickly
equal to the discrete elevation equation, Eq. (4.28), wiaakes us with

PP (0" n 4+ whn,) dr = 0,
rh

namely the discrete counterpart of the kinematic boundangdition at the seabed,
Eq. (4.6).
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Appendix D

Complementary material to
Chapter 5

To garner details on the coupling tedoccurring in Eq. (5.25), we may spell out
the equation in terms of its— andy—components. For the—component, we have

L LGP S L
ot “or oy Yor ~
19 [m_ 19
7?%/ dzfﬁa—y/ va dz (D.1)

/V (vp Vu) d2+7(;_7—z)

while they—component reads

@‘f‘ @_F*@_'_f*_'_ @_
ot or Uay b gay_

10 (M __ 10
—E%/ v dz — Hay/ 00 dz (D.2)

/ V - (v, V) dz—i—pO—H(T —Ty)

In Egs (D.1) and (D.2), we have defined

u=u-—u,
which is the deviation of the velocity relative to the deptleraged velocity. The
terms involving products of those deviations arise fromtlddptegration of advec-
tion terms. The bottom and surface stresses are denotedaoy 7°, respectively.
In Egs (D.1)-(D.2), all terms involving the prognostic \aries(w,v) can be time
stepped. The momentum diffusion term is purposedly wriitteterms of the full ve-
locity field. Only when writing the variational statement®fis (D.1)-(D.2) are we
able to elegantly derive expressions involving the dep#raged and deviatory ve-
locity components. It is carried out below. Upon inspectidriEqgs (D.1)-(D.2), we
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see that the right-hand sid& of Eq. (5.25) is

Bf:@fﬁjfiﬁ/"wd 7l£/" sid
= u@w v@y I 92 7duu 2 T oy 7dvu 2
(D.3)

1 1,
+E/_dV-(VhVu) dz—i—pO—H(T - 7).

Let us now focus on the momentum diffusion term in the vasial statement
associated with Eq. (D.1). After multiplying the equationdtwo-dimensional test
function ¢ and integrating over the unperturbed, two-dimensional alordi”, we
obtain

a [ U _
/Thﬁ/_dv-(l/hVu) dzdr = —/ThV<H>‘(HVhVH) dr

— | Va-(nVa) d (D.4)
Qh

@ i
+ | g VH (vp Vi) d.

In Eg. (D.4), the first term in the left-hand side can be timepped because it is
expressed in terms of the prognostic variablén that case, the term dissipates depth-
averaged horizontal momentum.
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