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Chapter 1

Introduction

1.1 Motivations

Estuaries and continental shelf areas comprise 5.2 % of the Earth’s sur-
face, and only 0.2 % of the oceans’ volume. However, throughout human
history, estuaries and coasts have been among the most populated areas
of the world (60 % of the world’s population at present). This is because
people used them as transport routes, and because of their high biolog-
ical productivity sustaining a high level of food production (Wolanski,
2007). As a consequence, these areas were the place for an important
development of industrial, farming and fishing activities, putting a hard
pressure on the environment. To take advantage of the local resources,
both inland and into the sea, is the main reason why people settled
there. Therefore, understanding the estuarine and coastal phenomena,
as the influence of human activities on them, is of crucial importance to
preserve these resources.

The Scheldt Estuary (Figure 1.1) is a good illustration of that, as
the river takes its source in France and flows through Belgium and the
Netherlands, the two most densely populated countries of Western Eu-
rope, before discharging into the North Sea near Vlissingen. Its catch-
ment basin comprises some important cities such as Brussels, Antwerp,
Ghent and Lille. In total, more than 10 millions inhabitants pour out
their waste water into the Scheldt. Moreover, an important source of
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Figure 1.1: Coastal water entities from South to North : the West-
ern Scheldt (simply called the Scheldt Estuary in this thesis), the
Eastern Scheldt (not connected to any continental river anymore)
and the Rhine/Meuse Delta.

pollution is the considerable and direct supply of toxic non-organic pol-
lutants occurring as a result of the diverse activities by the industrial
areas concentrated near Lille, Antwerp, along the canal from Ghent to
Terneuzen, and near Vlissingen.

The Scheldt Estuary is known to be highly polluted by industrial
and domestic waste waters, containing suspended matter that are among
others enriched by trace metals (De Smedt et al., 1998). Pollution by
toxic metals is one of the major threats to the estuarine ecosystem. Con-
centrations of dissolved trace metals are about two times higher than
in the marine water mass of the Belgian coastal zone, and an order of
magnitude higher than ocean values (Baeyens et al., 1998c). Trace met-
als exist in two phases in estuarine waters: the dissolved phase and the
particulate phase adsorbed on sediments. Contaminated sediments are
a threat to the aquatic environment and ecosystem since their resuspen-
sion, caused by strong tidal currents or dredging operations, releases a
significant amount of trace metals into the water column (Baeyens et al.,
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1998a). A better understanding of the trace metal dynamics, with em-
phasis on the basic governing processes is therefore essential to protect
the high species diversity of the estuary and its valuable natural areas,
some of which are protected.

In 2007, the interdisciplinary network TIMOTHY1 started with the
aim to study the modifications of the Scheldt Basin system in response
to natural and anthropogenic changes. The role of our team is to de-
velop modeling applications in the tidal part of the basin using the
finite element model SLIM2, itself being under development. Among
other things, trace metals appeared to be an interesting but challenging
subject of study. Indeed, together with biological processes (production
and biodegradation), water and sediment circulation contribute largely
to their dynamics. While it is possible to analyze the influence of biology
locally, water and sediment circulation are global processes, for which a
numerical model can be very useful.

The objective of this thesis is the development of the two-dimensional
component of the finite element model SLIM in order to make possible
such relatively long-term environmental simulations (several years). To
that end, the hydrodynamics, the tracer processes et the sediment dy-
namics of the Scheldt Estuary must be accurately represented, using a
model whose computational cost is not too high. Most of the environ-
mental simulations of the Scheldt Estuary were carried out using dis-
persion box-models (Vuksanovic et al., 1996; Baeyens et al., 1998b; De
Smedt et al., 1998; Ouboter et al., 1998; Steen et al., 2002; Vanderborght
et al., 2002). These models have the advantage of a low computational
cost, but they do not take the tidal dynamics into account, and they are
not able to represent the variability of the bathymetry across the sec-
tion. This approach is therefore too simplified in comparison with our
objectives. Recently, a few environmental studies were carried out us-
ing two-dimensional depth-averaged models (Vanderborght et al., 2007),
sometimes associated with a sediment module (Arndt et al., 2007, 2009).
Our approach is rather similar. However, unlike those previous studies,
we use a finite element model that enables the use of unstructured grids,
which allow to spatially modulate the resolution in a flexible way. So
far, even if three-dimensional models of the Scheldt Estuary exist (Can-

1TIMOTHY: Tracing and Integrated Modeling of Natural and Anthropogenic
Effects on Hydrosystems : The Scheldt River basin and adjacent coastal North Sea,
www.climate.be/TIMOTHY.

2SLIM: Second-generation Louvain-la-Neuve Ice-ocean Model,
www.climate.be/SLIM.
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S0 Terneuzen
S1 Overloop van Hansweert
S2 Baalhoek
S3 Buoy 87
S4 Buoy 92
S5 Buoy 105
S6 Antwerp
S7 Kruibeke
S8 Bazel
S9 Steendorp
S10 Temse
S11 Mariekerke
S12 Vlassenbroek
S13 Dendermonde
S14 St. Onolfs
S15 Appels
S16 Uitbergen
S17 Wetteren

Table 1.1: Names of the measurement stations displayed on Figure
1.2.

cino and Neves, 1999; van Kessel et al., 2011), they are restricted to the
study of sediment dynamics, because of their high computational cost.

1.2 Hydrology of the Scheldt

The aim of this section is to describe the model domain and its hydro-
logical characteristics that need to be satisfactorily simulated in order
to reach the objective of the thesis presented in the previous section, i.e.
make environmental studies possible. The model mesh is presented in
Figure 1.2. The lower part shows the tidal part of the Scheldt Basin,
which is the domain of interest. It can be divided into two subdomains:
the estuary from the mouth to the confluence with the Rupel, and the
tidal river network (up to Ghent for the Scheldt). The model domain is
extended downstream to the shelf break in order to include the external
meteorological forcings in a proper way.
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Figure 1.2: Typical mesh for the Scheldt Estuary simulations, in-
cluding the Northwestern European continental shelf, the Scheldt
Estuary and the tidal rivers of the Scheldt Basin (about 22000 tri-
angles and 350 segments), in red, locations of measurement stations
that provided data used in this thesis (Table 1.1).
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Figure 1.3: Satellite view of the Scheldt Estuary (from Google
EarthTM mapping service); the tidal flats are the emerging lands
between the mouth and the area of the port of Antwerp.

The Scheldt is a macrotidal estuary: the amount of water enter-
ing and leaving the estuary during one M2 tidal cycle is approximately
200 times higher than the mean river discharge during the same period
(Gourgue et al., 2009). The tidal range is about 4 m at Vlissingen, 5 m
at Antwerp and 2 m at Ghent (where sluices prevent the tide from prop-
agating upstream). The tide constitutes therefore the main forcing of
our domain of interest. That is why the model domain is extended to
the shelf break, in order to impose the tidal signal properly. As a con-
sequence of the relatively small river discharge compared to the strong
tides, the water column is generally well mixed (Baeyens et al., 1998c),
implying that it is appropriate to use a two-dimensional depth-averaged
model to study the Scheldt Estuary (Vanderborght et al., 2007).

The important tidal amplitude has another important consequence.
Except two deep ebb and flood channels, the estuarine part is generally
very shallow and features large tidal flats and sand banks (Figure 1.3).
Each tidal cycle, approximately 110 km2 of the estuarine surface are
emerging during the ebbing phase (Arndt et al., 2007). Modeling the
wetting and drying processes has always been a challenge in estuarine
and coastal modeling. The Scheldt no exception (Gourgue et al., 2009;
Kärnä et al., 2011a).
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The Scheldt and its tributaries are rain-fed, in that their discharge
vary considerably according to seasons: from 20 - 50 m3 s−1 in summer
and autumn to 200 - 600 m3 s−1 in winter and spring, with an annual
average between 100 and 200 m3 s−1 (Fettweis et al., 1998; Chen et al.,
2005b; van der Wal et al., 2010). Even if it does not influence that much
the estuarine hydrodynamics, it plays an important role in the horizontal
transport of passive tracers (such as salinity) or dissolved contaminants
(such as the dissolved phase of trace metals). For example, the salinity
shift during a tidal period is much smaller than the salinity shift between
high and low river discharges (Baeyens et al., 1998c).

The Scheldt is a relatively turbid estuary with three estuarine tur-
bidity maxima (Chen et al., 2005b). The most important one occurs in
the area of Antwerp and a second one is located in the riverine part.
The third one is located downstream of the mouth, in front of the Bel-
gian–Dutch coast, but therefore outside of our domain of interest. The
suspended sediment concentrations feature variations at the tidal and
spring/neap cycle scales that are closely linked to the hydrodynamic
regime (Chen et al., 2005b; Arndt et al., 2007). They also undergo
seasonal variations (the turbidity is higher in winter than in summer).
However, as the currents induced by the tides are so much higher than
the residual current, the seasonal variations of the river discharge have
virtually no influence on the seasonal variations of the sediment dy-
namics. Other physico-chemical processes are therefore involved in that
phenomenon (Chen et al., 2005b; van der Wal et al., 2010; Gourgue
et al., 2011a).

Most environmental studies involve the transport of contaminants
dissolved in the water column and adsorbed on suspended sediments.
It is anyway the case for the trace metal pollution. All the hydrologi-
cal characteristics mentioned above must therefore be accurately simu-
lated before starting them. Once again, the subject of this thesis is the
development of the finite element model SLIM in order to attain this
objective.

1.3 SLIM: a finite element model

Resolution is a primary determinant of model accuracy. However, the
wide range of space scales acting in the estuarine-coastal-open sea gradi-
ent makes uniform resolution inefficient. Besides nesting between models



8 Contents

of different grid resolution, unstructured grid models offer an attractive
solution. Moreover, they allow a better representation of the coastlines.

However, traditionally, marine and ocean models are based on finite
differences schemes on Cartesian grids (Griffies et al., 2000). It is only
recently that unstructured grid methods are used in ocean and coastal
modeling. They are based on finite volume (Casulli and Zanolli, 2002;
Chen et al., 2003; Ham et al., 2005; Fringer et al., 2006), continuous
finite element (Danilov et al., 2005; Walters, 2005, 2006; Piggott et al.,
2008; Le Bars et al., 2010) and discontinuous finite element (Aizinger
and Dawson, 2002, 2007; Dawson and Aizinger, 2005; Kubatko et al.,
2006) techniques. Based on the finite element method, SLIM is one of
these unstructured-grid models.

At the origin, SLIM was intended to become a three-dimensional
baroclinic model of the world ocean. However, so far, it is still a work
under development, although the three-dimensional component of SLIM
is already able to solve accurately some academic barotropic (White
et al., 2008a) and baroclinic (Blaise et al., 2010a; Comblen et al., 2010a;
Kärnä et al., 2011b) test cases. On the other hand, the two-dimensional
depth-averaged component of SLIM is already applied on real domains:
the Great Barrier Reef in Australia (Lambrechts et al., 2008b), the Ma-
hakam Delta in Indonesia (de Brye et al., 2011b), and even Lake Tan-
ganyika in central Africa (Gourgue et al., 2007) with a reduced-gravity
version of the two-dimensional component.

In this thesis, the Scheldt Estuary is studied using the combina-
tion of the two-dimensional depth-averaged and one-dimensional section-
averaged components of SLIM. The tide is imposed on the shelf break
and propagates across the Northwestern European continental shelf, in-
cluding the Scheldt Estuary. The two-dimensional component is used
up to Antwerp, while the one-dimensional component is used upstream
in the Scheldt River and its tributaries up to the limit of the tidal influ-
ence. A typical mesh for the Scheldt simulations is presented in Figure
1.2. As already stated above, a consequence of the relatively small river
discharge compared to the strong tides is that the water column is gen-
erally well mixed (Baeyens et al., 1998c), implying that it is appropriate
to use a two-dimensional depth-averaged model to study the Scheldt
Estuary (Vanderborght et al., 2007). Moreover, another consequence
is the relatively long exposure time of water, which is about two to
three months (Soetaert and Herman, 1995; Baeyens et al., 1998c; Blaise
et al., 2010b; Arndt et al., 2007; de Brauwere et al., 2011a; de Brye
et al., 2011a). The exposure time of suspended particles is even higher,
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considering that they may settle and remain some time on the bottom
(Delhez and Wolk, 2011). Comparing with the short-term processes
of the hydrodynamics and the sediment dynamics (a few hours), this
may lead to relatively long-term simulations (at least a few months).
The computer cost for such simulations may be too high with modern
three-dimensional models. It is less so with two-dimensional models.
We therefore believe that the choice of using the combination of a two-
dimensional model (almost everywhere) and a one-dimensional model
(for the upstream tidal river network) is a sensible option.

First studies on the Scheldt Estuary using SLIM concerned the devel-
opment of wetting-drying methods (Gourgue et al., 2009; Kärnä et al.,
2011a), the validation of the hydrodynamic simulations (de Brye et al.,
2010), and the evaluation of transport timescales (Blaise et al., 2010b;
de Brauwere et al., 2011a; de Brye et al., 2011a). The first environmen-
tal application is the study of the fecal bacteria pollution using a model
that does not take into account explicitly the sediment-related processes
(de Brauwere et al., 2009, 2011b). The recent developments of the sed-
iment module (Gourgue et al., 2011a) are already of use to improve the
quality of the fecal bacteria simulations (de Brauwere et al., 2011c).

1.4 Main contributions

I entered the group SLIM with the aim to develop a eco-hydrodynamic fi-
nite element model of Lake Tanganyika (Central Africa) in collaboration
with people involved in the project CLIMFISH3. After the termination
of the project, only little collaboration was still possible. That is why I
switched to the project TIMOTHY and the Scheldt Estuary. Although
it has been decided not to include it in the present dissertation, the work
carried out in this first period of my PhD thesis led to two publications
(Gourgue et al., 2007, 2011b).

On the other hand, the development of SLIM in order to make pos-
sible complex environmental studies of the Scheldt Estuary is a 5-year
team work. Each contribution has been brought in collaboration, some-
times with people not directly involved in the project TIMOTHY. This
also led me to collaborate to studies applied on other domains, such as
the Great Barrier Reef (Lambrechts et al., 2010). Nevertheless, in this

3CLIMFISH: Climate change impact on sustainable use of Lake Tanganyika
fisheries.
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section I want to point out two major developments that may constitute
my main contributions to the project TIMOTHY.

The flux-limiting wetting-drying method

The first major contribution focuses on numerics. As mentioned above,
the Scheldt Estuary features large shallow areas that are periodically
emerging at low tide. This phenomenon has always been a numerical
challenge in estuarine modeling because the classical discretizations of
the governing equations are intrinsically unable to deal with areas where
the water thickness may become zero. The solution proposed here is ex-
clusively designed for finite element models using linear discontinuous
spatial discretization methods and explicit time integration methods.
Section 3.2.2 demonstrates its very good performance on standard aca-
demic test cases, and its application to the Scheldt Estuary leads to
promising results (Gourgue et al., 2009).

However, explicit time integration methods restrict the time step to
rather small values. As the current stable version of SLIM is not opti-
mized for computational efficiency, the flux-limiting method cannot be
used for long-term simulations. To circumvent this problem, the modi-
fied bathymetry method has been proposed (Kärnä et al., 2011a). It is
designed for any time integration scheme, but with the drawback to be
less accurate than the flux-limiting method in some specific situations.
This is nevertheless the method used for the long-term simulations of
this thesis.

As long as implicit time integration methods are mandatory, the flux-
limiting method cannot be used. However, the new version of SLIM
is designed to increase the computational efficiency of explicit meth-
ods. The flux-limiting method could therefore become an attractive
solution for this new version. Moreover, only explicit schemes bene-
fit from large parallel computing that are necessary when considering
three-dimensional simulations of real applications. The wetting-drying
method for the three-dimensional component of SLIM could therefore
be based on the flux-limiting method.

The sediment module

The second major contribution is concerning the physics. As mentioned
many times above, in order to undertake complex environmental studies,
an accurate sediment module had to be developed in SLIM. Modeling
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the sediment dynamics using a two-dimensional depth-averaged model
is also a challenge, as it is essentially a vertical phenomenon. Besides
building a functioning sediment transport model, the aim of this study
research was to identify, parametrize and quantify the key processes
that are necessary to represent satisfactorily the suspended sediment
dynamics in the Scheldt Estuary and tidal river network.

The results presented in Chapter 5 point out some important as-
pects. Firstly, the settling velocity of suspended sediments is influenced
by flocculation. The most important factor governing this process is the
suspended sediment concentration itself, but the influence of the salinity
and the biological activity must also be taken into account to allow a cor-
rect representation of the suspended sediment concentration variability
over a wide range of timescales. Secondly, to represent satisfactorily the
seasonal variations of the suspended sediment concentration, the influ-
ence of the biological activity on the bottom erodibility has to be taken
into account. The distribution of sediment types along the estuary must
also be considered to obtain an accurate longitudinal turbidity profile.

The computer cost of a two-dimensional model is significantly smaller
than that of three-dimensional models traditionally deemed indispens-
able in sediment transport modeling. The good behavior of our two-
dimensional model SLIM, even comparing with the results of a three-
dimensional one, is probably one of the main achievements of this study.

1.5 Outline

Chapter 2 presents the bases of the hydrodynamic module of SLIM.
Using suitable hypotheses, the two-dimensional depth-averaged shal-
low water equations are established starting from the generic three-
dimensional equations of continuum mechanics. Their numerical finite
element formulation is then detailed. Preliminary results are shown to
illustrate the good behavior of the model to represent the tidal motion
in the North Sea, the major forcing of the Scheldt Estuary.

In order to simulate accurately the hydrodynamics in the Scheldt
Estuary itself, a specific treatment is needed to deal with the wetting and
drying processes occurring in the shallow zones. Chapter 3 presents
two methods designed for this purpose that are implemented into SLIM.
Simulations of the Scheldt Estuary hydrodynamics are presented at the
end of the chapter.
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Chapter 4 is devoted to the tracer transport modeling. As a simple
passive tracer that can only be transported according to the flow, salinity
is perfect to calibrate the transport processes of the model. Using hy-
potheses similar to the hydrodynamic module, the passive tracer trans-
port equation is deduced from the generic three-dimensional advection-
diffusion equation. Its numerical finite element formulation is then pre-
sented. The chapter ends with the simulation of the Scheldt Estuary
salinity dynamics.

The sediment module is presented in Chapter 5, starting with the
presentation of the governing equations and their numerical implemen-
tation. The choice of suitable parametrizations and their calibration to
represent accurately the sediment dynamics of the Scheldt Estuary are
then discussed. This constitutes the final step in order to make possible
environmental studies with SLIM.

The conclusions are drawn in Chapter 6, which finishes with some
perspectives about future trace metal simulations.
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Chapter 2

Hydrodynamics

2.1 Introduction

Marine flows are taking place in shallow domains, i.e. the thickness
of the fluid layer is small compared with the typical horizontal length
scales. Considering, moreover, that the water density variations are
small and that the pressure is hydrostatic, the flow is then governed
by the three-dimensional baroclinic equations. They are the basis of
the three-dimensional component of SLIM that is still under develop-
ment (Blaise et al., 2010b; Comblen et al., 2010a; Kärnä et al., 2011b).
Finally, if the density variations have little influence on the pressure
variations and if the flow is vertically well-mixed, the three-dimensional
equations may be integrated over the water column to obtain the so-
called shallow-water equations. These depth-averaged equations are the
basis of the two-dimensional component of SLIM, which is widely used
in this doctoral dissertation.

In Section 2.2, the different governing equations are derived from
the general budget equations of continuum mechanics, and section 2.3
describes how the shallow water equations are discretized in a finite ele-
ment framework. At this stage, however, the model is not fully equipped
to undertake simulations of the hydrodynamics of the Scheldt Estuary,
which is subject to periodic wetting and drying of shallow areas that
require a specific treatment (Chapter 3). Nevertheless, the results pre-

15
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sented in Section 2.4 show that it is already quite accurate in simulating
the tidal motion in the North Sea.

2.2 Governing equations

In continuum fluid mechanics, in a rotating framework, the differential
equations derived from the mass and momentum budgets are expressed
as follows (Kundu and Cohen, 2002):

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ
∂v

∂t
+ ρv ·∇v + ρa = ρg + ∇ · σ, (2.2)

where the variables ρ and v are the density and velocity fields, respec-
tively, t is the time, ∇ is the del operator, a is the acceleration induced
by the Earth rotation, g is the gravitational acceleration, and σ is the
stress tensor, which must be symmetric. Equations (2.1) and (2.2) are
called the continuity equation and the momentum budget equation, re-
spectively.

Boussinesq approximation in the continuity equation

The continuity equation (2.1) can be rewritten as follows:

∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v = 0, (2.3)

In most geophysical flows the water density may be decomposed into
a mean constant value ρ0 and a small variation ρ′ about it (Cushman-
Roisin, 1994; Kundu and Cohen, 2002):

ρ = ρ0 + ρ′, ρ′ � ρ0, (2.4)

where ρ0 is a constant and ρ′ varies in space and time. Even in estuaries,
where fresh river waters are mixing with salty sea waters, the density
variations are less than a few percents (Cushman-Roisin, 1994).

