Menu Fermer

Eulerian Transport Model

The Eulerian transport model simulates the transport, dispersion and decay of dissolved or suspended substances under the influence of the water currents. The Eulerian transport model can be coupled with SLIM1D, SLIM2D or SLIM3D to simulate a wide range of hydrodynamic phenomena in rivers, lake, estuaries, coastal seas and in the deep ocean. The tracer diffusivities can be calculated with state-of-the-art turbulence models. The transport equation is discretised with the Discontinuous Galerkin finite element method, which ensures optimal accuracy even for advection-dominated processes.

Tracers that can be modelled include bacteria, radioactive elements, flow diagnostics such as the water age, temperature, salinity and fine-grained sediments. The latter can simulated with SLIM2D and SLIM3D. In a 3D simulation, a vertical sediment settling velocity is added to the hydrodynamical vertical velocity. This velocity is proportional to the sediment concentration, as it is characteristic of cohesive sediment. The sediment plume is then much smaller than the freshwater plume.

Sediment and freshwater plumes as modeled by SLIM3D and the Eulerian transport model in the Burdekine River (Australia).

To learn more…

Purkis, S. J., Oehlert, A. M., Dobbelaere, T., Hanert, E., & Harris, P. (Mitch). (2023). Always a White Christmas in the Bahamas: temperature and hydrodynamics localize winter mud production on Great Bahama Bank. Journal of Sedimentary Research, 93(3), 145–160. https://doi.org/10.2110/jsr.2022.066
Lopez‐Gamundi, C., Dobbelaere, T., Hanert, E., Harris, P. M., Eberli, G., & Purkis, S. J. (2022). Simulating sedimentation on the Great Bahama Bank – Sources, sinks and storms. Sedimentology, 69(7), 2693–2714. https://doi.org/10.1111/sed.13020
Duquesne, F., Vallaeys, V., Vidaurre, P. J., & Hanert, E. (2021). A coupled ecohydrodynamic model to predict algal blooms in Lake Titicaca. Ecological Modelling, 440, 109418. https://doi.org/10.1016/j.ecolmodel.2020.109418
Pham Van, C., Gourgue, O., Sassi, M., Hoitink, A. J. F., Deleersnijder, E., & Soares-Frazão, S. (2016). Modelling fine-grained sediment transport in the Mahakam land–sea continuum, Indonesia. Journal of Hydro-Environment Research, 13, 103–120. https://doi.org/10.1016/j.jher.2015.04.005
Naithani, J., de Brye, B., Buyze, E., Vyverman, W., Legat, V., & Deleersnijder, E. (2016). An ecological model for the Scheldt estuary and tidal rivers ecosystem: spatial and temporal variability of plankton. Hydrobiologia, 775(1), 51–67. https://doi.org/10.1007/s10750-016-2710-1
Delandmeter, P., Lewis, S. E., Lambrechts, J., Deleersnijder, E., Legat, V., & Wolanski, E. (2015). The transport and fate of riverine fine sediment exported to a semi-open system. Estuarine, Coastal and Shelf Science, 167, 336–346. https://doi.org/10.1016/j.ecss.2015.10.011
de Brauwere, A., Gourgue, O., de Brye, B., Servais, P., Ouattara, N. K., & Deleersnijder, E. (2014). Integrated modelling of faecal contamination in a densely populated river–sea continuum (Scheldt River and Estuary). Science of The Total Environment, 468–469, 31–45. https://doi.org/10.1016/j.scitotenv.2013.08.019
Gourgue, O., Baeyens, W., Chen, M. S., de Brauwere, A., de Brye, B., Deleersnijder, E., Elskens, M., & Legat, V. (2013). A depth-averaged two-dimensional sediment transport model for environmental studies in the Scheldt Estuary and tidal river network. Journal of Marine Systems, 128, 27–39. https://doi.org/10.1016/j.jmarsys.2013.03.014
de Brye, B., de Brauwere, A., Gourgue, O., Delhez, E. J. M., & Deleersnijder, E. (2012). Water renewal timescales in the Scheldt Estuary. Journal of Marine Systems, 94, 74–86. https://doi.org/10.1016/j.jmarsys.2011.10.013
de Brauwere, A., de Brye, B., Servais, P., Passerat, J., & Deleersnijder, E. (2011). Modelling Escherichia coli concentrations in the tidal Scheldt river and estuary. Water Research, 45(9), 2724–2738. https://doi.org/10.1016/j.watres.2011.02.003
de Brauwere, A., de Brye, B., Blaise, S., & Deleersnijder, E. (2011). Residence time, exposure time and connectivity in the Scheldt Estuary. Journal of Marine Systems, 84(3–4), 85–95. https://doi.org/10.1016