It is therefore clear that the second term of equation (2.3) is much
smaller than the third one. Moreover, the first term is also quite small
when restricting to flows with large characteristic timescales, and there-
fore ignoring the propagation of sound waves. So, the continuity equa-
tion reduces to

∇ · v = 0. (2.5)
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The Boussinesq approximation leads therefore to consider the incom-
pressibility of the flow.

Constitutive equation for a Newtonian fluid

A constitutive equation is the relation between stress and deformation
in a continuum. In this section, an equation that linearly relates the
stress and rate of strain is examined. For a moving fluid, the stress
tensor σ may be split into an isotropic part −pδ that would exist if the
fluid were at rest, and a non-isotropic part τ due to the fluid motion
alone (Kundu and Cohen, 2002):

σ = −pδ + τ , (2.6)

where δ is the Kronecker tensor, whose components are defined as fol-
lows:

δij =

{
1 if i = j
0 if i 6= j.

(2.7)

In the case of a Newtonian incompressible fluid, the non isotropic part
τ is called the viscous stress tensor and is defined as

τ = 2µd, (2.8)

where µ is the dynamic viscosity, and d is the strain rate tensor, defined
as

d =
1

2

(
(∇v)t + (∇v)

)
. (2.9)

The equation of motion for a Newtonian fluid is obtained by in-
troducing the constitutive equation (2.6) into the momentum budget
equation (2.2):

ρ
∂v

∂t
+ ρv ·∇v + ρa = −∇p+ ρg + ∇ · (2µd). (2.10)

This is the general form of the Navier-Stokes equation for incompress-
ible flows, in a rotating framework. In this equation, the viscosity µ is
a function of the thermodynamic state, and indeed, µ displays a rather
strong dependence on temperature. However, temperature differences
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are rather small in sea water, so that µ can be taken outside the deriva-
tive (Kundu and Cohen, 2002). Using the continuity equation (2.5), the
Navier-Stokes equation (2.10) reduces to:

ρ
∂v

∂t
+ ρv ·∇v + ρa = −∇p+ ρg + µ∇2v, (2.11)

where ∇2 = ∇ ·∇ is the Laplacian operator. Nevertheless, even if the
spatial variations of µ are small, the following form is generally preferred:

ρ
∂v

∂t
+ ρv ·∇v + ρa = −∇p+ ρg + ∇ · (µ∇v). (2.12)

Boussinesq approximation in the momentum budget equation

As a reminder, the main hypothesis beyond the Boussinesq approxi-
mation is that the density variation ρ′ is much smaller that the mean
density ρ0, which is illustrated by equation (2.4). However, this does
not mean that the density variations can be neglected in all terms of the
momentum budget equation (2.12).

Considering the static state in which the density is ρ0 everywhere,
the pressure p0(z) would be such that

∇p0 = ρ0g. (2.13)

Subtracting the static state and dividing by ρ0, the momentum budget
equation (2.12) reduces to
(

1 +
ρ′

ρ0

)(
∂v

∂t
+ v ·∇v + a

)
= − 1

ρ0
∇p′ +

ρ′

ρ0
g + ∇ · (ν∇v), (2.14)

where p′ = p− p0, and ν = µ/ρ0 is the kinematic viscosity.
In the left-hand part of equation (2.14), the factor ρ′/ρ0 is added

to 1, which is much larger. The density variations can therefore be
neglected in the inertia terms. However, the same ratio appears alone in
the gravity term, which is still very large. As a consequence, the density
variations are negligible in the momentum budget equation, except when
ρ is multiplied by g (Kundu and Cohen, 2002). Therefore, re-adding the
static state, the momentum budget equation reads:

∂v

∂t
+ v ·∇v + a = − 1

ρ0
∇p+

ρ

ρ0
g + ∇ · (ν∇v). (2.15)

Taking the density variations into account only in the gravity term of
the momentum budget equation is called the Boussinesq approximation
and is commonly used in geophysical flow modeling (Cushman-Roisin,
1994; Kundu and Cohen, 2002).
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Rotating framework

The acceleration a appears because the equations (2.1) and (2.2) are
written in a non-inertial rotating framework linked to the Earth. It may
be decomposed into the sum of the Coriolis and centripetal accelerations
(Cushman-Roisin, 1994; Kundu and Cohen, 2002):

a = 2Ω× v︸ ︷︷ ︸
Coriolis

+ Ω× (Ω× x)︸ ︷︷ ︸
centripetal

, (2.16)

where Ω is the Earth rotation vector and x is the position vector from
the center of the Earth. When placed on the right-hand side of the
momentum budget equation (2.15), these terms can be assimilated to
fictitious forces that are called the Coriolis and centrifugal forces, re-
spectively.

In the absence of rotation, gravitational forces keep the matter of a
planet together to form a spherical body. The outward pull caused by
the centrifugal force distorts this spherical equilibrium, and the planet
assumes a slightly flattened shape. Actually, at equilibrium, the sur-
face of the planet is such that gravitational and local centrifugal forces
combine into a net force everywhere aligned with the local normal to
the surface (Figure 2.1). This net force is called the effective gravity
force (Kundu and Cohen, 2002). In what follows, g is understood as the
effective gravity force, so that the momentum budget equation may be
rewritten as follows:

∂v

∂t
+ v ·∇v + 2Ω× v = − 1

ρ0
∇p+

ρ

ρ0
g + ∇ · (ν∇v). (2.17)

Using the non-inertial local basis (ex, ey, ez) depicted in Figure 2.2,
the Earth rotation vector Ω can be decomposed into two parts:

Ω = Ω cos(φ)ey + Ω sin(φ)ez, (2.18)

where Ω = ‖Ω‖ is the Earth rotation rate, and φ is the latitude. The
Coriolis acceleration becomes

2Ω× v = 2Ω cos(φ)ey × v + 2Ω sin(φ)ez × v
, f∗ey × v + fez × v, (2.19)

where the coefficients f and f∗ are called the Coriolis and reciprocal
Coriolis parameters, respectively.
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Figure 2.1: How the flattening of a rotating body causes the gravi-
tational and centrifugal forces to combine into a force aligned with
the local vertical, so that equilibrium is reached; to illustrate this
phenomenon, the effect is grossly exaggerated compared to the
Earth situation.

Reynolds equations for turbulent flows

Most marine flows must be regarded as turbulent, i.e. composed of
stochastic motions or eddies on widely varying scales. Although the
Navier-Stokes equations are generally believed to describe turbulence,
that is not particularly useful as the focus is usually on larger scale fea-
tures (Vreugdenhil, 1994; Kundu and Cohen, 2002). In order to isolate
those large scale features, each variable is split into a slowly varying
mean value, which as to be regarded as an ensemble average, and a
random variation about it. For example:

v = v + v′. (2.20)
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Ω

φ

ez

ey

ex

Figure 2.2: Rotating framework of the Earth and its local non-
inertial cartesian basis (ex, ey, ez); ex is aligned eastward, ey north-
ward and ez upward; the angle φ gives the latitude.

It is important to note that the mean of a product is not the product of
the means (Vreugdenhil, 1994; Kundu and Cohen, 2002):

vv = v v + v′v′. (2.21)

Introducing the splitting for each quantity in equations (2.5) and (2.17),
and taking the ensemble average, leads to the so-called Reynolds equa-
tions for the statistical average of a turbulent flow (Vreugdenhil, 1994).
They are very similar as the original equations (2.5) and (2.17). The
major difference is the presence of an additional term ∇ · (v′v′) in the
left-hand side of the momentum budget equation. When placed in the
right-hand side, the tensor −v′v′ can be seen as an additional stress
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and is called the Reynolds stress tensor. It represents the exchange of
momentum between fluid elements by turbulent motion (Vreugdenhil,
1994). It is a priori unknown and has to be parameterized in terms of
the mean motion to obtain a closed system of equations.

One of the simplest approach is the Boussinesq eddy viscosity model
in which the transfer of momentum caused by turbulent motions is mod-
eled with an effective eddy viscosity in a similar way as the momentum
transfer caused by friction is modeled with a molecular viscosity:

−v′v′ , 2νtd−
2

3
kδ, (2.22)

where νt is the turbulence eddy viscosity, d is the mean strain rate tensor
and k is the turbulent kinetic energy (e.g. Speziale, 1991). The eddy
viscosity is not constant and may actually vary greatly over the same
domain. Indeed, it is no longer a fluid property, it rather depends on the
local flow state. Typical values of νt range from 10−5 to 10−1 m2 s−1 in
marine applications. In comparison, the molecular kinematic viscosity
ν ∼ 10−6 m2 s−1 is generally small, so that its effect is neglected. The
term −2

3kδ is necessary for consistency with the definition of the kinetic
energy (Speziale, 1991):

k =
1

2
u′ · u′, (2.23)

and it acts as an effective pressure. However, when equation (2.22) is
substituted into the mean momentum budget equation, this term can
be absorbed in the pressure gradient term (Garcia, 2006).

In what follows, the bars are omitted, and the continuity equation
(2.5) and the momentum budget equation (2.17) are still used. However,
it has to be remembered that all variables are now Reynolds-averaged
quantities, and that the viscosity is now the turbulence eddy viscosity
νt, which is not constant.

Typical scales and simplification of the equations

In this section, equations (2.5) and (2.17) are developed in terms of their
components in the non-inertial local basis1, and the order of magnitude
of each term is estimated in order to eliminate the smallest ones. To

1For the sake of simplicity, the extraneous curvature terms are neglected; doing
so is correct when dealing with horizontal length scales substantially shorter than the
radius of the Earth.
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variables scales units orders of magnitude

x, y Lh m 104

z Lv m 10
t T s 104

u, v U m s−1 1
w W m s−1 10−3

ρ ρ0 kg m−3 103

f , f∗ Ω s−1 10−4

g m s−2 10
νt m2 s−1 10−5 . . . 10−1

Table 2.1: Typical scales in the North Sea and the Scheldt.

that end, a scale is introduced for every variable. It is a constant of
dimensions identical to that of the variable and that has a numerical
value representative of the values of the variable. Typical values for
marine applications are presented in Table 2.12. The basic assumption
beyond the shallow water model is that the vertical length scale Lv

is much smaller than the horizontal one Lh, so that the aspect ratio
Lv/Lh is quite small, generally smaller than 0.01 (Vreugdenhil, 1994;
Cushman-Roisin, 1994).

First of all, the continuity equation (2.5) may be developed as follows:

∂u

∂x
+
∂v

∂y︸ ︷︷ ︸
U
Lh

+
∂w

∂z︸︷︷︸
W
Lv

= 0, (2.24)

where (u, v, w) are the components of the velocity vector v, and (x, y, z)
are the coordinates. Three cases must be analyzed (Cushman-Roisin,
1994).

1. If W/Lv � U/Lh, equation (2.24) reduces to ∂w/∂z = 0, which
implies that w is constant in the vertical. Because of a bottom
somewhere, flow must therefore be supplied by lateral convergence,
and the terms ∂u/∂x and/or ∂v/∂y can not be neglected. This
case must therefore be ruled out.

2The order of magnitude of the vertical velocity scale W is deduced from the
worst case of equation (2.26).
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2. If W/Lv � U/Lh, the leading balance is ∂u/∂x + ∂v/∂y = 0,
which implies that convergence in one horizontal direction must
be neutralized by a divergence in the other horizontal direction,
which is very possible.

3. The case when W/Lv is on the order of U/Lh implies a three-way
balance, which is also very possible.

To summarize, no term can be neglected in equation (2.24) and vertical
velocity scale is constrained as follows:

W

Lv
.

U

Lh
, (2.25)

or,

W

U
.
Lv

Lh
. (2.26)

The ratio between vertical and horizontal velocity scales is therefore at
most of the order of the ratio between vertical and horizontal length
scales, so that W � U . That also means that the flow is almost two-
dimensional.

The two horizontal components of the momentum budget equation
(2.17) are developed as follows:

∂u

∂t︸︷︷︸
U
T

+u
∂u

∂x
+ v

∂u

∂y︸ ︷︷ ︸
U2

Lh

+w
∂u

∂z︸ ︷︷ ︸
WU
Lv

+ f∗w︸︷︷︸
ΩW

− fv︸︷︷︸
ΩU

= − 1

ρ0

∂p

∂x︸ ︷︷ ︸
∆p
ρ0Lh

+
∂

∂x

(
νt
∂u

∂x

)
+

∂

∂y

(
νt
∂u

∂y

)

︸ ︷︷ ︸
νtU

L2
h

+
∂

∂z

(
νt
∂u

∂z

)

︸ ︷︷ ︸
νtU

L2
v

, (2.27)

∂v

∂t︸︷︷︸
U
T

+u
∂v

∂x
+ v

∂v

∂y︸ ︷︷ ︸
U2

Lh

+w
∂v

∂z︸︷︷︸
WU
Lv

+ fu︸︷︷︸
ΩU

= − 1

ρ0

∂p

∂y︸ ︷︷ ︸
∆p
ρ0Lh

+
∂

∂x

(
νt
∂v

∂x

)
+

∂

∂y

(
νt
∂v

∂y

)

︸ ︷︷ ︸
νtU

L2
h

+
∂

∂z

(
νt
∂v

∂z

)

︸ ︷︷ ︸
νtU

L2
v

. (2.28)
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Firstly, as W � U , the first Coriolis term in equation (2.27) is much
smaller than the second one, and is therefore neglected. Secondly, ac-
cording to the small aspect ration Lv/Lh, the horizontal turbulence vis-
cosity terms in both equations are much smaller than the vertical ones,
and can also be neglected. So, the horizontal components of the mo-
mentum budget equation reduce to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = − 1

ρ0

∂p

∂x
+

∂

∂z

(
νt
∂u

∂z

)
, (2.29)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
+

∂

∂z

(
νt
∂v

∂z

)
. (2.30)

The vertical component of the momentum budget equation (2.17) is
developed as follows:

∂w

∂t︸︷︷︸
W
T

+u
∂w

∂x
+ v

∂w

∂y︸ ︷︷ ︸
UW
Lh

+w
∂w

∂z︸ ︷︷ ︸
W2

Lv

− f∗u︸︷︷︸
ΩU

= − 1

ρ0

∂p

∂z︸ ︷︷ ︸
∆p
ρ0Lv

− ρg

ρ0︸︷︷︸
g

+
∂

∂x

(
νt
∂w

∂x

)
+

∂

∂y

(
νt
∂w

∂y

)

︸ ︷︷ ︸
νtW

L2
h

+
∂

∂z

(
νt
∂w

∂z

)

︸ ︷︷ ︸
νtW

L2
v

, (2.31)

According to the values in Table 2.1, all terms are very small compared
to the pressure gradient and gravity terms, so that only the hydrostatic
relation remains:

∂p

∂z
= −ρg. (2.32)

Keeping only the pressure gradient and gravity terms in the vertical
component of the momentum budget equation is called the hydrostatic
approximation. It is mainly due to the small aspect ration Lv/Lh.

The three-dimensional baroclinic shallow water equations

Equations (2.24), (2.29) and (2.30) are generally synthesized under the
following form:

∇h · u+
∂w

∂z
= 0, (2.33)

∂u

∂t
+ u ·∇hu+ w

∂u

∂z
+ fez × u = − 1

ρ0
∇hp+

∂

∂z

(
νt
∂u

∂z

)
,

(2.34)
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water column

bottom

η(x, y, t)

h(x, y)

z = 0

H(x, y, t)

Figure 2.3: Vertical cut illustrating η(x, y, t) the elevation above
the reference level (z = 0), the bathymetry h(x, y) and the water
depth H = η + h.

where u is the horizontal projection of the velocity vector, and ∇h the
horizontal projection of the del operator. The pressure p is obtained
by integrating the hydrostatic equation (2.32) over part of the water
column:

p = patm +

∫ η

z
ρg dz, (2.35)

where patm is the atmospheric pressure at the surface of the flow, and η
is the elevation of the free surface above the reference level z = 0 (Figure
2.3).
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The horizontal pressure gradient is therefore:

∇hp = ∇hpatm + g∇h

∫ η

z
ρ dz

= ∇hpatm + ρsg∇hη + g

∫ η

z
∇hρ dz

= ∇hpatm + (ρ0 + ρ′s)g∇hη + g

∫ η

z
∇h(ρ0 + ρ′) dz

∼= ∇hpatm + ρ0g∇hη + g

∫ η

z
∇hρ

′ dz, (2.36)

where ρs is the density at the water surface, and ρ′s the density variation
at the water surface.

The first term is the atmospheric pressure gradient. It is needed,
for example, to represent accurately the storm surges. It is generally
obtained from atmospheric reanalysis datasets.

The second term is called the barotropic pressure gradient. It is due
to the slope of the water surface. In this term, ρ′s appears next to ρ0,
so that the density variations can be neglected. The elevation η is com-
puted from the free surface equation, which is obtained by integrating
the continuity equation (2.33) over the water column. The integration
of the left-hand side of this continuity equation reads:

∫ η

−h
∇h · u dz +

[
w
]η
−h

= ∇h ·
∫ η

−h
u dz − us ·∇hη + ub ·∇h(−h) + ws − wb, (2.37)

where h is the unperturbed height of the water column (Figure 2.3), and
the subscripts “s” and “b” denote that the variables are evaluated at
the surface and at the bottom of the water column, respectively. Taking
into account the impermeability conditions at the water surface (z = η)
and a the bottom (z = −h), i.e.

ws =
∂η

∂t
+ us ·∇hη, (2.38)

wb = ub ·∇h(−h), (2.39)

the free surface equation reads:

∂η

∂t
+ ∇h ·

∫ η

−h
u dz = 0. (2.40)
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The third term is called the baroclinic pressure gradient and is due
to the density variations. To obtain a closed system of equations, a state
equation has to be defined to evaluate them:

ρ′ = ρ′(T, S), (2.41)

where T and S are the water temperature and the salinity, respectively.
The salinity is governed by the classical tracer transport equation:

∂S

∂t
+ v ·∇S = ∇ · (κ∇S), (2.42)

where κ is the tracer diffusivity, while the temperature obeys the more
complex heat equation. However, under the restrictions underlying the
Boussinesq approximation, Kundu and Cohen (2002) show that the heat
equation reduces to:

∂T

∂t
+ v ·∇T = ∇ · (κT∇T ), (2.43)

where κT is the thermal diffusivity.

The two-dimensional shallow-water equations

To move from the three-dimensional baroclinic equations to the two-
dimensional shallow-water equations, the baroclinic pressure gradient
must be neglected. For studying coastal and marine flows, this is likely
to be unacceptable. However, the Scheldt Estuary is very shallow and
vertically well-mixed, so that the vertical variations of the density are
rather small (Baeyens et al., 1998c). Moreover, the horizontal variations
of water temperature are very small, and the horizontal salinity range
from fresh to salty waters extend over a large distance. The horizontal
variations of the density are therefore also rather small. For these rea-
sons, it is not uncommon to use a barotropic model to study the Scheldt
Estuary (Arndt et al., 2007; Vanderborght et al., 2007).

Neglecting the baroclinic pressure gradient, and taking advantage of
the continuity equation (2.33), the horizontal momentum budget equa-
tion (2.34) rewrites:

∂u

∂t
+ ∇h · (uu) +

∂

∂z
(wu) + fez × u =

− 1

ρ0
∇hpatm − g∇hη +

∂

∂z

(
νt
∂u

∂z

)
. (2.44)
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The two-dimensional shallow-water equations are obtained by integrat-
ing the continuity equation (2.33) and the horizontal momentum budget
equation (2.44) over the water column, using the impermeability condi-
tions (2.38) and (2.39), and defining a horizontal depth-averaged velocity
vector as

u =
1

H

∫ η

−h
u dz. (2.45)

The integration of the continuity equation over the water column
leads to the free surface equation (2.40). Taking the definition of the
depth-averaged velocity into accound, it reads:

∂η

∂t
+ ∇h · u = 0. (2.46)

The integration of the horizontal momentum budget equation (2.44)
needs longer developments, so that the details are shown term by term:

∫ η

−h

∂u

∂t
dz =

∂

∂t
(Hu)− us

∂η

∂t
, (2.47)

∫ η

−h
∇h · (uu) dz = ∇h ·

∫ η

−h
uu dz

−usus ·∇hη + ubub ·∇h(−h)

= ∇h · (Huu) + ∇h ·
∫ η

−h
(u− u)(u− u) dz

−usus ·∇hη + ubub ·∇h(−h), (2.48)

∫ η

−h

∂

∂z
(wu) dz =

[
wu
]η
−h

= wsus − wbub

= us
∂η

∂t
+ usus ·∇hη − ubub ·∇h(−h), (2.49)

∫ η

−h
fez × u dz = fez × (Hu), (2.50)

∫ η

−h
− 1

ρ0
∇hpatm dz = −H

ρ0
∇hpatm, (2.51)
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∫ η

−h
−g∇hη dz = −gH∇hη, (2.52)

∫ η

−h

∂

∂z

(
νt
∂u

∂z

)
dz =

[
νt
∂u

∂z

]η

−h
. (2.53)

Among those expressions, some terms cannot be calculated explicitly
in a horizontal two-dimensional model. They must be parameterized.
Moreover, some additional processes must be taken into account.

1. Phenomena are occurring at smaller scales than what the grid size
allows. They are generally thought to be of a dissipative nature.
By analogy with three-dimensional turbulence, it is commonly as-
sumed that this can be treated using an eddy viscosity formula-
tion in terms of the depth-averaged velocity gradient (Vreugdenhil,
1994), i.e. by adding the following term in the right-hand side of
the depth-averaged horizontal momentum budget equation:

∇h · (Hνh∇hu), (2.54)

where νh is the horizontal subgrid viscosity. This parameteriza-
tion has the advantage to have the form of the divergence of a
tensor (although not a symmetrical one) in the conservative for-
mulation, and that is dissipative (Shchepetkin and O’Brien, 1996).
Moreover, the dissipation only occurs when the velocity is not con-
stant. The horizontal subgrid viscosity νh must be parameterized
in terms of the other variables and the size of the grid. Typical
values for the applications of this doctoral dissertation range from
1 to 100 m2 s−1.

2. In equation (2.48), the differential advection term,

∇h ·
∫ η

−h
(u− u)(u− u) dz,

describes a lateral momentum exchange due to differences in ve-
locity over the depth of the flow, i.e. the shear effect. This may
also be treated using an eddy viscosity formulation in terms of the
depth-averaged velocity gradient, by parameterizing the differen-
tial advection term as follows (Abbot and Price, 1994):

−∇h ·
∫ η

−h
(u− u)(u− u) dz , ∇h · (Hνs ·∇hu), (2.55)
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where the shear viscosity νs is a tensor. However, the components
of the shear viscosity being the order of 1 m2 s−1 (Abbot and Price,
1994), this term is often much smaller than the subgrid viscosity
term (2.54), and is therefore neglected.

3. The right-hand part of equation (2.53) is generally parameterized
as follows:

[
νt
∂u

∂z

]η

−h
,
τ s − τ b

ρ0
, (2.56)

where τ s and τ b are called the surface and bottom stress vectors,
respectively. The surface stress is an important driving force due
to the wind. It needs to be parameterized in terms of external
data. The bottom stress accounts for the energy dissipation due
to the bottom roughness. It must be parameterized in terms of
the other variables in order to close the system of equations.

The horizontal momentum budget equation becomes therefore:

∂

∂t
(Hu) + ∇h · (Huu) + fez ×Hu

= −H
ρ0

∇hpatm − gH∇hη + ∇h · (Hνh∇hu) +
τ s − τ b

ρ0
. (2.57)

However, it is generally written in a non-conservative form, using equa-
tion (2.46), and dividing by H:

∂u

∂t
+ u · (∇hu) + fez × u

= − 1

ρ0
∇hpatm − g∇hη +

1

H
∇h · (Hνh∇hu) +

τ s − τ b

ρ0H
. (2.58)

And since only two-dimensional horizontal flows are considered in the
present work, the subscript “h” and the bars overlining depth-averaged
variables are omitted in all what follows in this chapter. The subscripts
“0” of the mean water density is also removed. The shallow water equa-
tions are therefore written:
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∂η

∂t
+ ∇ · (Hu) = 0, (2.59)

∂u

∂t
+ u · (∇u) + fez × u

= −1

ρ
∇patm − g∇η +

1

H
∇ · (Hν∇u) +

τ s − τ b

ρH
. (2.60)

Different parameterizations of ν, τ s and τ b are found in the literature,
depending on the application. Those of use in this tesis are detailed
further, when needed.

2.3 Numerical model

2.3.1 Spatial discretization

Traditionally, ocean models are built using finite difference methods on
Cartesian grids (Griffies et al., 2000). However, recently finite elements
methods caught ocean modeling community’s attention (Piggott et al.,
2008; Timmermann et al., 2009; Blaise et al., 2010a). The main ad-
vantage of finite element methods is the possibility to use unstructured
meshes, which allow a better representation of the coastlines and an in-
crease of resolution where it is needed. This is believed to compensate
the higher computer cost of the finite element technique. For the sim-
ulations of this work, only triangular meshes are dealt with. They are
generated using the software GMSH (Lambrechts et al., 2008a; Geuzaine
and Remacle, 2009). However, the use of quadrilateral meshes should
be considered in the future (Remacle et al., 2010).

The unknown fields are evaluated on nodes. To each node is asso-
ciated a shape function. The number and the location of the nodes, as
the nature of the definition of the functions, depend on the type of finite
element used. A critical issue for applying the finite element method in
oceanography is to find a suitable finite element pair for η and u. This
pair should represent geophysical flows correctly and not allow the exis-
tence of spurious computational modes. Several associations have been
tested using SLIM (Hanert et al., 2002, 2004; Comblen et al., 2010b),
but only the PDG

1 − PDG
1 pair is considered in the present work, for its

ability to represent advective processes.
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Using PDG
1 elements, the approximations of the unknown fields are

piecewise linear and the nodes are located on the vertices of the mesh.
Using classical P1 elements, the nodal value at one vertex is shared by all
the neighboring triangles. It is not the case with discontinuous Galerkin
(DG) elements. The approximations are therefore discontinuous at the
interface of the triangles (Figure 2.4). If the two-dimensional model
domain Ω is divided into a set of non overlapping elements Ωe, the PDG

1

approximations of the unknown fields η and u read:

η ' ηh =

3Ne∑

j=1

ηjφj , (2.61)

u ' uh =

3Ne∑

j=1

ujφj , (2.62)

where ηj and uj are the elevation and velocity nodal values at node j,
respectively, and φj is the associated shape functions. On the element
related to node j, φj is a linear function of the spatial coordinates,
equal to 1 on node j and to 0 on the two other nodes. It is equal to 0
everywhere else. To compute the nodal values, it is necessary to write
the weak formulation of equations (2.59) and (2.60).

Weak formulation

The weak formulation of equations (2.59) and (2.60) is obtained by in-
tegrating them over the whole domain of interest, against a set of ad-
missible test functions η̂ and û, respectively, belonging to the suitable
functional space (Hanert et al., 2002). In what follows, < · >e denotes a
surface integral over the element Ωe and � · �e a contour integral over
its boundary Γe; n is the unit outward normal vector to the element
boundary.

The weak formulation of the continuity equation (2.59) reads there-
fore:

∑

e

(
<
∂η

∂t
η̂ >e + <∇ · (Hu)η̂ >e

)
= 0. (2.63)

Integrating by parts the second term leads to:

∑

e

(
<
∂η

∂t
η̂ >e + <∇ · (Huη̂) >e − < Hu ·∇η̂ >e

)
= 0. (2.64)
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Figure 2.4: Representation of the PDG
1 approximation of a field,

and illustration of the discontinuity at element interfaces.

Using the Gauss-Ostrogradsky theorem, and defining un = u · n as the
component of the velocity u that is normal to the element boundary Γe,
the weak formulation becomes:

∑

e

(
<
∂η

∂t
η̂ >e +� Hunη̂ �e − < Hu ·∇η̂ >e

)
= 0. (2.65)

The weak formulation of the momentum budget equation (2.60)
reads:

∑

e

(
<
∂u

∂t
· û >e + < u · (∇u) · û >e + < f(ez × u) · û >e

)

=
∑

e

(
− 1

ρ
< (∇patm) · û >e −g < (∇η) · û >e

+ <
1

H
∇ · (Hν∇u) · û >e + <

τ s − τ b

ρH
· û >e

)
. (2.66)
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Following what has been done to obtain equation (2.65) from equation
(2.63), terms with spatial derivatives may be developed further. For
example, the advection term becomes:

< u · (∇u) · û >e = <∇ · (uu · û) >e − <∇ · (uû) · u >e
= � unu · û�e − <∇ · (uû) · u >e . (2.67)

The gravity term is developed as follows:

−g < (∇η) · û >e = −g <∇ · (ûη) >e + g < η∇ · û >e
= −g � ûnη �e + g < η∇ · û >e, (2.68)

where ûn = û ·n is the component of the vectorial test function û that
is normal to the element boundary Γe. Finally, the dissipative term is
written:

<
1

H
∇ · (Hν∇u) · û >e

= <∇ ·
(
ν(∇u) · û

)
>e − < Hν(∇u) :

(
∇
(
û

H

))t
>e

= � n ·
(
ν(∇u) · û

)
�e

− < Hν(∇u) :

(
1

H
∇û− (∇H)

û

H2

)t
>e

= � ν
∂u

∂n
· û�e − < ν(∇u) : (∇û)t >e

+ <
ν

H
(∇H) · (∇u) · û >e, (2.69)

where ∂/∂n is the spatial derivative along the direction n normal to
the element boundary, and the scalar product between two tensors is
defined as A : B =

∑
i

∑
j AijBji.

The weak formulation of the momentum budget equation (2.66)
reads therefore:

∑

e

(
<
∂u

∂t
· û >e +� unu · û�e − <∇ · (uû) · u >e

+ < f(ez × u) · û >e
)
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=
∑

e

(
− 1

ρ
< (∇patm) · û >e −g � ûnη �e + g < η∇ · û >e

+� ν
∂u

∂n
· û�e − < ν(∇u) : (∇û)t >e

+ <
ν

H
(∇H) · (∇u) · û >e + <

τ s − τ b

ρH
· û >e

)
. (2.70)

Finite element formulation

The finite element formulation of equations (2.59) and (2.60) is obtained
by replacing η and u by their finite element approximations ηh and uh

in equations (2.65) and (2.70) (Hanert et al., 2005):

∑

e

(
<
∂ηh

∂t
η̂ >e +�

(
h+

(
ηh
)∗)(

uhn
)∗
η̂ �e

− < Hhuh ·∇η̂ >e

)
= 0, (2.71)

∑

e

(
<
∂uh

∂t
· û >e +�

(
uhn
)∗(
uh
)∗ · û�e

− <∇ · (uhû) · uh >e + < f(ez × uh) · û >e
)

=
∑

e

(
− 1

ρ
< (∇patm) · û >e −g � ûn

(
ηh
)∗ �e + g < ηh∇ · û >e

+� ν

{
∂uh

∂n

}
· û�e − < ν(∇uh) : (∇û)t >e

+ <
ν

Hh
(∇Hh) · (∇uh) · û >e + <

τ s − τ b

ρHh
· û >e

)
, (2.72)

where uhn = uh · n and Hh = h + ηh. Since the approximations of
the unknown fields are discontinuous on the element boundaries, their
evaluation on the contour integrals needs to be uniquely defined for both
neighboring elements of the interface.
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In the contour integrals of the non viscous terms, it is usual to define
a Riemann solver that relies on the characteristic structure of the equa-
tions to determine

(
ηh
)∗

and
(
uh
)∗

. It takes into account the values of
ηh and uh from the own element (internal values) and from its neighbor
(external values), adding just enough numerical dissipation to keep the
scheme stable. The Riemann solver used here is detailed by Comblen
et al. (2010b). When computing contour integrals on the boundary Γ of
the model domain, elements have no neighbor. In the case of an open
boundary, the external values are estimated using external data. In the
case of a coast, the mass flux through the boundary is cancelled to insure
the impermeability condition un = 0, while the external value of ηh is
taken equal to the internal one.

In the contour integrals of the viscous term, it is natural to take
{∂uh/∂n} as the mean of the internal and external values, because the
horizontal viscosity is an isotropic phenomenon. However, when using
a discontinuous discretization method for the velocity field, a specific
treatment is needed to obtain a stable and accurate representation of
the viscous effects. In SLIM, the non-symmetric interior penalty (NIP)
method is used. It consists in adding the following term in the right-
hand side of equation (2.72):

−
∑

e

� σû ·
[
uh
]
�e, (2.73)

where σ is the penalty parameter and
[
uh
]

is the velocity jump:

[
uh
]

=
uhint − uhext

2
, (2.74)

where uhint and uhext are the internal and external values of uh, respec-
tively. A parameterization of σ is proposed by Shahbazi (2005):

σ =
ν(p+ 1)(p+ 2)

de
, (2.75)

where p is here the interpolation order of the approximation of the field
considered (p = 1 for PDG

1 elements), and de is a typical length scale of
the element Ωe. On the boundary Γ of the model domain, the external
value uhext is determined as in the contour integrals from the non viscous
terms.

To illustrate what is done when computing the viscous contour inte-
gral on the boundary Γ of the model domain, it is necessary to develop
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it as follows:

� ν

{
∂uh

∂n

}
· û�e

= � ν

{
∂uhn
∂n

}
ûn �e +� ν

{
∂uht
∂n

}
ût �e, (2.76)

where uht and ût are the components of uh and û, respectively, that are
tangential to the element boundary Γe. On the boundary Γ of the model
domain, the external value of either ∂uhn/∂n or ∂uht /∂n is determined
by the boundary condition required by the viscous term. The external
value of the other normal derivative is taken equal to the internal value.
Typically, in the case of a coast, the viscous boundary condition is of
the form:

ν
∂ut
∂n

= λut, (2.77)

where λ is the slip coefficient. Free slip is used for open boundaries by
taking λ = 0. No slip is obtained with λ → ∞. Partial slip is used
for the coasts by taking any other positive value of the slip coefficient
(Haidvogel et al., 1991).

Galerkin procedure

The Galerkin procedure amounts to replace η̂ by φi for 1 ≤ i ≤ 3Ne in
equation (2.71) and û by (φi, 0) then (0, φi) for 1 ≤ i ≤ 3Ne in equation
(2.72) (Hanert et al., 2005). This results in a system of 9Ne ordinary
differential equations, which are necessary to compute the 3Ne nodal
values of ηh and the 6Ne nodal values of uh introduced in relations
(2.61) and (2.62). This system can be synthesized on the following
matrix form:

A · ds
dt

= b
(
t, s(t)

)
. (2.78)



2.3. Numerical model 39

The matrix A is a (9Ne, 9Ne) squared matrix and is defined as follows3:

A =
[
Aij
]

=




[
Aηij

]
0 0

0
[
Auij

]
0

0 0
[
Avij

]




, (2.79)

where
[
Aηij
]
,
[
Auij
]

and
[
Avij
]

are (3Ne, 3Ne) squared matrices with

Aηij = Auij = Avij = < φiφj >e(i), (2.80)

the subscript e(i) pointing to the element for which φi is not zero ev-
erywhere. The (9Ne, 1) vector s gathers all the nodal values of the
problem:

s =
[
sj
]

=




[
ηj
]

[
uj
]

[
vj
]




, (2.81)

where
[
ηj
]

is a (3Ne, 1) vector that gathers the nodal values of the
elevation field η, and

[
uj
]

and
[
vj
]

are (3Ne, 1) vectors that gather the
nodal values of the components of the velocity field, respectively u and
v. The left-hand part of equation (2.78) corresponds to the terms of
equations (2.71) and (2.72) that contain time derivatives. The (9Ne, 1)

3In practice, for numerical efficiency reasons, the mass matrix A is not built using
blocks of equations, as it is presented here for the reader’s convenience, but rather
using blocks of elements; this remark also applies to the vectors b and s.
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vector b gathers all the other terms and is defined as follows:

b =
[
bi

]
=




[
bηs
i

]
+
[
bηc
i

]

[
bus
i

]
+
[
buc
i

]

[
bvs
i

]
+
[
bvc
i

]




, (2.82)

where all the sub-vectors are (3Ne, 1) vectors: bηs
i and bηc

i gather respec-
tively the surface and contour integrals from equation (2.71) with η̂ = φi,
bus
i and buc

i gather respectively the surface and contour integrals from
equation (2.72) with û = (φi, 0), and bvs

i and bvc
i gather respectively the

surface and contour integrals from equation (2.72) with û = (0, φi).

2.3.2 Temporal integration

To integrate equation (2.78) in time, Runge-Kutta methods are quite
popular (Butcher, 1996; Ascher et al., 1997). With such methods, sn+1,
the vector containing the nodal values at time tn+1, is computed from
sn, the vector containing the nodal values at time tn, using the following
equation:

A · sn+1 = A · sn + ∆t

s∑

i=1

βiki, (2.83)

where

ki = b

(
tn + γi∆t, s

n +
s∑

j=1

αij∆t kj

)
, (2.84)

where ∆t = tn+1 − tn, and the functions ki may be seen as evaluations
of b at sub-time steps.

To specify a particular method, the number of stages s, and the value
of the coefficients αij , βi and γi need to be provided. These data are
usually arranged in a mnemonic device, known as the Butcher tableau
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of the method:

[
γi
] [

αij
]

[
βi
]t

, (2.85)

where
[
αij
]

is a (s, s) squared matrix, and
[
βi
]

and
[
γi
]

are (s, 1) vec-
tors. For the method to be consistent, the following constraint must be
satisfied:

s∑

j=1

αij = γi for 1 < i ≤ s. (2.86)

As every time integration method, Runge-Kutta methods are classified
into two distinct families, i.e. explicit and implicit methods. The choice
of the suitable method is not obvious and in fact depends on the flow
under study. Both cases are investigated here.

Explicit methods

Using explicit methods, the only non-vanishing entries of
[
αij
]

are lo-
cated in the left lower triangular part of the matrix with zeros on the
diagonal too. This way, every function ki only depends on the nodal val-
ues evaluated at previous sub-time steps, so that equation (2.83) leads
to simple linear systems to solve. Explicit methods have therefore the
advantage to be relatively easy to implement. Moreover, their efficiency
is enhanced when dealing with parallel computing, in that the comput-
ing time theoretically scales with the number of computers. However,
the Courant-Friedrichs-Lewy (CFL) condition must be satisfied:

‖u‖∆t
de

< C, (2.87)

where ‖u‖ is the norm of the velocity u, de is the characteristic length
of the triangle Ωe, and C is a dimensionless constant which depends on
the particular equation to be solved and the time integration scheme
used. The longest permissible time step is therefore restricted by the
smallest triangles.

Two different explicit Runge-Kutta schemes are used in this study.
The simple explicit first-order Runge-Kutta (ERK1) scheme, also know
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as the Euler explicit scheme, is above all used to illustrate some theo-
retical aspects of the implementation of the model. It is defined by the
simplest Butcher tableau:

0 0

1
. (2.88)

The explicit scheme mostly used in this work is the classical explicit
second-order Runge-Kutta (ERK2) scheme, also known as the Heun
explicit method, whose coefficients are given by the following Butcher
tableau:

0 0 0
1 1 0

1/2 1/2

. (2.89)

Implicit methods

Using implicit methods, there is no restriction on the values of the en-
tries of

[
αij
]
, so that equation (2.83) leads to very complex non-linear

systems to solve. However, restricting to diagonally-implicit Runge-
Kutta (DIRK) methods, the entries of the right upper triangular part of
the matrix are zeros, while the diagonal entries are not. This way, the
different sub-time steps can be evaluated in sequence (Butcher, 1996).
But still, a non-linear iterative solver is needed at each sub-time step.
Implicit methods have therefore the drawback to be more difficult to im-
plement. Moreover, the efficiency of parallel computing is not warranted.
On the other hand, they are not constrained by the CFL condition al-
lowing the use of larger time steps. The only restriction is the need to
resolve correctly the physics.

The implicit scheme mostly used in this work is the diagonally-
implicit second-order Runge-Kutta method (DIRK222), whose coeffi-
cients are given by the following Butcher tableau:

δ δ 0
1 1− δ δ

1− δ δ

, (2.90)

with δ = (2−
√

2)/2.
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2.4 Modeling the tidal motion in the North
Sea

At this stage, the model is not yet able to reproduce the hydrodynamics
in the Scheldt Estuary. Indeed, the tidal oscillations of the free surface
cause the periodical emergence of the bottom in some very shallow areas,
leading to zero thicknesses that the model cannot deal with. Modeling
the hydrodynamics of the Scheldt Estuary requires a specific treatment
of these wetting and drying processes. But this is the subject of Chapter
3. However, modeling the hydrodynamics of the North Sea does not re-
quire such a treatment. Moreover, a shallow water model is well suited
to model the tidal motion (Sinha and Pingree, 1997), which is the dom-
inant feature in the North Sea (Otto et al., 1990). The model, as it is
described at this stage, must therefore be able to reproduce satisfactorily
the hydrodynamics of the North Sea.

From the mathematical point of view, the tidal signal is usually
decomposed into the linear superposition of different harmonic compo-
nents. In the North Sea, the semi-diurnal lunar M2 component, whose
period is 12 h 25 min, is largely predominant and is therefore a good ap-
proximation of the tidal motion (Otto et al., 1990). Tidal waves enter
the North Sea from the North and through the Strait of Dover in the
South. The southwards propagating wave travels as a Kelvin wave along
the east coast of the United Kingdom and then turns anticlockwise along
the Belgian, Dutch, German and Danish coasts, where it looses much of
its energy. Only a small portion enters the Baltic Sea or leaves the region
along the Norwegian coast (Maßmann et al., 2010). As an illustration,
the co-tidal chart of the M2 tide after Proudman and Doodson (1924) is
given in Figure 2.5. The points from where the M2 co-tidal lines seem
to emanate are called amphidromic points. The M2 tidal amplitude is
nearly zero at these points, and the M2 tidal waves circulate around
them (Sinha and Pingree, 1997). Three M2 amphidromic points are
generally reported in the North Sea: one of the southern tip of Norway,
one at 56◦N, at the eastern tip of the Dogger Bank, and one near the
entry of the Southern Bight. The Norwegian amphidromic point is not
always reported, but then the course of the co-tidal lines form a virtual
amphidromic point in the south of Norway (Otto et al., 1990).

The tidal motion of the North Sea is computed using SLIM, with
the mesh presented on Figure 1.2, the implicit time-stepping scheme
DIRK222 and a time step of 15 minutes. The bathymetry is based on
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Figure 2.5: Co-tidal lines (phase in degrees) and co-range lines (am-
plitude in cm) of the M2 tide in the North Sea, obtained from Otto
et al. (1990) and originally published by Proudman and Doodson
(1924).
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ETOPO1 (Amante and Eakins, 2008). The eddy viscosity is parame-
trized using the Smagorinsky formulation (Smagorinsky, 1963; Majander
and Siikonen, 2002):

ν = cνde
2
√

2d : d, (2.91)

where cν is a dimensionless coefficient set here to 0.01, de is the charac-
teristic length of the element. The strain tensor d is here two-dimensional
and defined as

d =
1

2

(
(∇u) + (∇u)t

)
. (2.92)

As previously mentioned, the scalar product between two tensors is de-
fined so that A : B =

∑
i

∑
j AijBji. The bottom stress is parameter-

ized using the Chézy-Manning-Strickler formulation :

τ b = ρgn2 ‖u‖u
H1/3

, (2.93)

where the Manning coefficient n is set equal to 0.0235 s m−1/3, which
is a typical value for sand (Graf and Altinakar, 1993; Heniche et al.,
2000). The influence of the wind and the atmospheric pressure gradient
are not taken into account in this simulation. The variations of the
atmospheric conditions are operating at other frequencies, so that they
do not enhance the M2 tidal oscillations. The tide is forced at the shelf
break using the elevation and velocity M2 harmonics of the global tidal
model TPXO7.1 (Egbert et al., 1994). River discharges are neglected
so that all other boundaries are considered as coasts, where the slip
coefficient λ is parameterized so that λ/ν = 10−3 m−1. In order to avoid
wetting and drying problems, the bathymetry is artificially cropped to a
minimum of 10 m. The Scheldt Estuary is almost the only area affected
by this constraint, but it is not the domain of interest in this chapter.
The initial condition is zero for each variable. The simulation starts
5 days before the period of interest. It is the time needed to reach a
regime solution.

The tidal chart presented in Figure 2.6, derived from the results of
this simulation, compares rather well with the that proposed by Proud-
man and Doodson (1924). The three amphidromic points are present,
and more or less located where expected. It is less the case for the Nor-
wegian amphidromic point, but, once again, the latter is not reported in
every study. Moreover the influence of the Baltic Sea is not taken into
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account in this simulation, the south of the Kattegat being considered
as a coast. This may result in a poorer behavior of the tidal motion in
this area. However, the two other amphidromic points in the southern
part of the North Sea are rather well represented. This is an impor-
tant result. Since the M2 component is predominant in the North Sea,
it means that SLIM is well designed to model the tidal motion in the
southern part of the North Sea. And since the tide is the main engine
of the hydrodynamics in the Scheldt Estuary, it is of crucial importance
for this work.

2.5 Conclusion

The objective of this chapter was to present the equations used in this
doctoral dissertation to compute the hydrodynamics of geophysical flows
and to specify the conditions under which they are valid. It has also
been proved that a numerical model based on these equations is able to
represent very satisfactorily the tidal motion in the North Sea.

However, as mentioned in the introduction, the model as it is pre-
sented in this chapter is not able to compute the hydrodynamics in the
Scheldt Estuary. Indeed, because of its important tidal amplitude, the
Scheldt Estuary experiences periodic emergence of large shallow areas at
each tidal cycle. As the shallow water equations are intrinsically unable
to deal with areas where the water thickness may become zero, a specific
treatment of the wetting and drying processes has to be developed. This
is the subject of the following chapter.
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Figure 2.6: Co-tidal lines (thick lines, phase in degrees) and co-
range lines (thin lines, amplitude in cm) of the M2 tide in the
North Sea, computed using SLIM.





Chapter 3

Wetting-drying

This chapter is based on the following publications:

Gourgue, O., Comblen, R., Lambrechts, J., Kärnä, T., Legat, V., and Deleersni-
jder, E. (2009). A flux-limiting wetting-drying method for finite-element shallow-
water models, with application to the Scheldt Estuary. Advances in Water Re-
sources, 32:1726-1739.

Kärnä, T., de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R., Legat, V., and
Deleersnijder, E. (2011). A fully implicit wetting-drying method for DG-FEM shal-
low water models, with an application to the Scheldt Estuary. Computer Methods
in Applied Mechanics and Engineering, 200:509–524.

3.1 Introduction

Most of the world’s coastal seas are linked to embayments, estuaries
and lagoons. A large number of these shallow-water bodies experience
tidal oscillations of the free surface. Consequently, the extent of areas
subject to alternating wetting and drying (the so-called tidal flats) can
be as large as the permanently-submerged areas. The influence of the
tidal flats is therefore of crucial importance, so that the wetting and
drying processes need to be accurately simulated. Furthermore, tidal
flats play a very important role in the dynamics of the ecosystem of
these areas. The ability to represent the wetting and drying processes
is therefore a key feature in coastal eco-hydrodynamic modeling. The
estuarine part of the Scheldt downstream of Antwerp is characterized by
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a complex morphology with deep flood and ebb channels surrounding
several large tidal flats and sand banks, both of which are very shallow
and are submerged during high water.

A major issue for the shallow water equations (2.59) and (2.60) in
coastal modeling is the inability to model dry areas using classical eule-
rian numerical methods. Those methods are indeed not designed to deal
with areas where the water height may become theoretically zero. The
role of the wetting-drying methods is to allow the appearance and dis-
appearance of dry areas. They are classified into two main categories:
the deformed mesh (Lagrangian) methods and the fixed mesh (Eule-
rian) methods. Early studies show the potential of the deformed mesh
strategy (Sielecki and Wurtele, 1970; Lynch and Gray, 1980), where the
nodes on the boundary between wet and dry zones move following the
front. But since the nodal coordinates vary at each time step, an im-
portant part of the model is devoted to the mesh adaptation, making
this approach rather expensive. Consequently, at present, it is mostly
restricted to idealized test cases (Christian and Palmer, 1997; Prasad
and Svendsen, 2003), while the fixed mesh strategy is much widely used
in realistic applications. The Eulerian methods are also divided into two
main approaches: the flux-limiting methods and the so-called modified
equation methods. With the flux-limiting strategy, only the discrete
algebraic form of the hydrodynamic equations is modified. With the
modified equation strategy, the original continuous form of the partial
differential equations is modified.

The earliest flux-limiting method was suggested by Leendertse (1970)
for a two-dimensional finite difference model. This type of approach
turns off/on the mesh cells when the water thickness rises below/above a
threshold value, limiting or canceling out the water fluxes on dry cells in
order for the water depth to remain positive. However, an artificial slope
of the free surface is formed in the dry areas because the water level is ar-
bitrarily fixed at the bed elevation. This generates an extra pressure gra-
dient term, which may lead to unstable behavior and has to be treated
specifically. Nevertheless, this flux-limiting approach proves very popu-
lar in two-dimensional (Balzano, 1998) and three-dimensional (Lin and
Falconer, 1997; Ji et al., 2001; Zheng et al., 2003; Oey, 2006; Abualtayef
et al., 2008) finite difference models. Balzano’s review is particularly
extensive, gathering 10 different methods. The flux-limiting approach is
also popular in finite volume modeling (Begnudelli and Sanders, 2007;
Casulli, 2009; Wang et al., 2009). However, only a few examples exist
with finite element models (Leclerc et al., 1990; Gourgue et al., 2009).
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One of the methods among the modified equation approach is the
porosity method (Heniche et al., 2000; Ertürk et al., 2002), in which the
hydrodynamic equations are modified to allow water flow in a porous
layer below the bed. The water depth can therefore be negative. This
method avoids handling separately dry or wet cells, but allows unphys-
ical water fluxes through dry zones. Therefore, the total mass of water
within wet areas is not constant in time and conservation is then only
ensured in a weak sense. Another objection to the porosity method
is the lack of physical description of the so-called porous layer. It is
no more the case with the capillary method that uses capillarity effect
properties to describe wetting and drying processes (Tao et al., 2001;
Jiang and Wai, 2005). Finally, with the damping or kinematic method,
the processes like rotation and advection are neglected when the water
column becomes very shallow such that a simple balance between ex-
ternal pressure gradient and friction prevails (Ip et al., 1998; Burchard
et al., 2004; Ern et al., 2008). However, ensuring that the water depth
remains positive by modifying the equations leads to spurious mass flux
through dry areas. A rather different approach is developed by Kärnä
et al. (2011a) in which the position of the sea bed is allowed to fluctuate
in drying areas, without altering global and local mass conservation.

The selection of the suitable Eulerian method is difficult and in fact
should depend on the flow under study. The problem to be tackled is
highly nonlinear. Therefore, implicit time-stepping schemes are difficult
to implement. The modified equation approach has a straightforward
linearization that enables the use of implicit time-stepping. However it
may lead to strong unphysical water fluxes, especially when using large
time steps. Iterative solutions can be considered for both methods, but
the convergence of such schemes requires the use of rather small time
steps. If explicit methods are involved, the flux-limiting approach has
the great advantage that the physics is not modified in the vicinity of
dry areas. However, all flux-limiting methods are intrinsically nonlinear.
As there are conditions to turn on/off a flux, these methods are discon-
tinuous with respect to these variables. It is therefore not possible to
deduce a stable linearization of the method as it is, and so implicit time
stepping is not available directly.

In this chapter, two original methods are presented and verified
against standard test cases. Section 3.2 describes an original method
based on the flux-limiting strategy and that is designed for discontin-
uous finite elements and explicit time integration. Section 3.3 presents
the modified bathymetry method that modifies the primitive equations
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allowing the use of implicit time integration methods. The choice of
the second method for long-term simulations is explained in Section 3.4,
and the method is applied to compute the hydrodynamics of the Scheldt
Estuary.

3.2 A flux-limiting explicit method

3.2.1 The method

This flux-limiting method is exclusively designed for finite element mod-
els using PDG

1 elements for the elevation field and explicit time-stepping
(Gourgue et al., 2009). The first interesting property of the PDG

1 ele-
ments is their linear character that implies a monotonic shape of the ele-
vation field on each element. The smallest value among the three nodes
is the smallest value throughout the triangle. A triangle with three wet
nodes is therefore wet everywhere. This is not the case with higher order
elements. The second interesting property of the PDG

1 elements is their
discontinuous character. They do not require any inter-element conti-
nuity, and information can only pass from an element to its neighbor
through fluxes that can easily be turned on/off.

The method mainly deals with the continuity equation (2.59), which
can be rewritten as follows:

∂η

∂t
= −∇ ·

(
(h+ η)u

)
︸ ︷︷ ︸

F
(
η,u

)
. (3.1)

According to the nature of the equation, the operator F is conservative:
its integral is zero over the whole domain Ω, if the latter is closed. For the
sake of simplicity, the method is presented using the simple ERK1 time
integration scheme (Section 2.3.2). However, it can be easily transposed
to any other explicit scheme, by applying the method to each sub-time
step. With such an time integration scheme, if there were no wetting
and drying, equation (3.1) could be rewritten as follows:

ηn+1 − ηn
∆t

= F
(
ηn,un

)
. (3.2)

This flux-limiting method is divided into three intermediate steps
that are illustrated on Figure 3.1. To summarize, the elevation at time
step n (ηn) is known before starting the wetting-drying method, and
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the negative nodal fluxes in dry areas

ηn+1

h
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Figure 3.1: Illustration of the three steps of the flux-limiting
method and the corresponding intermediate states of the elevation
field η.
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each step corresponds to an intermediate elevation (η∗, η∗∗ and η∗∗∗),
the last one being the elevation at time step n+ 1 (ηn+1).

1. The elevation is clipped to ensure that the water depth h + η∗ is
not smaller than the threshold value Hdry at each position:

η∗ = max
(
ηn, Hdry − h

)
. (3.3)

2. The equation (3.2) is used with η = η∗ to ensure that only positive
water depths are involved:

η∗∗ − ηn
∆t

= F
(
η∗,un

)
. (3.4)

Since the operator F is conservative, the mass is conserved be-
tween the second intermediate state (∗∗) and the initial state (n).
However, the free surface may have moved down in already dry
areas.

3. The operator F is modified to ensure that the free surface does
not move down in dry areas while remaining conservative:

η∗∗∗ − ηn
∆t

= F ∗
(
η∗,un

)
. (3.5)

The third intermediate state represents accurately the water level
around dry areas.

In practice, η∗∗ and η∗∗∗ are not computed. The second intermediate
step only consists in building F , and the third one in modifying it into
F ∗. The elevation at time step n+ 1 is then computed as follows:

ηn+1 − ηn
∆t

= F ∗
(
η∗,un

)
, (3.6)

which is nothing but equation (3.2) with η and F modified in dry areas.
The way to obtain η∗ from ηn in the first intermediate step is ob-

vious. However, to describe how F is modified to obtain the operator
F ∗ in the third intermediate step, the finite element Galerkin formula-
tion of equation (3.4) is needed. Following the definitions accompanying
equation (2.78), it can be written:

[
Aηij

]
·

[
η∗∗j
]
−
[
ηnj

]

∆t
=
[
bηs
i

]
+
[
bηc
i

]
, (3.7)
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where the vectors
[
η∗∗j
]

and
[
ηnj
]

gather the 3Ne nodal values of η∗∗ and

ηn, respectively. Multiplying the latter equation by
[
Aηij
]−1

, the inverse

matrix of
[
Aηij
]
, it becomes:

[
η∗∗j
]
−
[
ηnj

]

∆t
=
[
Aηij

]−1
·
[
bηs
i

]

︸ ︷︷ ︸[
F ηs
j

]
+
[
Aηij

]−1
·
[
bηc
i

]

︸ ︷︷ ︸[
F ηc
j

]
, (3.8)

where
[
F ηc
j

]
and

[
F ηc
j

]
are called the generalized nodal fluxes due to

surface and contour integrals, respectively.
Negative nodal fluxes tend to lower the water surface, which must

be avoided on dry nodes. On the other hand, positive nodal fluxes tend
to elevate the water surface, which allows to flood dry areas. Therefore,
in the third step, the generalized nodal fluxes are modified by canceling
out those that are negative in dry areas:

[
η∗∗j
]
−
[
ηnj

]

∆t
=
[
F ηs
j
∗
]

+
[
F ηc
j
∗
]
, (3.9)

where

F ηs
j
∗

=





0 if there is a node i ∈ Ωe(j)

with F ηs
i < 0 & ηni + hi < Hdry

F ηs
j otherwise,

(3.10)

F ηc
j
∗

=

{
0 if F ηc

j < 0 & ηnj + hj < Hdry

F ηc
j otherwise,

(3.11)

where Ωe(j) is the element where the shape function φj is not zero ev-
erywhere, and hi is the value of the bathymetry h at node i. It is for
mass conservation reasons that all nodal fluxes due to surface integrals
are cancelled out if at least one is negative on a dry node. The modifi-
cation of the nodal fluxes in the third intermediate step are illustrated
by Figure 3.2.

The mass conserving property of the second step is not altered in the
third step since only fluxes are cancelled out. Clearly, the algorithm as
a whole preserves mass. Moreover, all discontinuous Galerkin methods
are intrinsically locally mass conservative, as a flux balance can be made
for each element. Since the only effect of the present wetting-drying is
to cancel out some fluxes in dry areas, the method is also locally mass
conservative.
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surface integrals

contour integrals

to obtain η∗∗ to obtain η∗∗∗

Figure 3.2: Illustration of the third intermediate step of the flux-
limiting wetting-drying method; black and white nodes are dry and
wet nodes, respectively, at time step n; inward and outward small
arrows represent postive and negative nodal fluxes, respectively.

There are also a few modifications in the momentum conservation
equation (2.60). First of all, the clipped elevation η∗ is used to ensure
that only positive water depths are dealt with, thus avoiding dividing
by zero in some terms. Moreover, for stability reasons, the gravity effect
cancelled out within the dry elements to allow the free surface to remain
parallel to the bottom (Leclerc et al., 1990). Finally, in shallow areas,
the bottom stress and the eddy viscosity are increased, and the surface
stress is decreased. This is done using the concept of a “buffer” layer
(Ip et al., 1998; Heniche et al., 2000; Zheng et al., 2003; Wang et al.,
2009), the thickness of which is Hbuf. The terms to increase or decrease
are multiplied by a factor linearly varying from 1 when H ≥ Hbuf to fbuf

when H ≤ Hdry. Different values of the factor fbuf are chosen for each
term. Inside an element with at least one dry node, the above-mentioned
terms are multiplied by fbuf, whatever the value of H.
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If there were no wetting-drying to deal with, ηn+1 would simply
be computed using the equation (3.2), which is just the equation (3.5)
with η∗ = ηn and F ∗ = F , i.e. with no modification of ηn and F
during the first and third intermediate steps, respectively. The extra
computing cost of this flux-limiting method is therefore due to these two
intermediate steps, which only consist in modifying some nodal values
and some nodal fluxes in dry areas, which is rather cheap. Moreover, it
does not require additional stability constraint, except the conventional
CFL stability condition (2.87) of explicit time integration methods.

3.2.2 Verification of the method

Balzano (1998) presented three simple one-dimensional test cases to
compare different flux-limiting wetting-drying methods for finite differ-
ence models. They were also used to evaluate the accuracy of other
wetting-drying methods (Yuan et al., 2008). The computational do-
main of the three test cases is a one-dimensional basin 13,800 m in
length. However, as the goal is to verify a wetting-drying method for
two-dimensional models, this one-dimensional domain is replaced by a
two-dimensional one. This new domain has a relatively large width of
7,200 m and frictionless coastlines. The two-dimensional problems and
their corresponding one-dimensional Balzano test cases must have the
same solutions.

The reference water level is 5 m at the open boundary and zero at
the other end, where the basin is closed. The Coriolis force, the sur-
face stress and the horizontal viscosity are neglected. The bottom stress
is parameterized with the Chézy-Manning-Strickler formulation (2.93)
with the Manning coefficient n equal to 0.02 s m−1/3, which is a typi-
cal value for sand (Graf and Altinakar, 1993; Heniche et al., 2000). A
specific mesh is designed for each test case. They are displayed beside
the corresponding results. The ERK2 time integration scheme (Sec-
tion 2.3.2) is used to integrate in time and the time step is dynamically
adapted to satisfy the CFL condition (2.87) everywhere. Finally, con-
cerning the wetting-drying method itself, the threshold thickness Hdry

is fixed to 0.01 m, and because of the relatively low basin slopes for each
test case, no modification of terms has to be done in the buffer layer
(fbuf = 1). The only differences between the three test cases are their
bathymetry and external forcing.

In the first Balzano test case (Figure 3.3), a basin with a uniform
bottom slope is considered. The analytical expression of the bathymetry
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may be found in Appendix A. At the open boundary, a sinusoidal water
level variation is imposed, with a period of 12 h and an amplitude of
2 m, the water depth at the open boundary oscillating between 3 and
7 m. Following the observations of Balzano (1998), some methods cause
undesired wiggles in the free surface profile during the wetting phase. It
is clearly not the case here. In dry areas (where the water thickness is
theoretically zero), some methods also suffer from pronounced underes-
timation (strictly negative water thickness) or overestimation (strictly
positive water thickness) of the retention volume. With the present
method, the water thickness is always positive. So the retention volume
is never underestimated. Moreover, the water thickness in dry areas is
controlled by the threshold value Hdry, which limits the overestimation
to very small values.

In the second Balzano test case (Figure 3.4), the external forcing
is the same, but the bathymetry is different. While the first basin has
a uniform slope, the second one contains a small shelf. The analytical
expression of the bathymetry may be found in Appendix A. The mesh
is designed to represent it exactly. In addition to the wiggling and
retention problems mentioned before, Balzano (1998) notices a runoff
problem with some methods in this test case. With these methods, the
runoff becomes negligible along the shelf at the end of the drying phase,
with an important overestimation of the retention volume. And during
the wetting phase, a period of newly increasing runoff is observed. This
two phase runoff behavior is clearly not plausible. With the present
method, the slowing down of the runoff seems quite linear, which is the
correct physical behavior.

In the third Balzano test case (Figure 3.5), the basin contains a small
reservoir. The analytical expression of the bathymetry may be found in
Appendix A. The external forcing is also different. The elevation of
the water is initially set to 2 m, i.e. the water depth is 7 m at the open
boundary and 2 m at the other end. A sinusoidal decay is then applied
during 6 h (half the sinusoidal period) at the open boundary to decrease
the water depth from 7 to 3 m. Afterwards, the water level at the open
boundary is kept to 3 m, and the simulation ends after 100 h. Clearly,
the surface in the reservoir should asymptotically reach an horizontal
plane at the level of the local peak of the bathymetry. The mesh is
designed to represent exactly both the analytical bathymetry and the
expected elevation in the reservoir. Among the three Balzano test cases,
the third one is probably the most difficult to tackle. For example, with
most of the modified equation methods, the water surface behavior is
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Figure 3.3: [First Balzano test case] Mesh used (561 triangles with
a characteristic length of 600 m), and vertical section, along the
main direction of the domain, showing the sea bed (thick line) and
the elevation of the water surface η every 20 minutes (thin lines),
during the drying and wetting phases.
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Figure 3.4: [Second Balzano test case] Mesh used (557 triangles
with a characteristic length of 600 m), and vertical section, along
the main direction of the domain, showing the sea bed (thick line)
and the elevation of the water surface η every 20 minutes (thin
lines), during the drying and wetting phases.
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Figure 3.5: [Third Balzano test case] Mesh used (543 triangles
with a characteristic length of 600 m), and vertical section, along
the main direction of the domain, showing the sea bed (thick line)
and the elevation of the water surface η at initial time and at equi-
librium (thin lines).

badly represented: some water can flow from the reservoir to the rest of
the basin, even when the mean surface level inside the reservoir is below
the local peak of the bathymetry. With this flux-limiting method, after
100 h of simulation, the expected water level is perfectly simulated in
the reservoir. Therefore, the physics does not seem to be altered close
to dry areas.

The bottom slopes of these academical test cases are very low com-
pared with those along the main channels of the Scheldt Estuary. Nev-
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ertheless, simulations in similar basins but with steeper slopes have also
been performed with the present flux-limiting method, and the quality
of the results have not been altered. However, because the configuration
defined by Balzano is considered as a reference, the results are presented
in the same framework.

The first Balzano test case is also used to verify the convergence
of the method, by evaluating the L2 error on the elevation after one
tidal cycle (Figure 3.6). The meshes used for this convergence analysis
are similar to that of Figure 3.3, with various triangle characteristic
lengths, the reference solution being computed on a mesh whose triangle
characteristic length is 150 m. A time step of 1 s is used for all runs. The
convergence rate is estimated to 1.7, while it should be theoretically 2
with the PDG

1 − PDG
1 pair and without wetting and drying (Comblen

et al., 2010b). Actually, the same analysis has been performed for all
the test cases: convergence is always observed, and each time at a rate
comprised between 1 and 2, the extent of the dry areas decreasing the
convergence rate towards 1, suggesting that the present wetting-drying
method is first order.

Finally, the Thacker test case (Thacker, 1981) is used to illustrate
that the method is strictly mass conserving. For this test case, the
domain is a circular closed basin, so that no water can enter or leave
the domain; the sea bed is a paraboloid of revolution. At the initial
time, the free surface is also a paraboloid of revolution. Then, the free
surface moves with free oscillations and wetting and drying occurs on
the boundary of the domain (Figure 3.7). If there is no Coriolis force, no
surface stress and no dissipation (neither viscosity nor bottom stress),
the analytical solution of the problem is known (Thacker, 1981). The
analytical expressions of the bathymetry and the solution of the non
dissipative problem may be found in Appendix A.

However, this flux-limiting method requires some dissipation to be
stable, and the bottom stress is taken into account using the Chézy-
Manning-Strickler formulation (2.93). The values of the wetting-drying
parameters are the same as in the Balzano test cases (Hdry = 0.01 m
and fbuf = 1). Several simulations are conducted on the mesh presented
in Figure 3.7, using various values of the Manning coefficient n. The
time integration scheme used is the same as in the Balzano test cases.
The evolution of the free surface in the center of the domain is shown in
Figure 3.8. It is clearly seen that, as expected, the model results tend
to the Thacker solution when decreasing the Manning coefficient.
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Figure 3.6: [First Balzano test case] Evolution of the L2 error on the
elevation of the water surface η after 12 h, versus the characteristic
length of the triangle meshes; the reference solution is computed
on a mesh whose triangle characteristic length is 150 m; the rate of
the dashed lines are 1 (below) and 2 (above), while the convergence
rate is here estimated to 1.7.

Since the method is mass conserving and the domain is closed (and
since the flow is incompressible), the total water volume must always
remain constant. After four free oscillation cycles, the maximum relative
difference between the water volume and its initial value is of the order
of 10−15, for each simulation. The volume is therefore strictly conserved,
up to round-off errors.

3.3 The modified bathymetry implicit method

3.3.1 The method

This second wetting-drying method is more versatile, as the wetting and
drying phenomena are taken into account in the primitive equations
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Figure 3.7: [Thacker test case] Mesh used (6012 triangles with a
characteristic ranging from 10 km near the border to 50 km near
the center), and vertical section, along the diameter of the circular
domain, showing the sea bed (thick line) and the theoretical eleva-
tion of the water surface η when there is no dissipation, at initial
time, after 3 hours and after 6 hours (thin lines).
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Figure 3.8: [Thacker test case] Evolution of the free surface in the
center of the domain for different values of the Manning coefficient;
the thin lines (n > 0) are model results, and the thick line (n = 0)
is the exact Thacker solution, assuming zero dissipation.

themselves, by modifying equations (2.59) and (2.60). It is therefore
independent of the choice of discretization, and is especially valid for
implicit time integration (Kärnä et al., 2011a).

To ensure positive water depths, a smooth function s(H) is intro-
duced to redefine the bathymetry as

h̃ = h+ s(H), (3.12)

so that the redefined water depth H̃ = η + h̃ remains positive (Figure
3.9). Then, the primitive continuity equation (2.59) is modified in such
a way that the bed fluctuation is properly taken into account:

∂η

∂t
+
∂h̃

∂t
+ ∇ ·

(
H̃u

)
= 0, (3.13)

where the second term is due to the fact that h̃ is not static. The variable
that is conserved is therefore now the redefined water depth H̃. It is
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important to remark that, if the first two terms are developed further:

∂η

∂t
+
∂h̃

∂t
=

∂η

∂t
+
∂h̃

∂H

∂H

∂t

=

(
1 +

∂h̃

∂H

)
∂η

∂t

=

(
1 +

∂s

∂H

)
∂η

∂t

=
(
1 + s′(H)

)∂η
∂t

, A(H)
∂η

∂t
. (3.14)

Introducing equation (3.14) into the continuity equation (3.13) leads to a
formulation closely related to the scaling of the continuity equation that
is presented in some porosity methods (Ip et al., 1998; Heniche et al.,
2000; Jiang and Wai, 2005). Indeed, it is easy to see that 0 < A < 1
so that A is a smooth indicator that ranges from dry (A ≈ 0) to wet
(A ≈ 1) conditions. In the context of the porosity method, A is inter-
preted as the wet fraction of an element that is penetrable by water.
In contrast with flux-limiting methods where elements are either wet or
dry, it is exactly the smoothness of A that prevents spurious oscillations
and allows implicit time stepping.

The primitive momentum conservation equation (2.60) is only mod-
ified by replacing H by H̃, which only appears in the forcing and dissi-
pative terms:

∂u

∂t
+ u · (∇u) + fez × u

= −g∇η +
1

H̃
∇ ·

(
H̃ν∇u

)
+
τ s − τ b

ρH̃
. (3.15)

The discrete form of equations (3.13) and (3.15) is very similar to
that of the original equations. The system of equations to solve can
also be synthesized by the matrix equation (2.78). Comparing with the
system from the original equations, the only differences are found in
the integrals contained in the vector b. First of all, the integrals from
the additional term of equation (3.13) are added and the integrals from
the diffusive term and the surface and bottom stress terms of equation
(3.15) are modified according to the redefined water depth H̃. Secondly,
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H < 0

η

h̃

H̃

H̃ > 0

η

Figure 3.9: Vertical cut illustrating the classical variables for a fixed
bathymetry (above) and the redefined variables of the modified
bathymetry method (below).
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the Riemann solver used to determine the value of ηh and uh on the
contour integrals must be adapted to take into account the redefinition
of the bathymetry h̃ and the water depth H̃.

The choice of the function s(H) must be done taking care to meet
the following properties:

1. H̃ = H + s(H) > 0 for all H,

2. s(H) ≈ 0 for H � 1,

3. s(H) must be continuously differentiable.

The first property is obvious since the purpose of the method is to ensure
positive water depths. The second property states that the modification
is restricted to shallow areas only. And the third property is needed
for ensuring convergence of Newton iterations when using implicit time
stepping (Kärnä et al., 2011a). The following function fulfills the desired
properties:

s(H) =
1

2

(√
H2 − α2 −H

)
, (3.16)

where α is a free parameter controlling the smoothness of the transition.
It is important to note that the choice of such a non-polynomial func-
tion s(H) requires a linear spatial discretization for η to ensure mass
conservation (Kärnä et al., 2011a). It is the case here as this study is
restricted to PDG

1 elements for both the elevation and the velocity fields.
In practice, the parameter α affects the width of the transition zone

between wet (A(H) ≈ 1) and dry (A(H) ≈ 0) areas (the smaller α, the
smaller the transition zone). Moreover, since H̃ = α/2 when H = 0,
it directly controls the remaining water depth in dry areas, and may
be compared to the threshold depth parameter Hdry of the flux-limiting
method. For robust operation, the wetting-drying interface should be
smooth so that the transition zone should encompass more than one
element. Estimating the variation in bathymetry within one element by

ε = de‖∇h‖, (3.17)

where de is a typical length scale of the triangle Ωe, a rule of thumb
for gradually sloping domains could be α ≈ ε. Other more restrictive
constraints may also exist for numerical stability reasons. For example,
it is plausible that rapidly varying flows and shock waves require larger
values for α. These restrictions are, however, more difficult to estimate
a priori.
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3.3.2 Verification of the method

The Balzano (Balzano, 1998) et Thacker (Thacker, 1981) test cases are
also of use to verify the accuracy of the modified bathymetry method.
The physical setups and the meshes are the same as in Section 3.2.2.
As one of the major assets of the modified bathymetry method is its
ability to operate with implicit time stepping, the test cases are here
simulated using the DIRK222 time integration scheme (Section 2.3.2),
with a time step of 10 minutes. Concerning the wetting-drying method
itself, according to equation (3.17) and the rule of thumb of the former
section (α ≈ ε), a value of 0.3 m is assigned to the parameter α for the
Balzano test cases and a value of 2 m for the Thacker test case.

To facilitate the comparison with the results obtained with the flux-
limiting method, it is useful to plot the total water column depth on the
original static bathymetry. In this case, the elevation is given by

η̃ = H̃ − h = η + s, (3.18)

and is called the redefined elevation.
In the first two Balzano test cases (Figure 3.10 and 3.11), the re-

sults are in good agreement with those obtained using the flux-limiting
method: no wiggle during the wetting phase, a small retention volume
and a correct behavior of the runoff. The only noticeable difference is
that the shocks at the flooding front appear to be milder than with
the flux-limiting method, which is due to the smooth wetting-drying
transition.

In the third Balzano test case (Figure 3.12), where the basin contains
a small reservoir, the results are not so good. Because the water fluxes do
not vanish as long as the pressure gradient term operates, the reservoir
eventually dries up. The flux depends on the parameter α (the smaller
α, the smaller the flux) and the bottom friction parameterization (the
bigger the bottom friction, the smaller the flux), but neither can prevent
the reservoir from drying as time goes to infinity. The third Balzano test
case reveals therefore that water is leaking through dry areas, which can
be seen as a major drawback of the present method. However, it must be
stressed that such a drawback is common to all porous media methods
(Nielsen and Apelt, 2003; Kärnä et al., 2011a). This is also probably
the price to pay to be able to use implicit time integration methods.

As in Section 3.2.2, the first Balzano test case is also used to ver-
ify the convergence of the method, by evaluating the L2 error on the
elevation after one tidal cycle (Figure 3.13). The meshes used for this
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Figure 3.10: [First Balzano test case] Mesh used (561 triangles
with a characteristic length of 600 m), and vertical section, along
the main direction of the domain, showing the sea bed (thick line)
and the redefined elevation of the water surface η̃ every 20 minutes
(thin lines), during the drying and wetting phases.
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Figure 3.11: [Second Balzano test case] Mesh used (557 triangles
with a characteristic length of 600 m), and vertical section, along
the main direction of the domain, showing the sea bed (thick line)
and the redefined elevation of the water surface η̃ every 20 minutes
(thin lines), during the drying and wetting phases.
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Figure 3.12: [Third Balzano test case] Mesh used (543 triangles
with a characteristic length of 600 m), and vertical section, along
the main direction of the domain, showing the sea bed (thick line)
and the redefined elevation of the water surface η̃ at initial time
and at equilibrium (thin lines).
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Figure 3.13: [First Balzano test case] Evolution of the L2 error
on the elevation of the water surface η after 12 h, versus the char-
acteristic length of the triangle meshes; the reference solution is
computed on a mesh whose triangle characteristic length is 150 m;
the rate of the dashed lines are 1 (below) and 2 (above), while the
convergence rate is here estimated to 2.1.

convergence analysis are similar to that of Figure 3.10, with various tri-
angle characteristic lengths, the reference solution being computed on a
mesh whose triangle characteristic length is 150 m. A time step of 30 s
is used for all runs. The convergence rate is here estimated to 2.1, while
it should be theoretically 2 with the PDG

1 −PDG
1 pair, and without wet-

ting and drying (Comblen et al., 2010b), suggesting that the convergence
rate of the discretization method is not affected by the wetting-drying
strategy. This is not surprising since the present modified bathymetry
method takes the wetting and drying phenomena into account from the
primitive equations, and therefore before their discretization.

The results of the Thacker test case are very similar to those obtained
with the flux-limiting methods. Firstly, the evolution of the free surface
in the center of the domain (Figure 3.14) tends towards the Thacker
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Figure 3.14: [Thacker test case] Evolution of the free surface in the
center of the domain for different values of the Manning coefficient;
the thin lines (n > 0) are model results, and the thick line (n = 0)
is the exact Thacker solution, assuming zero dissipation.

analytical solution when decreasing the Manning coefficient n, which
is the expected behavior. Secondly, after four oscillation cycles, the
maximum relative difference between the water volume and its initial
value is of the order of 10−15. The total water volume is therefore also
strictly conserved with the modified bathymetry method, up to round-
off errors.
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3.4 Modeling the hydrodynamics of the
Scheldt Estuary

At this stage, the model is finally equipped to reproduce the tidal mo-
tion inside the Scheldt Estuary. To deal with the wetting and drying
phenomena, it is now necessary to make a choice between both methods
presented above. Comparing the results for the different test cases, espe-
cially those for the third Balzano test case, and regardless of the time in-
tegration method, the choice should naturally stand on the flux-limiting
method. However, it requires an explicit time integration method and
therefore to satisfy the CFL constraint (2.87) on the time step. Small
elements of meshes similar to that presented on Figure 1.2 lead to very
small time steps (less than 1 s), making the computing time rather long.
Nevertheless, Gourgue et al. (2009) performed a 2 week simulation on a
coarser mesh to prove that the flux-limiting method is also working on
real applications.

But the goal is to build a model able to perform environmental stud-
ies, with simulations over several months or years. Therefore, using an
explicit time integration method would lead to an unacceptably long
computing time, at least with the current version of SLIM. Therefore,
at the time of writing this doctoral dissertation, the only admissible so-
lution was the modified bathymetry method, enabling the use of implicit
time integration methods, and therefore without any numerical restric-
tion on the time step. However, the recent developments to optimize the
computing cost of the next version of SLIM, as the interest for explicit
time integration methods when considering large parallel computing,
allow to think about the flux-limiting method as a future admissible
solution too.

The setup to simulate the hydrodynamics of the Scheldt Estuary is
therefore similar to that for the tidal motion in the North Sea (Section
2.4). The mesh is that shown in Figure 1.2. The DIRK222 implicit time
integration scheme (Section 2.3.2) is used with a time step of 15 minutes.
The bathymetry is based on ETOPO1 (Amante and Eakins, 2008) in the
European shelf and on data from the KustZuid model1 in the Scheldt
Estuary. The wetting and drying processes are dealt with the modified
bathymetry method, with the smoothing parameter α = 0.5 m. Up-
stream of Antwerp, a one-dimensional section-averaged model is used.

1Courtesy of M. Zijlema from the National Institute for Coastal and Marine
Management (RIKZ), The Hague, The Netherlands.
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The primitive equations of the one-dimensional model are briefly dis-
cussed in Appendix B. More details their implementation into SLIM
can be found in (de Brye et al., 2010).

The eddy viscosity ν is parameterized using the Smagorinsky formu-
lation (2.91) with cν = 0.01. The Chézy-Manning-Strickler formulation
(2.93) is used to parameterize the bottom stress τ b, but here the Man-
ning coefficient n is not constant, reflecting the varying properties of the
seabed. Following the calibration by de Brye et al. (2010), it is equal
to 0.0235 s m−1/3 in the European shelf and increases linearly along the
estuary up to 0.028 s m−1/3 at the connexion with the one-dimensional
model. The same value is kept upstream. The wind is considered as the
only source of surface stress and its impact is parameterized using the
formulation of Smith and Banke (1975):

τ s = 10−3
(
0.630‖w‖+ 0.066‖w‖2

)
w, (3.19)

where w is the horizontal wind velocity vector, evaluated from NCEP
reanalysis data of the wind at 10 m above the mean sea level (Kalnay
et al., 1996).

The tide is forced at the shelf break using the elevation and velocity
harmonics of the global tidal model TPXO7.1 (Egbert et al., 1994).
Daily average data from different public data sources are used to take
into account the influence of the Seine2, the Thames3, the Rhine and the
Meuse4, and the Scheldt and its main tributaries5 at the upstream limits
of the domain. On the coasts, the slip coefficient λ is parameterized so
that λ/ν = 10−3 m−1. The initial condition is zero for each variable.
Even if a regime solution is reached after a few days, the simulation
starts 20 days before the period of interest.

Around new and full moon, the influence of the Sun reinforces the
influence of the Moon on the tidal motion. Those tides are called spring
tides and they are characterized by higher amplitudes and a larger extent
of the dry areas. The opposite phenomenon, when the axis Earth-Sun
is orthogonal with the axis Earth-Moon, leads to the so-called neap
tides, characterized by smaller amplitudes. Figure 3.15 displays the
elevation of the water surface computed by the model at low tide during

2Data provided by the Groupement d’Intérêt Public (GIP) Seine-Aval.
3Data provided by the National River Flow Archive (NRFA).
4Data provided by the National Institute for Coastal and Marine Management

(RIKZ) and Institute for Inland Water Management and Waste Water Treatment
(RIZA).

5Data provided by the Hydrologic Information Centre (HIC).
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a spring tide in the Scheldt Estuary. The extent of the dry areas is quite
important and compares rather well with the satellite view presented in
Figure 3.16.

In Figures 3.17 and 3.18, model outputs are confronted to measure-
ment data from stations close to the Overloop van Hansweert (S1, Figure
1.2) and Baalhoek (S2, Figure 1.2) during year 20006. Model outputs
and measurement data are not easy to distinguish on Figure 3.17, partly
because they are very similar, but also because the tidal variation period
is quite small compared with the seasonal timescale. However, this fig-
ure illustrates very well the variation in amplitude from spring to neap
tides. In Figure 3.18, thanks to the shorter timescale, the good model
behavior regarding the measurement data can be observed.

More details about the calibration of the hydrodynamics module of
SLIM may be found in de Brye et al. (2010).

3.5 Conclusion

The numerical discretization of the shallow water model presented in
Chapter 2 is not designed to deal with the wetting and drying processes
occurring in very shallow areas. The objective of this chapter was to
present a solution to that problem for two different modeling strategies
experimented during this thesis.

The flux-limiting method is exclusively designed for finite element
models using a PDG

1 discretization for the elevation of the water surface
and explicit time integration method. It is rather robust and passes all
the test cases considered. However, explicit time integration methods
require the use of rather small time steps, so that the computer cost be-
comes too high with the current version of SLIM, which is not optimized
to be computationally efficient. Although the next version of SLIM is
developed in that direction, another wetting-drying has been proposed
in the meanwhile.

The modified bathymetry method has the drawback to be less suc-
cessful in one of the test cases considered. However, it has no restriction
on the time integration method. Using an implicit one, there is no more
restriction on the time step. This becomes a crucial advantage when
undertaking long-term environmental studies.

6Data provided by the Hydro Meteo Centrum Zeeland (HMCZ).
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Figure 3.17: Elevation of the water surface above its reference level
during year 2000; in black, data from station S1 (Overloop van
Hansweert) and S2 (Baalhoek), provided by the Hydro Meteo Cen-
trum Zeeland; in blue, model results at the same locations.
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Figure 3.18: Elevation of the water surface above its reference level,
from March 8, 2000 until March 12, 2000 (spring tide); in black,
data from stations S1 (Overloop van Hansweert) and S2 (Baal-
hoek), provided by the Hydro Meteo Centrum Zeeland; in blue,
model results at the same locations.





Chapter 4

Salinity transport

4.1 Introduction

Since 1978, oceanographers define salinity as the conductivity ratio of a
sea water sample to a standard KCl solution. Being defined as a ratio,
salinity has therefore no unit.

Salinity is considered as a passive tracer, because it is just trans-
ported through advection and diffusion. It is neither influenced by the
presence of another tracer, nor it is produced or destroyed by any pro-
cess. Modeling the salinity is therefore mainly important for the cal-
ibration of the transport processes. And this calibration is useful for
the transport of other tracers such as the concentration of suspended
sediments in Chapter 5. Moreover, modeling salinity is also important
by itself since the salinity influences important properties such as the
settling velocity of suspended sediments (by enhancing flocculation pro-
cesses) or the partition between trace metal particles that are adsorbed
or not on suspended sediments. Though this chapter is not an original
contribution, it still illustrates how the transport of tracers is modeled
using SLIM.

In Section 4.2, the general transport equation of a passive tracer is
integrated over the water column to obtain its two-dimensional depth-
averaged counterpart. Except for the possible additional reactive terms,
the transport of any other tracer is governed by the same equation.

83
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Section 4.3 describes how this equation is discretized in a finite element
framework. Finally, in Section 4.4, the model is applied to compute the
salinity dynamics in the Scheldt Estuary.

4.2 Governing equation

The three-dimensional tracer transport equation for the salinity S is:

∂S

∂t
+ v ·∇S = ∇ · (κ∇S), (4.1)

where κ is the molecular diffusivity. Attention must be paid that ∇ is
here the three-dimensional del operator again, while, as a reminder, v
is the three-dimensional velocity vector.

Reynolds equations for turbulent flows

As essentially all marine flows are turbulent, the quantities of equation
(4.1) may be split into a slowly varying mean value and a random vari-
ation about it, similarly to what is done in Section 2.2 for the equations
governing the hydrodynamics. For example:

S = S + S′. (4.2)

Introducing the splitting for each quantity of the equation, and taking
the ensemble average, lead to an equation very similar to equation (4.1).
The only difference is the presence of an additional term ∇ · (v′S′),
accounting for the mixing of salinity due to turbulent processes. It is
generally parameterized using an approach quite similar to that of the
eddy viscosity, i.e.

∇ · (v′S′) , ∇ ·
(
κt∇S

)
, (4.3)

where κt is called the turbulence eddy diffusivity, whose typical values
are similar to those of the turbulence eddy viscosity, i.e. from 10−5 to
10−1 m2 s−1, and therefore much larger than the molecular diffusivity
κ. In what follows, the bars are omitted, and equation (4.1) is still
used, remembering that it deals with Reynolds-averaged quantities and
that the diffusivity is now the turbulence eddy diffusivity, which is not
constant.
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Typical scales and simplification of the equation

Using the non-inertial local basis, the diffusion term may developed as
follows:

∇ · (κt∇S) =
∂

∂x

(
κt
∂S

∂x

)
+

∂

∂y

(
κt
∂S

∂y

)

︸ ︷︷ ︸
κtS
Lh

+
∂

∂z

(
κt
∂S

∂z

)

︸ ︷︷ ︸
κtS
Lv

. (4.4)

According to the small aspect ratio Lv/Lh of the flows under study in
this doctoral dissertation (Table 2.2), the horizontal diffusion terms are
much smaller than the vertical one, and are therefore neglected.

Taking advantage of the three-dimensional continuity equation (2.33),
the tracer transport equation for the salinity becomes therefore:

∂S

∂t
+ ∇h · (uS) +

∂

∂z
(wS) =

∂

∂z

(
κt
∂S

∂z

)
, (4.5)

where u is here the horizontal projection of the velocity vector again,
and, as a reminder, ∇h is the horizontal projection of the del operator
and w is the vertical component of the velocity.

Depth-averaged equation

The integration of equation (4.5) is developed term by term:
∫ η

−h

∂S

∂t
dz =

∂

∂t

(
HS

)
− Ss

∂η

∂t
, (4.6)

∫ η

−h
∇h · (uS) dz =

∂

∂x

(
HuS

)
+ ∇h ·

∫ η

−h
(u− u)

(
S − S

)
dz

−Ssus ·∇hη + Sbub ·∇h(−h), (4.7)

∫ η

−h

∂

∂z
(wS) dz = [wS]η−h

= wsSs − wbSb

= Ss
∂η

∂t
+ Ssus ·∇hη − Sbub ·∇h(−h), (4.8)

∫ η

−h

∂

∂z

(
κt
∂S

∂z

)
dz =

[
κt
∂S

∂z

]η

−h
, (4.9)
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where Ss and Sb are the salinity evaluated at the surface and the bottom,
respectively, and S is now the depth-averaged salinity defined as

S =
1

H

∫ η

−h
S dz. (4.10)

As a reminder, u is the depth-averaged horizontal velocity vector.
Among those expressions, some terms cannot be calculated explicitly

in a horizontal two-dimensional model. They must be parameterized
(or neglected). Moreover, some additional processes must be taken into
account.

1. Phenomena are occurring at smaller scales than what the grid size
allows. They are generally thought to be of a dissipative nature.
By analogy with three-dimensional turbulence, it is commonly as-
sumed that this can be treated using an eddy diffusivity formu-
lation in terms of the depth-averaged salinity (Abbot and Price,
1994), i.e. by adding the following term in the right-hand side of
the depth-averaged equation:

∇h · (Hκh∇hS), (4.11)

where κh is the horizontal subgrid diffusivity. This parameteriza-
tion has the advantage to conserve the tracer mass and to decrease
monotonically the variance of the tracer concentration. Moreover,
the dissipation only occurs when the salinity is not constant. The
horizontal subgrid viscosity κh is generally parameterized in terms
of the size of the grid. Typical values for the applications of this
doctoral dissertation range from 1 to 100 m2 s−1.

2. In equation (4.7), the differential advection term,

∇h ·
∫ η

−h
(u− u)(S − S) dz,

describes a lateral salinity exchange due to differences in velocity
over the depth of the flow, i.e. the shear effect. This may also
be treated using an eddy diffusivity formulation in terms of the
depth-averaged salinity gradient, by parameterizing the differen-
tial advection term as follows (Abbot and Price, 1994):

−∇h ·
∫ η

−h
(u− u)(S − S) dz , ∇h · (Hκs ·∇hS), (4.12)
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where the shear diffusivity κs (also usually called the shear disper-
sion) is a tensor. Unlike the shear viscosity, it is not always much
smaller than the subgrid diffusivity and is therefore not likely to
be neglected. The combined effects of the subgrid and shear dif-
fusivities can be gathered in a horizontal diffusivity tensor:

κ = κhδ + κs. (4.13)

3. The right-hand part of equation (4.9) can be neglected. Indeed,
considering that there is no salinity flux through the water surface
and the bottom, the following conditions are applicable:

(∇S) · n = 0 if z = η or z = −h, (4.14)

where n is the local vector normal to the boundary. Since the
water surface and bottom slopes are generally much smaller than
unity, the vector n is almost aligned with the vertical direction ez
at the water surface and at the bottom, so that

(∇S) · n ≈ ∂S

∂z
≈ 0 if z = η or z = −h. (4.15)

The depth-averaged tracer transport equation for salinity becomes
therefore:

∂

∂t

(
HS
)

+ ∇h ·
(
HuS

)
= ∇h ·

(
Hκ ·∇hS

)
, (4.16)

Finally, since only two-dimensional horizontal flows are considered,
the subscript “h” and the bar overlining the depth-averaged quantities
are omitted thereafter. Moreover, the anisotropic effect of the shear
dispersion has not been taken into account in this work. The horizontal
diffusivity is therefore considered as a scalar. It is a drawback in the
present version of the model that must be corrected in the near future.
Anyway, the depth-averaged equation governing the transport of salinity
reads therefore:

∂

∂t
(HS) + ∇ · (HuS) = ∇ · (Hκ∇S). (4.17)
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4.3 Numerical model

4.3.1 Spatial discretization

A necessary condition for a tracer to be consistently conservative is the
use of the same discretization as for the elevation η (White et al., 2008b).
The salinity is therefore also represented by a PDG

1 approximation:

S ' Sh =

3Ne∑

j=1

Sjφj , (4.18)

where Sj is the salinity nodal value at node j and φj is the associated
shape function.

Weak formulation

The weak formulation of equation (4.17) is obtained by integrating it
over the whole domain of interest, against an admissible test function Ŝ
belonging to the suitable functional space. Since the model domain is
divided into a set of non overlapping elements Ωe, it reads:

∑

e

(
<

∂

∂t
(HS)Ŝ >e + <∇ · (HuS)Ŝ >e

)

=
∑

e

<∇ · (Hκ∇S)Ŝ >e . (4.19)

Integrating by parts the advection and diffusion terms leads to:

∑

e

(
<

∂

∂t
(HS)Ŝ >e + <∇ · (HuSŜ) >e − < HuS ·∇Ŝ >e

)

=
∑

e

(
<∇ ·

(
Hκ(∇S)Ŝ

)
>e − < Hκ(∇S) · (∇Ŝ) >e

)
. (4.20)

Using Stoke’s divergence theorem:

∑

e

(
<

∂

∂t
(HS)Ŝ >e +� HunSŜ �e − < HuS ·∇Ŝ >e

)

=
∑

e

(
� Hκ

∂S

∂n
Ŝ �e − < Hκ(∇S) · (∇Ŝ) >e

)
. (4.21)
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Finite element formulation

The finite element formulation of equation (4.17) is obtained by replac-
ing all the variables by their finite element approximations in equation
(4.21):

∑

e

(
<

∂

∂t

(
HSh

)
Ŝ >e +�

(
h+

(
ηh
)∗)(

uhn
)∗(

Sh
)∗
Ŝ �e

− < HuSh ·∇Ŝ >e

)

=
∑

e

(
� Hκ

{
∂Sh

∂n

}
Ŝ �e − < Hκ(∇Ŝ) · (∇Sh) >e

)
. (4.22)

As the hydrodynamic variables, the salinity needs to be uniquely
defined for both neighboring elements at their interface when using dis-
continuous discretization methods.

In the contour integrals from the advection term, the value of the
salinity is therefore also denoted with a star superscript. It is determined
with a classical upwind scheme:

(
Sh
)∗

is equal to the external value of
Sh where the flow enters the element, it is equal to the internal value
otherwise. When computing contour integrals on the boundary Γ of
the model domain, elements have no neighbors. In the case of an open
boundary, the external values are estimated using external data. In the
case of a coast, since uhn is supposed to be zero, the entire integral is
cancelled. The values of the hydrodynamic variables on the contour
integrals are determined with the Riemann solver described in Section
2.3.1, exactly the same way as in equations (2.65) and (2.70).

In the contour integrals from the diffusion term, {∂Sh/∂n} is taken
as the mean of the internal and the external values. As for the dissipative
terms in the momentum conservation equation, using a discontinuous
discretization method requires a specific treatment to obtain a stable
and accurate representation of the dispersion effects. The IP method is
also used here. It consists in adding the following term in the right-hand
side of equation (4.22):

−
∑

e

� σ
(
h+

(
ηh
)∗)

Ŝ
[
Sh
]
�e, (4.23)

where σ is the penalty parameter and
[
Sh
]

is the salinity jump:

[
Sh
]

=
Shint − Shext

2
, (4.24)
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where Shint and Shext are the internal and external values of Sh, respec-
tively. The parameterization used for σ is similar to that proposed by
Shahbazi (2005):

σ =
κ(p+ 1)(p+ 2)

de
, (4.25)

where p is here the interpolation order of the approximation of the field
considered (p = 1 for PDG

1 elements), and de is a typical length scale of
the element Ωe. On the boundary Γ of the model domain, the external
value Shext is determined as in the contour integrals from the advection
term. In the case of a coast, the external value is taken equal to the
internal one.

Galerkin procedure

The Galerkin procedure amounts to replace Ŝ by φi for 1 ≤ i ≤ 3Ne in
equation (4.22) (Hanert et al., 2004). This results in a system of 3Ne

ordinary differential equations, which are necessary to compute the 3Ne

nodal values of Sh introduced in relation (4.18). This system can be
synthesized on the following matrix form:

d

dt

(
AS · S

)
= bS

(
t,S(t)

)
. (4.26)

The matrix AS is a (3Ne, 3Ne) squared matrix whose entries are

(AS)ij =< Hφiφj >e(i), (4.27)

the subscript e(i) pointing to the element for which φi is not zero ev-
erywhere. The (3Ne, 1) vector S gathers all the nodal values Sj of the
salinity field. The left-hand part of equation (4.26) corresponds to terms
of equation (4.22) that contain time derivatives. The (3Ne, 1) vector bS
gathers all the other terms.

4.3.2 Temporal integration

Runge-Kutta methods are also used to integrate equation (4.26) in time.
However, in this case, the mass matrix AS is a function of the water
depth H and is therefore time-dependent:

An+1
S · Sn+1 = An

S · Sn + ∆t

s∑

i=1

βi(kS)i, (4.28)
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where Sn and Sn+1 are the vector S at time tn and tn+1, respectively,
An and An+1 are the matrix A at time tn and tn+1, respectively, and

(kS)i = bS

(
tn + γi∆t,S

n +
s∑

j=1

αij∆t (kS)j

)
. (4.29)

Also here, the functions (kS)i may be seen as evaluations of bS at sub-
time steps. Here, because it is time-dependent, the mass matrix must
be updated at each sub-time step. In what follows, only the implicit
DIRK222 scheme (Section 2.3.2) is used.

4.3.3 Consistency

For a tracer to be consistently conservative, the discretization of its gov-
erning equation must be consistent with the discretization of the mass
conservation equation, i.e. if the tracer is 1 everywhere, the discretiza-
tion of its governing equation must be equivalent to the discretization
of the mass conservation equation (White et al., 2008b).

To that end, a PDG
1 approximation is used for both the elevation

η and the salinity S. Indeed, if Sh = 1 everywhere, the finite element
formulation (4.22) of the salinity transport equation is equivalent to
the finite element formulation (2.71) of the mass conservation equation,
considering that both Ŝ and η̂ are replaced by the same shape functions
φi during the Galerkin procedure. Therefore, if the same time integra-
tion scheme is used for each equation, the tracer will be consistently
conservative.

The treatment of the wetting and drying processes also affects the
equation governing the salinity transport. The flux-limiting method is
not discussed here. Indeed, as already mentioned, this wetting-drying
method requires explicit time integration schemes that would lead to
unacceptably long simulations with the current version of the model.
On the other hand, when using the modified bathymetry method, the
wetting-drying treatment of the salinity transport equation is quite obvi-
ous. If the water thickness H is replaced by the redefined water thickness
H̃ in the primitive equation (4.17), the discrete formulation is similar
to that of the mass conservation equation if Sh = 1 everywhere. Then,
Kärnä et al. (2011a) show that the salinity remains consistently conser-
vative if the appropriate Riemann solver is used to evaluate the contour
integrals.
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4.4 Modeling the salinity of the Scheldt
Estuary

In order to be consistent with the setup to compute the hydrodynamics
of the Scheldt Estuary (Section 3.4), the setup to compute the salinity is
very similar. The mesh is that shown on Figure 1.2. The DIRK222 im-
plicit time integration scheme (Section 2.3.2) is used with a time step of
15 minutes. The bathymetry is based on ETOPO1 (Amante and Eakins,
2008) in the European shelf and on data from the KustZuid model1

in the Scheldt Estuary. The wetting and drying processes are dealt
with the modified bathymetry method, with the smoothing parameter
α = 0.5 m. Upstream of Antwerp, a one-dimensional section-averaged
model is used. The primitive equations of the one-dimensional model
are briefly discussed in Appendix B. More details their implementation
into SLIM can be found in (de Brye et al., 2010).

The diffusivity of the salinity is parameterized using the formulation
from Okubo (1971):

κ = cκde
1.15, (4.30)

where cκ is a constant that is calibrated to a value of 0.03 m0.85 s−1 by
de Brye et al. (2010) in order to obtain optimal results in the Scheldt
Estuary with SLIM, and de is the characteristic length of the element.
This value of cκ will be of use for any other tracer.

Concerning the boundary conditions, freshwater (S = 0) enters the
domain from the upstream limits of the one-dimensional tidal river
network model, from the Ghent-Terneuzen and Bath canals, from the
Antwerp harbor locks, and from the Seine, Thames, Meuse and Rhine
Rivers. Precipitation and evaporation are of negligible importance com-
pared to the freshwater flows entering the domain through the upstream
boundaries. They are therefore not taken into account. The salinity
outside of the Southern Bight is relaxed towards monthly climatological
data (Berx and Hughes, 2009). The initial condition is based on a long
time averaged profile (Soetaert et al., 2006), so that a regime solution
is quickly reached. The simulation still starts 20 days before the period
of interest.

More details about the calibration of the salinity module may be
found in de Brye et al. (2010). However, to illustrate the rather good

1Courtesy of M. Zijlema from the National Institute for Coastal and Marine
Management (RIKZ), The Hague, The Netherlands.
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behavior of the model, outputs are here compared with measurement
data from stations close to the Overloop van Hansweert (S1, Figure
1.2) and Baalhoek (S2, Figure 1.2) during year 20002 in Figures 4.1
and 4.2. The differences between model outputs and measurements
data are here slightly apparent on the seasonal timescale. Compared
to the variations in the water surface elevation, the evolution of the
salinity is more difficult to represent because other processes than the
tides are involved. For example, the seasonal variation in the salinity
dynamics, mainly due to the seasonal variation of the river discharge,
is more important than the variation at the tidal scale (Baeyens et al.,
1998c). Nevertheless, observing the results at a smaller timescale (Figure
4.2) allows to notice a rather good behavior of the model.

In Figure 4.3, the model outputs of the same simulation are compared
with an analytical salinity profile proposed by Soetaert et al. (2006) from
measurements gathered between 1965 and 2002.

4.5 Conclusion

The objective of this chapter was to present the two-dimensional depth-
averaged equation governing the dynamics of a passive tracer, and its
discretization in a finite element framework. Its application to com-
pute the salinity dynamics in the Scheldt Estuary allowed to validate
the modeling of the horizontal transport processes of any tracer and to
calibrate the diffusivity parameterization.

2Data provided by the Hydro Meteo Centrum Zeeland (HMCZ).
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Figure 4.1: Depth-averaged salinity during year 2000; in black,
data averaged from measurements at two different levels of stations
S1 (Overloop van Hansweert) and S2 (Baalhoek), provided by the
Hydro Meteo Centrum Zeeland; in blue, model results at the same
locations.
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Figure 4.2: Depth-averaged salinity, from March 8, 2000 until
March 12, 2000; in black, data averaged from measurements at
two different levels of stations S1 (Overloop van Hansweert) and
S2 (Baalhoek), provided by the Hydro Meteo Centrum Zeeland; in
blue, model results at the same locations.
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Figure 4.3: Longitudinal profile of the mean salinity, from the
mouth (km 0) to Ghent (km 160); the thick line is obtained from
model results averaged over year 2000, and the thin line is an ana-
lytical profile proposed by Soetaert et al. (2006) from measurements
gathered between 1965 and 2002.



Chapter 5

Sediment dynamics

This chapter is based on the following publication:
Gourgue, O., Baeyens, W., Chen, M., de Brauwere, A., de Brye, B., Deleersni-
jder, E., Elskens, M., and Legat, V. A depth-averaged two-dimensional sediment
transport model for environmental studies in the Scheldt Estuary and tidal river
network, Journal of Marine Systems (submitted).

5.1 Introduction

The subject of this chapter is the development of a suitable set of equa-
tions and parameter values to accurately represent the sediment dynam-
ics in the tidal part of the Scheldt Basin. The aim is not to build yet
another sophisticated sediment transport model such as those of van
der Wal et al. (2010) and van Kessel et al. (2011). Instead, the goal is
to build a simplified sediment transport model, for the purpose of con-
ducting long-term environmental simulations to analyze the behavior of
biogeochemical pollutants in association with sediments.

The Scheldt is a relatively turbid estuary with three ETMs. The
most important one is located in the area of Antwerp (Figure 1.2). An-
other one is reported upstream in the tidal river and a third one is lo-
cated downstream of the mouth (Chen et al., 2005b; Chen and Wartel,
2009), and therefore outside of the domain of interest of this study. The
suspended sediment concentration (SSC) exhibits variability at different

97
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timescales. The variations at the tidal and spring/neap cycle scales are
closely linked to the hydrodynamic regime (Chen et al., 2005b; Arndt
et al., 2007). However, the estuary undergoes seasonal variations too
(the turbidity is higher in winter than in summer) that cannot be ex-
plained by the hydrodynamics alone, and often are associated with wa-
ter discharge and sediment supply (Chen and Wartel, 2009; van der Wal
et al., 2010). Therefore, even if the goal is to design a sediment module
that is as simple as possible, additional processes must be taken into
account. The features that have to be accurately represented are

• the order of magnitude of the SSC throughout the estuary and the
tidal river network;

• the variations of the SSC at the tidal, spring/neap cycle and sea-
sonal timescales;

• the location of the main ETMs.

If these conditions are met, this simplified sediment transport model will
be considered to be satisfactory to undertake long-term biogeochemical
environmental studies.

The governing equations are presented in Section 5.2. Since they are
rather similar to that governing the salinity dynamics, their numerical
implementation is only briefly discussed in Section 5.3. The parameteri-
zations of the sediment processes to represent satisfactorily the sediment
dynamics of the Scheldt Estuary and tidal river network are then dis-
cussed in Section 5.4.

5.2 Governing equations

Three layers are taken into account in the sediment module: the wa-
ter column where the sediments are in suspension, a layer made up of
sediments freshly deposited on the bottom, and a parent layer under-
neath the latter (Figure 5.1). Although three layers are considered, the
module is only made up of two interacting variables, i.e. Css, the depth-
averaged concentration of sediments in suspension [kg m−3], and Csb,
the concentration of bottom sediments in the fresh layer [kg m−2]. The
parent layer is an infinite source of sediments that is only eroded when
Csb is locally zero.

The concentration of suspended sediments may be seen as an active
tracer, i.e. it is transported exactly as salinity is in equation (4.17), with
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water column

fresh layer

parent layer

Css

Csb

Ef D
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Figure 5.1: Schematic representation of the sediment module; Css

is the depth-averaged concentration of sediments in suspension and
Csb is the concentration of bottom sediments in the fresh layer; Ef is
the erosion rate of sediments from the fresh layer, Ep is the erosion
rate of sediments from the parent layer, and D is the deposition
rate of sediments on the fresh layer.

additional source/sink terms to take into account the vertical exchange
of sediments with the bottom layers:

∂

∂t
(HCss) + ∇ · (HuCss) = ∇ · (Hκ∇Css) + Ef + Ep −D, (5.1)

where Ef is the erosion rate of sediments from the fresh layer, Ep is the
erosion rate of sediments from the parent layer, and D is the deposition
rate of sediments on the fresh layer. These three erosion/deposition
rates are a priori unknown and have to be parameterized. The sed-
iments of the bottom fresh layer are not transported horizontally and
only exchange of sediments with the water column allows to change their
concentration:

∂Csb

∂t
= D − Ef. (5.2)
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In the present version of the sediment module, it is assumed that
the parent layer is never supplied and that there is no exchange between
the two bottom layers. Moreover, bed-load transport is not taken into
account1. These assumptions are consistent with the aim of designing a
sediment module that is as simple as possible.

To summarize, the equations governing the fine sediment dynamics
for a depth-averaged model are:

∂

∂t
(HCss) + ∇ · (HuCss) = ∇ · (Hκ∇Css)

+ Ef + Ep −D, (5.1)

∂Csb

∂t
= D − Ef. (5.2)

With this formulation, the sum (HCss +Csb) must be globally conserved
in an enclosed domain with no supply from the parent layer, whatever
the parameterizations of the different erosion and deposition rates.

5.3 Numerical model

The discretization of the sediment equations is very similar to the dis-
cretization of the salinity equation. The whole procedure is therefore
not transcribed here. As salinity or any other tracer transported in the
water column, for consistency reasons, the suspended sediment concen-
tration Css needs the same spatial discretization as the elevation η. It is
therefore also represented by a PDG

1 approximation. The weak and finite
element formulations of equation (5.1) and the Galerkin procedure lead
to a system of ordinary differential equations that can be synthesized in
a matrix form very similar to equation (4.26) for the salinity. The only
major difference is the addition of the following extra source/sink term
in each entry of the right-hand side vector:

< (Ef + Ep −D)φi >e(i) . (5.3)
1Nevertheless, to allow for a rough redistribution of sediments on the bottom, a

simple Laplacian operator is added to equation (5.2), with a diffusion coefficient of
30 m2 s−1. Because both bottom layers have the same properties in this preliminary
study, this diffusion has no influence on the suspended sediment concentration, which
is the only subject of interest in this chapter.
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The equation (5.2) governing the bottom sediment concentration
Csb can be seen as a simplified version of the transport equation, with
a source/sink term, but with H = 1, u = 0 and κ = 0. As a conse-
quence, and regardless of the type of finite element approximation, the
weak and finite element formulations of equation (5.2) and the Galerkin
procedure also lead to a system of ordinary differential equations that
can be synthesized in a matrix form very similar to equation (4.26) for
the salinity. In this case, the extra source/sink term added in each entry
of the right-hand side vector reads

< (D − Ef)ψi >e(i), (5.4)

where ψi is the shape function corresponding to the finite element type
chosen for Csb. In order to globally conserve the sum (HCss +Csb) in an
enclosed domain with no supply from the parent layer, it is clear that
ψi must be equal to φi. The PDG

1 approximation is therefore also used
for the bottom sediment concentration Csb. Finally, the temporal inte-
gration is performed exactly the same way as salinity for both equations
(Section 4.3.2).

5.4 Modeling the sediments dynamics in the
Scheldt Estuary

In most of the Scheldt Estuary, the SSC is about a few tens of g m−3.
Values may attain 0.5 kg m−3 in the area of the most significant ETM
around Antwerp. It corresponds more or less to the area between the
Belgian-Dutch border and the confluence with the Rupel (Figure 1.2).
The large tidal energy is responsible for the formation of this main ETM
(Chen et al., 2005b; Arndt et al., 2007). A second ETM occurs in the
tidal river where the SSC may reach 0.3 kg m−3 (Chen et al., 2005b).
Finally, a third one is located downstream of the mouth. It is marine-
dominated and characterized by high wave energy with SSC attaining
0.2 kg m−3 (Fettweis and Van den Eynde, 2003).

The SSC also undergoes variations at different timescales. The hy-
drodynamics seems to be directly responsible for the SSC variations ob-
served at the tidal scale (period of a few hours) and at the spring/neap
cycle scale (period of a few weeks) because they follow the tidal regime
(Chen et al., 2005b; Arndt et al., 2007). In addition, the SSC is two
or three times higher in winter than in summer, which cannot be ex-
plained by the water discharge variations alone. In order to represent
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this variability, other forcings or processes must be taken into account
(Chen and Wartel, 2009; van der Wal et al., 2010).

The parameterizations of the erosion rates are based on a formula
introduced by Partheniades (1965), and that is now widely used (e.g.
Burchard et al., 2004; Arndt et al., 2007; Mercier and Delhez, 2007):

Ef =





M

(
τb

τe
− 1

)
if τb > τe and Csb > 0,

0 otherwise,
(5.5)

Ep =





M

(
τb

τe,p
− 1

)
if τb > τe,p and Csb = 0,

0 otherwise.
(5.6)

Sediments are eroded from the fresh layer when τb (the norm of the
bottom stress vector τ b) is higher than a threshold value τe, or, if the
fresh layer is locally empty, from the parent layer when τb is higher than
another threshold value τe,p; M is called, in a slightly improper way, the
erosion velocity. As in many other studies (e.g. Burchard et al., 2004;
Arndt et al., 2007; Mercier and Delhez, 2007), the parameterization of
the deposition rate is based on a formula introduced by Einstein and
Krone (1962):

D = wsCss,b, (5.7)

where ws is the settling velocity and Css,b is the SSC just above the
bottom. In depth-averaged models, Css,b is usually taken to be three
times the depth-averaged SSC:

Css,b = 3Css, (5.8)

which is confirmed by the field data collected in the Scheldt by Chen
et al. (2005a).

As a first attempt, the erosion parameters M , τe and τe,p are con-
sidered as constants, with τe,p = τe. Considering the dynamics of fine
sediments, the same hypothesis cannot be made for the settling velocity
ws, which is greatly influenced by flocculation. Flocculation refers to the
processes by which suspended sediments attach to each other to form
bigger structures called flocs, modifying the sediment properties, in par-
ticular the settling velocity (Wolanski, 1995; Winterwerp, 2002). One of
the main factors influencing the flocculation of suspended sediments is
the SSC itself: the higher is the SSC, the higher is the number of colli-
sions of suspended particles per unit of time, increasing their probability
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to aggregate (van Leussen, 1999; Chen et al., 2005a; Chen, 2009; Pejrup
and Mikkelsen, 2010). The weight and, as a consequence, the settling
velocity of the flocs are also affected accordingly. In this article, this is
taken into account by using the following parameterization:

ws = ws,0

(
Css

Css,0

)m
, (5.9)

where Css,0 = 0.1 kg m−3 is the reference value of the SSC, ws,0 is the
associated reference settling velocity whose value is determined empir-
ically, and m is a coefficient between 0.5 and 3.5 (van Leussen, 1999).
For want of any empirical estimates of parameter m in the Scheldt, the
value of the latter is arbitrarily taken to be equal to unity. Other values
were tested in the framework of this study, but none appeared to lead
to a significant improvement of the results.

When dealing with only one type of sediments, only three parame-
ters must therefore be calibrated: M , τe and ws,0. If several types of
sediments are dealt with, the number of parameters to calibrate is ob-
viously multiplied by the number of sediment types. For the sake of
simplicity, only one type is considered in this first study, where the val-
ues assigned to the three parameters determine the type of sediments
under study. Fine sediments (silt and clay) are considered here because
of their importance in the crucial zones like the main ETM and their
interaction with contaminants (Baeyens et al., 1998c).

The setup to compute the sediment dynamics in the Scheldt Es-
tuary is the same as that used to compute the hydrodynamics and
the salinity dynamics (Sections 3.4 and 4.4). Upstream of Antwerp,
a one-dimensional section-averaged model is used. The primitive equa-
tions of the one-dimensional model are briefly discussed in Appendix B.
Upstream boundary conditions of SSC are provided by outputs of the
Seneque/Riverstrahler model (Thieu et al., 2009). The initial condition
is zero for the variables of the sediment module and the simulations
start 20 days before the period of interest. A regime solution is reached
after 10 days for the SSC. This takes longer for the bottom variable.
However, as long as equations (5.5) and (5.6) are used with τe = τe,p,
both bottom layers have the same properties and the fresh layer is only
useful to keep track of the sediments entered in the domain through the
parent layer or the open boundaries. Therefore, under these conditions,
and as long as the study does not focus specifically on the bottom con-
centration, a longer initialization period is not needed. A specific study
of the bottom concentrations or a more complex version of the module
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considering different behaviors for the bottom layers would require the
simulations to start earlier.

Time series of turbidity measurements (Villars and Vos, 1999) from
stations S0 (Terneuzen) and S2 (Baalhoek) are used to calibrate the
model in the area downstream of the main ETM. The model is then
calibrated against SSC measurements from stations S3 (Buoy 87) to S17
(Wetteren) along the Belgian part of the Scheldt, to represent accurately
the range of variation in this area, and to reproduce the location and
the intensity of the ETMs. Finally, the model results are compared with
those from the LTVmud model, a three-dimensional model described in
van Kessel et al. (2011).

5.4.1 Variations at the tidal and spring/neap cycle
scales

In order to isolate the variations of the SSC at the tidal and spring/neap
cycle scales, the model is first calibrated for a spring/summer situation
against turbidity measurements at stations S0 (Terneuzen) and S2 (Baal-
hoek). Because these fluctuations are following the tidal regime, they
should be reproduced rather well only taking into account the hydrody-
namics. A set of constant values for the three parameters M , τe and ws,0

should therefore be found. However, it proved impossible to identify a
single set of parameters to fit the time series of both stations at the
same time. The optimal values are

M = 2 · 10−5 kg m−2 s−1,

τe = 0.2 N m−2,

ws,0 = 3 · 10−3 m s−1, (5.10)

to fit the data from Terneuzen (not shown), and

M = 2 · 10−5 kg m−2 s−1,

τe = 0.2 N m−2,

ws,0 = 1.5 · 10−3 m s−1, (5.11)

to fit those from Baalhoek (not shown). Even if only the optimal value of
ws,0 is different for both stations, using the optimal value of one station
leads to rather poor results at the other station. In this form, the model
is therefore too simple and at least one additional process or forcing
should be taken into account, which would spatially modulate the value
of ws,0.
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Fluctuations in flocculation influence the value of ws,0. Besides SSC,
salinity is another factor that influences the flocculation processes (Xia
et al., 2004; Chen, 2009). While an increase of the SSC implies an
increase of the number of collisions of suspended sediment particles
per unit of time, the salinity increases their ability to aggregate (van
Leussen, 1999; Mietta et al., 2009). Since salinity is higher around
Terneuzen than around Baalhoek, this may suggest different values of
the reference settling velocity for these two stations, or that ws,0 is a
function of the salinity S. As the goal is only to determine if the influ-
ence of salinity on the flocculation processes could improve the results,
a simple linear parameterization is proposed:

ws,0 = wf
s,0

((
PS − 1

) S
34

+ 1

)
. (5.12)

The reference settling velocity ws,0 is equal to its freshwater value wf
s,0,

multiplied by a factor increasing linearly from 1 in freshwater (S = 0)
to PS > 1 into the sea (S = 34). Comparing with the measurements
of spring and summer 2000, the best results, both for Terneuzen and
Baalhoek, are obtained with

M = 2 · 10−5 kg m−2 s−1,

τe = 0.2 N m−2,

wf
s,0 = 7 · 10−4 m s−1,

PS = 5. (5.13)

It is important to mention here that this formulation leads to settling
velocity values that are in rather good agreement with observations (Mi-
etta et al., 2009; Manning et al., 2011). These results are displayed in
Figures 5.2 and 5.3.

Figure 5.2 shows the variations at the tidal scale. The mean value
and the range of variation are correct, but the fine scale variability
present in the observations is not reproduced. However, these results
obtained with a two-dimensional depth-averaged model are qualitatively
comparable to those obtained with more complex three-dimensional
models (e.g. van Kessel et al., 2011). Figure 5.3 displays the varia-
tions at the spring/neap cycle scale. The mean value and the range of
variation are quite satisfactorily reproduced at this timescale.

Another possibility to account for the spatially varying reference set-
tling velocity would be to take into account several types of sediments
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Figure 5.2: Depth-averaged SSC from 24 June 2000 until 27 June
2000; in black, data deduced from turbidity measurements at dif-
ferent depth levels of stations S0 (Terneuzen) and S2 (Baalhoek);
in blue, model results at the same locations, using equations (5.9)
and (5.12) for ws and parameter set (5.13).
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Figure 5.3: Depth-averaged SSC from 15 April 2000 until 1 Septem-
ber 2000; in black, data deduced from turbidity measurements at
different depth levels of stations S0 (Terneuzen) and S2 (Baalhoek);
in blue, model results at the same locations, using equations (5.9)
and (5.12) for ws and parameter set (5.13).
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with different properties. The marine sediments (sand) are heavier than
the riverine sediments (silt and clay) and their proportion is larger down-
stream (van der Wal et al., 2010). This could also explain why the set-
tling velocity seems higher in Terneuzen than in Baalhoek. However,
to limit the number of parameters and the computational cost, the ap-
proach chosen for the present article is restricted to one only type of
sediments. Nevertheless, it would be interesting to compare the present
results with those obtained with a future version of the module that
would deal with several types of sediments.

5.4.2 Variations at the seasonal scale

The observed SSC is significantly higher in winter than in summer. This
is not only observed around Terneuzen and Baalhoek (Figure 5.4), but
also along the whole estuary (Fettweis et al., 1998; Chen et al., 2005b;
van der Wal et al., 2010). The hydrodynamics exhibits no such vari-
ations, at least not in the areas of Terneuzen and Baalhoek: the tidal
discharge in these regions is several hundreds of times higher than the
river discharge. However, salinity does feature seasonal variations, de-
pending on the river discharge, and, in the present module, salinity has
an influence on the settling velocity. It is nevertheless not sufficient to
represent the seasonal variations of the SSC (not shown). Therefore,
once again, there is at least one more process or forcing to take into
account.

A good candidate to explain this decrease of turbidity in summer is
the increase of the biological activity. Indeed, organism activity gener-
ates a fluffy, interfacial layer on suspended particles that causes them to
stick together when colliding (Wolanski, 1995). Therefore, an increase
of organic content in summer implies an increase of floc size that is
observed in situ (Mietta et al., 2009). This process is called biofloccula-
tion (Manning et al., 2010) and it suggests that the settling velocity is
higher in summer. Moreover, similar processes increase the cohesiveness
of muddy bottom sediments in summer which become more difficult to
erode (Stolzenbach et al., 1992). This process, called biostabilization
(Manning et al., 2010), suggests that the bottom stress threshold value
for erosion is also higher in summer (van der Wal et al., 2010).

Although the biological activity is not a variable of the present model
and is moreover difficult to quantify, there is a strong correlation between
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biological activity and water temperature, for which data are available2.
In the new parameterizations proposed here, the reference settling veloc-
ity and the threshold value of the bottom stress for erosion are functions
of the water temperature T . The reference settling velocity is equal to its
summer value given by equation (5.12), multiplied by a factor decreasing
linearly from 1 in summer (T = Ts) to PT < 1 in winter (T = Tw):

ws,0 = wfs
s,0

((
PS − 1

) S
34

+ 1

)((
PT − 1

) T − Ts

Tw − Ts
+ 1

)
, (5.14)

where wfs
s,0 is the summer freshwater value of the reference settling veloc-

ity ws,0, and Ts = 20˚C and Tw = 5˚C are typical values of the Scheldt
water temperature in summer and winter, respectively. The threshold
value of the bottom stress for erosion is equal to its summer value τ s

e ,
multiplied by a factor decreasing linearly from 1 in summer (T = Ts) to
QT < 1 in winter (T = Tw):

τe = τ s
e

((
QT − 1

) T − Ts

Tw − Ts
+ 1

)
, (5.15)

After comparison with the measurements of the whole year 2000, the
best results are obtained with

M = 2 · 10−5 kg m−2 s−1,

wfs
s,0 = 1 · 10−3 m s−1,

PS = 5,

PT = 2/3,

τ s
e = 0.2 N m−2,

QT = 1/3. (5.16)

These results are displayed in Figure 5.4.
First of all, it has to be mentioned that the new parameterizations

(5.14) and (5.15) do not alter the quality of the results in summer, at
the tidal and spring/neap cycle scales. Then, the range of variation
is quite satisfactorily represented for the first half of 2000. It is less
so for the end of the year, at least for Terneuzen since there are no
data available for that period for Baalhoek. However, some external
processes, such as dredging or shipping for example, are known to locally
have a significant impact on the SSC (Chen et al., 2005b). For example,

2Hydro Meteo Centrum Zeeland, Middelburg, The Netherlands (www.hmcz.nl)
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Figure 5.4: Depth-averaged SSC in 2000; in black, data deduced
from turbidity measurements at different depth levels of stations
S0 (Terneuzen) and S2 (Baalhoek); in blue, model results at the
same locations, using equations (5.9) and (5.14) for ws, equation
(5.15) for τe and parameter set (5.16).
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locally enhanced turbulence may influence the SSC by breaking the flocs
and therefore affect the settling velocity (Chen, 2009). The cohesiveness
of bottom sediments is probably also affected, which may change the
erodibility. Finally, the dredging activities are probably contributing
to resuspension events. However, due to a marked lack of available
data, these important processes are very difficult, even impossible, to
quantify and to incorporate into the model. On top of those dredging
and shipping activities, the area of Terneuzen is moreover influenced by
the inputs from the connexion with the Ghent-Terneuzen canal.

5.4.3 Variations at the seasonal scale for another period

Sections 5.4.1 and 5.4.2 described different calibration steps leading to a
definition of the module that produces rather satisfactory results around
Terneuzen and Baalhoek for the year 2000. The present section displays
the results obtained with the same parameterizations and the same pa-
rameter values, but for the year 1999 (Figure 5.5). Those results may be
claimed to be as satisfactory as those of 2000, even if the SSC variability
is underestimated in the late spring in Baalhoek and strongly underes-
timated the whole summer in Terneuzen. These differences between the
model outputs and the data must be explained by processes and forc-
ings that are not taken into account in this model. Among them, the
influence of important wind events, which may soften the bottom layer
in shallow areas and therefore increase its erodibility, must probably be
excluded. Indeed, no significant wind event is reported for this period
(not shown). On the other hand, dredging events or shipping activities
are still plausible explanations.

5.4.4 Longitudinal profile and ETMs

So far, the model is calibrated using data from two measurement sta-
tions located downstream of the main ETM. In this section, the aim is
to assess the behavior of the model around and upstream of the main
ETM. To this end, the results are first compared with monthly SSC
measurements performed during the whole year 2002 along the Belgian
part of the Scheldt Estuary and River. Unlike those used in the pre-
vious sections, which were deduced from turbidity measurements, the
data presented here are direct measurements of SSC. The model results
are then compared against depth-averaged outputs from the more com-
plex three-dimensional LTVmud model (van Kessel et al., 2011) during
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Figure 5.5: Depth-averaged SSC in 1999; in black, data deduced
from turbidity measurements at different depth levels of stations
S0 (Terneuzen) and S2 (Baalhoek); in blue, model results at the
same locations, using equations (5.9) and (5.14) for ws, equation
(5.15) for τe and parameter set (5.16).
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autumn 2006. In this section, the results are presented as a longitudinal
profile, i.e. along a virtual line that follows the main channel of the
estuary, from the mouth (km 0) to Ghent (km 160).

As it is defined so far, the model is more or less able to represent the
location of the main ETM in the correct area. However, comparing with
observations (Chen et al., 2005b; Arndt et al., 2007), the measurements
of 2002 or the outputs from the LTVmud model, the SSC is largely
underestimated around and upstream of the main ETM (not shown).
A decrease of the settling velocity or the bottom stress threshold value
for erosion is difficult to justify in these areas. On the other hand, an
increase of the erosion velocity is more plausible. Indeed, the nature
of bottom sediments is quite constant between the mouth and the Bel-
gian/Dutch border, mainly made up of sand, but the proportion of finer
sediments increases drastically upstream of it (van der Wal et al., 2010).
This radical change in the bottom sediment type distribution is initiated
around the downstream limit of the main ETM.

Since the present module only deals with fine sediments, it is normal
that the erosion velocity M is higher in areas where the proportion of
such sediments is higher. In the parameterization proposed here, M is
equal to its downstream value Md downstream km 50 (from the mouth),
it is multiplied by a factor increasing linearly from 1 to Rs > 1 between
km 50 and km 90, and it is equal to Rs further upstream:

M =





Md if s ≤ 50 km,

Md

((
Rs − 1

) s− 50

90− 50
+ 1

)
if 50 km ≤ s ≤ 90 km,

RsM
d if s ≥ 90 km,

(5.17)

where s is the upstream distance to the mouth (it is equal to 0 down-
stream). The best results are obtained with

Md = 2 · 10−5 kg m−2 s−1,

Rs = 2,

wfs
s,0 = 1 · 10−3 m s−1,

PS = 5,

PT = 2/3,

τ s
e = 0.2 N m−2,

QT = 1/3. (5.18)
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Figure 5.6: Longitudinal profile of mean (red), maximum and min-
imum (black) SSC during year 2002, from the mouth (km 0) to
Ghent (km 160); model results obtained using equations (5.9) and
(5.14) for ws, equation (5.15) for τe, equation (5.17) for M and
parameter set (5.18); in blue, monthly SSC measurements.

It must be underscored that this new parameterization does not influ-
ence much the dynamics downstream of the Belgian/Dutch border, so
that the quality of the previous results is not altered (not shown).

In Figure 5.6, the new model results are presented for year 2002,
against the measurement data sampled at that period. Looking at the
mean and maximum values of the SSC, the main ETM is now clearly
apparent (approximately from km 70 to km 120) and its intensity is in
accordance with most observations (Chen et al., 2005b; Arndt et al.,
2007). Moreover, the range is well reproduced almost all along the
estuary, as only a few data are found outside the range of the model
values. This attests to the good performance of the model to represent
the sediment dynamics in the Scheldt Estuary and River.

In Figure 5.7 the model results are compared with the outputs of
the LTVmud model during autumn 2006. The main ETM is also clearly
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Figure 5.7: Longitudinal profile of mean (red), maximum and mini-
mum (black) SSC between October 1, 2006 and December 31, 2006,
from the mouth (km 0) to Ghent (km 160); thick lines are model
results obtained using equations (5.9) and (5.14) for ws, equation
(5.15) for τe, equation (5.17) for M and parameter set (5.18); thin
lines are results from the three-dimensional LTVmud model.

apparent in the mean and maximum SSC values from both models,
although the LTVmud model locates it a little more downstream. In
the river part, the models have more different behaviors. The LTVmud
model maximum values are almost as high in the river ETM as in the
main ETM. But still, even if the model of this article does not feature a
clear local maximum, either the maximum or the mean values of the SSC
are higher in the river part than downstream of the main ETM. This can
be identified as the river ETM. Finally, using a depth-averaged model,
suspended sediments instantaneously settle to the bottom. This could
explain the lower minimum values of the SSC. Anyway, the consistency
of the results from both models is remarkable.

As it is located downstream of the mouth, the third ETM is not
visible on Figure 5.7. The snapshot of SSC presented on Figure 5.8
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shows the existence of a small ETM in front of the mouth, but SSC
is clearly underestimated there. This may be due to the fact that the
bottom of this region is mainly made up of sand, while the only type
of sediments considered here are fine sediments. In addition, the waves
play an important role in the formation of this third ETM (Chen and
Wartel, 2009) and this marine process is not taken into account in the
present module. Indeed, the domain of interest is the estuary, and the
wave influence is limited to only a few kilometers upstream of the mouth
(Chen and Wartel, 2009).

Figure 5.9 presents the snapshot of the simulated bottom sediment
concentration at the same moment. An accumulation of bottom sedi-
ments is observed in the area of the marine ETM. Therefore, it could
be expected that a more sophisticated parameterization of the erosion
velocity M , which would take into account the influence of the waves
(e.g. Lambrechts et al., 2010), would lead to better results in this area.
However, as the goal is to keep the module as simple as possible, and
because this marine ETM is not inside the domain of main interest, M
is not further modified.

5.5 Conclusion

The objective of this study was to design a sediment module for the two-
dimensional depth-averaged and one-dimensional section-averaged com-
ponents of SLIM, in order to represent satisfactorily the main features
of the SSC dynamics in the Scheldt Estuary and tidal river network.
The initial idea was to develop a module as simple as possible, with
only three parameters: M the erosion velocity, τe the bottom stress
threshold value for erosion, and ws the settling velocity. However, to
be able to represent accurately the variations of the SSC at timescales
ranging from hours to a year at two locations in the estuary, improved
parameterizations proved to be necessary.

The settling velocity is influenced by flocculation processes. The
SSC, the salinity and the biological activity are important factors gov-
erning the flocculation processes and they are used in the parameteriza-
tion of ws. The biological activity also has an impact on the erodibility
of the bottom sediments and is of use in the parameterization of τe.

With these improvements, the model produces an ETM in the area of
Antwerp, but its intensity is too small and the river ETM is not present.
To improve the model to represent more accurately those two ETMs,
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the parameterization of M is enriched in order to take into account the
bottom composition changes.

This strategy allowed to identify what seems to be some of the
key processes governing the sediment dynamics in the Scheldt Estuary.
Moreover, this depth-averaged two-dimensional sediment model, with
only one type of sediments, proved to be able to represent rather satis-
factorily the main features of the SSC dynamics in the Scheldt Estuary
and tidal river, which is an important result by itself.





Chapter 6

Conclusions and
perspectives

This research work was conducted under the auspices of two impor-
tant projects. As a member of the SLIM project, I contributed to the
development of a new finite element marine model, especially its two-
dimensional depth-averaged component. Some members of the team,
including me, are also involved in the TIMOTHY network, where our
role is to develop environmental applications of this finite element model
for the Scheldt Estuary. The general thread of the present work is formed
by the different stages to obtain a finite element sediment model of the
Scheldt Estuary, in order to make possible such environmental studies.

The main reason for the choice of a two-dimensional depth-averaged
model (combined with a one-dimensional section-averaged model up-
stream of Antwerp) is that the three-dimensional component is not yet
available for such realistic applications. As a result, the effects of the
baroclinic pressure gradient, and therefore the water density variations,
are removed from the system (Section 2.2). In the Scheldt Estuary,
the consequences are not overly important. Indeed, the flow is verti-
cally well-mixed and the horizontal variations are rather small. This
is illustrated with the good agreement between our results and those
from the three-dimensional LTVmud model in modeling the sediment
dynamics of the Scheldt (Section 5.4.4). However, stratification may be

121
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important in the vicinity of the main maximum of turbidity (around
Antwerp) and in the coastal zone, downstream of the mouth. If we
want to study more specifically the dynamics of those regions, a three-
dimensional model is probably mandatory. Nevertheless, the smaller
computational cost of two-dimensional models will always remain a cru-
cial advantage when considering long-term environmental studies, jus-
tifying the developments carried out in the framework of the present
thesis.

The construction of the hydrodynamic module was an important
team work (de Brye et al., 2010; Kärnä et al., 2011a). My main contri-
bution in this task is the development of the flux-limiting wetting-drying
method (Gourgue et al., 2009). This method proved very promising but
has the drawback to be limited to explicit time integration methods.
Indeed, the version of SLIM used in this doctoral dissertation is not
sufficiently efficient to deal with the small time steps required by such
methods. The simulations would last too long. That is why the modified
bathymetry method is used for the simulations of this work, although
this method features some physical limitations. However, the next ver-
sion of SLIM, which is still under development at the time of writing
this conclusion, is built with the ambition to increase the computational
efficiency. In that case, the flux-limiting method could become an attrac-
tive solution for this new version. Moreover, only explicit schemes ben-
efit from large parallel computing that are necessary when considering
three-dimensional simulations of real applications. The wetting-drying
method for the three-dimensional component of SLIM could therefore
be based on the flux-limiting method.

The construction of the transport tracer module was another impor-
tant team work. Together with the hydrodynamic module, it allowed to
start some basic environmental applications, such as the estimation of
timescales (Blaise et al., 2010b; de Brauwere et al., 2011a; de Brye et al.,
2011a) or the study of fecal bacteria pollution (de Brauwere et al., 2009,
2011b). However, in order to perform more sophisticated environmental
studies, a sediment module was needed. The development of the first
version of this module is the second important contribution of this thesis,
and probably the most important (Gourgue et al., 2011a). In addition
to being part of a two-dimensional depth-averaged model, this first ver-
sion is based on very simple parameterizations, involving only one type
of sediments. Its computational cost remains therefore relatively low.
When applied to the Scheldt Estuary and tidal rivers, and despite its
relative simplicity, this sediment module produces results that compare



Chapter 6: Conclusions and perspectives 123

rather satisfactorily with available measurement data and outputs from
a more sophisticated three-dimensional model. The good behavior of the
model is an important result by itself. Moreover, among other things,
this study also emphasized the important role that biological activity
plays on sediment dynamics.

If we want to study in more details the sediment dynamics of the
Scheldt Estuary with SLIM, a more sophisticated version of the sedi-
ment module is probably needed. This second version should probably
involve different types of sediments, according to their size. The prop-
erties of large sediments (sand) and finer sediments (silt and clay) are
indeed very different. And the spatial heterogeneity of the sediment size
distribution is probably a better explanation to the spatial heterogene-
ity of the sediment properties than the parameterizations proposed in
Chapter 5. On the other side, if we want to use the sediment concentra-
tions as state variables for new environmental studies, the first version
of the module is probably sufficient. A module with only one type of
sediments has the advantage to be a cheap solution, and the results pre-
sented in Chapter 5 nevertheless cover the main features of the sediment
dynamics of the Scheldt.

The development of a second version of the fecal bacteria module
(de Brauwere et al., 2011c) constitutes the first environmental study
involving the computing of sediment concentrations in the Scheldt using
SLIM. In the first version of the fecal bacteria module, an arbitrary
part of the bacteria was removed of the domain, supposedly due to
sedimentation. Although very rough, this parameterization produces
rather good results in the riverine part (de Brauwere et al., 2011b), but
less in the area of the main estuarine turbidity maximum. This research
study has been launched in parallel of the development of the sediment
module, but is not ended yet. Nevertheless, we hope that an explicit
treatment of the sediment processes will improve the model behavior in
an area where they are of crucial importance.

The development of the biogeochemical module of SLIM is another
ongoing project. At present, the number of variables is still not deter-
mined. The suspended sediment concentration could either be a model
proxy in order to estimate the luminosity in the water column, or be
a real variable of the module with strong interactions with the other
ones. In the second case, it could be very interesting to study further
the influence of biological activity on the sediment dynamics.

Finally, we aim to model the trace metal pollution in the Scheldt
Estuary. The trace metal module is mainly based on the concept of the
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partition coefficient KD, which is the ratio between trace metal particles
adsorbed on suspended sediments and trace metal particles dissolved in
the water column. The first interest in modeling trace metal dynamics
will be to calibrate the existing formulations of KD, mostly functions of
salinity and sometimes of the suspended sediment concentration. The
second interest will be to study further the dynamics inside the Estuary.
Hopefully, this project will constitute my main subject of research in
the close future. An introduction to this work is proposed in the next
section.

As we can see, even if this thesis is an achievement by itself, it is
also an introduction to more challenging environmental studies in which
I look forward to taking part...

Perspectives: a trace metal model

This final section aims to show the type of problems that can be ad-
dressed now that the objectives of this thesis have been achieved. It is
illustrated by the case of the trace metal dynamics.

Trace metal particles exist in two different forms in the water column:
either dissolved in the water column (the dissolved phase) or adsorbed
on suspended sediments (the adsorbed phase). Particles can pass from a
phase to the other according to physico-chemical adsorption/desorption
processes. The adsorbed phase is naturally subject to sedimentation
processes, so that adsorbed trace metal may also be found in the bot-
tom layer. There exist two simple approaches to model the trace metal
transport in aquatic systems.

The first one is called here the A-approach and is schematically pre-
sented in Figure 6.1. The variables are Cmd, the depth-averaged con-
centration of dissolved trace metal in the water column [kg m−3], Cma,
the depth-averaged concentration of adsorbed trace metal in the water
column [kg kg−1]1, and Cmb, the concentration of trace metal adsorbed
in the fresh layer [kg kg−1]. The concentration of trace metal adsorbed
in the parent layer Cmp is only an input of the model.

The concentration of trace metal dissolved in the water column can
be considered as a simple active tracer that is transported as salinity is
in equation (4.17), with an additional reactive term to take into account

1kg of trace metal per kg of sediments
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water column

fresh layer

parent layer

Cma Cmd

Cmb

A

CmbEf CmaD

CmpEp

Figure 6.1: Schematic representation of the A-approach to model
trace metal transport; Cmd is the depth-averaged concentration
of dissolved trace metal in the water column, Cma is the depth-
averaged concentration of adsorbed trace metal in the water col-
umn, Cmb is the concentration of trace metal adsorbed in the fresh
layer, and Cmp is the concentration of trace metal adsorbed in the
parent layer; A is the adsorption rate of trace metal; Ef is the ero-
sion rate of sediments from the fresh layer, Ep is the erosion rate
of sediments from the parent layer, and D is the deposition rate of
sediments on the fresh layer.
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the trace metal flux between the dissolved and adsorbed phases:

∂

∂t
(HCmd) + ∇ · (HuCmd) = ∇ · (Hκ∇Cmd)−A, (6.1)

where A is the adsorption rate of trace metal. It is positive when trace
metal adsorbs on suspended sediments and negative when it desorbs
from them. Since the trace metal adsorbed on suspended sediments is
transported according to the sediment dynamics and not according to
the flow, the variable that is advected and dispersed as a simple active
tracer is not Cma, but the product (CssCma). Additional terms take into
account the erosion and deposition processes, and the trace metal flux
between the dissolved and adsorbed phases:

∂

∂t
(HCssCma) + ∇ · (HuCssCma) = ∇ ·

(
Hκ∇(CssCma)

)

+A+ CmbEf + CmpEp − CmaD. (6.2)

The bottom trace metal is not transported horizontally and only ex-
change of adsorbed trace metal with the water column, through erosion
and deposition of contaminated sediments, allows to evolve its concen-
tration:

∂

∂t
(CsbCmb) = CmaD − CmbEf. (6.3)

The main problem of the A-approach to model the trace metal trans-
port is that the adsorption rate A appearing in equations (6.1) and (6.2)
is very difficult to evaluate and virtually impossible to parameterize.
However, a few manipulations allow to circumvent this problem (De
Smedt et al., 1998; Wu et al., 2005), leading to the equations of the
KD-approach, which is schematically presented in Figure 6.2.

A new variable is defined, Cms, which is the depth-averaged total
concentration of trace metal in suspension in the water column:

Cms = Cmd + CssCma. (6.4)

To differentiate the dissolved and adsorbed trace metal phases in sus-
pension, the partition coefficient KD is introduced:

KD =
Cma

Cmd
. (6.5)
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water column

fresh layer

parent layer

Cms

Cmb

CmbEf KDCms

1 + CssKD
D

CmpEp

Figure 6.2: Schematic representation of the KD-approach to model
trace metal transport; Cms is the depth-averaged total concentra-
tion of trace metal in suspension in the water column, Cmb is the
concentration of trace metal adsorbed in the fresh layer, and Cmp is
the concentration of trace metal adsorbed in the parent layer; KD

is the partition coefficient; Css is the concentration of suspended
sediments, Ef is the erosion rate of sediments from the fresh layer,
Ep is the erosion rate of sediments from the parent layer, and D is
the deposition rate of sediments on the fresh layer.

Adding equation (6.1) to equation (6.2) allows to eliminate the adsorp-
tion rate A:

∂

∂t
(HCms) + ∇ · (HuCms) = ∇ · (Hκ∇Cms)

+ CmbEf + CmpEp − CmaD. (6.6)

Moreover, the concentrations of the dissolved and adsorbed phases may
be expressed exclusively in terms of Css and KD using equations (6.4)
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and (6.5):

Cmd =
Cms

1 +KDCss
, (6.7)

Cma =
KDCms

1 +KDCss
. (6.8)

Incorporating these relations into equations (6.6) and (6.3) leads to the
governing equations of the trace metal module:

∂

∂t
(HCms) + ∇ · (HuCms) = ∇ · (Hκ∇Cms)

+ CmbEf + CmpEp −
KDCms

1 + CssKD
D, (6.9)

∂

∂t
(CsbCmb) =

KDCms

1 + CssKD
D − CmbEf, (6.10)

where the partition coefficient KD must be parameterized. The draw-
back of the KD-approach is that it considers instantaneous equilibrium
between dissolved and adsorbed phases. However, unlike the adsorption
rate A, it is possible to define rather good parameterizations of KD.
Therefore, at present, the KD-approach is the only one that is accept-
able. Several parameterizations of KD have already been proposed, as
function of the salinity (Wu et al., 2005), the SSC (Mwanuzi and De
Smedt, 1999), or both of them. Our model will allow to compare these
parameterizations and to calibrate them for the Scheldt Estuary.

A preliminary simulation of Cu (copper) has been performed using
the parameterization proposed by Mwanuzi and De Smedt (1999):

KD = KD,0

(
Css

Css,0

)b
, (6.11)

with

KD,0 = 107.515 m3 kg−1, (6.12)

b = −0.749. (6.13)

In the Scheldt, the major sources of Cu are the antifouling products of
ships and the waste water treatment plants. However, in this very first
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simulation, as the research data has not started yet, the only source
of Cu that is considered is the parent layer, where a concentration of
10−5 kg kg−1 is imposed. This value is based on concentrations in the
adsorbed phase measured by Baeyens et al. (1998a) during the period
1981-1983. The first results are presented on Figure 6.3.

Of course, no interpretation can be drawn from this first simula-
tion. The only objective was to illustrate the introduction to this future
project based on the results of my doctoral research.
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Appendix A

Analytical expressions in
wetting-drying test cases

First Balzano test case

In the first Balzano test case, the bathymetry h is defined as follows:

h = x/2760 ∀x, (A.1)

where x is the coordinate in the main direction of the basin.

Second Balzano test case

In the second Balzano test case, the bathymetry h is defined as follows:

h =





x/2760 if x ≤ 3600 m
30/23 if 3600 m ≤ x ≤ 4800 m
x/1380 if 4800 m ≤ x ≤ 6000 m
x/2760 if x ≥ 6000 m,

(A.2)

where x is the coordinate in the main direction of the basin.
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Third Balzano test case

In the third Balzano test case, the bathymetry h is defined as follows:

h =





x/2760 if x ≤ 3600 m
−x/2760 + 60/23 if 3600 m ≤ x ≤ 4800 m
x/920− 100/23 if 4800 m ≤ x ≤ 6000 m
x/2760 if x ≥ 6000 m,

(A.3)

where x is the coordinate in the main direction of the basin.

Thacker test case

In the Thacker test case, the bathymetry h is defined as follows:

h

h0
=
R2 − r2

R2
, (A.4)

where h0 is the water depth in the center of the basin at rest, R is the
basin radius at rest, and r is the local distance to the center of the basin.
If the problem dealed with is non dissipative, the elevation of the free
surface η is described by the following expression:

η

h0
=

√
1−A2

1−A cos(ωt)
− 1− r2

R2

(
1−A2

(
1−A cos(ωt)

)2 − 1

)
, (A.5)

with

A =
(h0 + η0)2 − h2

0

(h0 + η0)2 + h2
0

, (A.6)

ω2 =
8gh0

R2
, (A.7)

where η0 is the initial elevation of the free surface in the center. The
parameters are chosen to obtain a period of oscillations equal to 12 h:

R = 430.694 km,

h0 = 50 m,

η0 = 2 m.
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One-dimensional
section-averaged primitive
equations

The equations governing the one-dimensional component of the model
are:

∂A

∂t
+

∂

∂x
(Au) = 0, (B.1)

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
=

1

A

∂

∂x

(
Aν

∂u

∂x

)
− τb

ρH
, (B.2)

∂
(
AS
)

∂t
+

∂

∂x

(
AuS

)
=

∂

∂x

(
Aκ

∂S

∂x

)
, (B.3)

∂
(
ACss

)

∂t
+

∂

∂x

(
AuCss

)
=

∂

∂x

(
Aκ

∂Css

∂x

)
+ b(Ep + Ef −D),(B.4)

∂
(
bCsb

)

∂t
= b(D − Ef), (B.5)

where t is still the elapsed time and x is the longitudinal coordinate.
The variable of the continuity equation (B.1) is the cross-section area A
[m2]. The variable of the momentum conservation equation (B.2) is the
section-averaged longitudinal velocity [m s−1], and the effective water
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depth is computed as follows

H =
A

b
, (B.6)

where b [m] is the river width:

b =
∂A

∂η
. (B.7)

River widths and sections data for different values of the local elevation
are given as topological inputs of the model (de Brye et al., 2010). The
variables of the tracer equations (B.3) to (B.5) are the same as in the
two-dimensional model, except that they are here averaged over the
section (S and Css) and the bottom width (Csb). The parametrizations
are exactly the same.

The equations (B.1) to (B.5) are solved using SLIM and using a dis-
continuous Galerkin discretization with linear shape functions for every
variable. The temporal integration is performed the same way as in
the two-dimensional component and the vertical exchange processes of
the sediment equations are also solved as pointwise ordinary differential
equations.
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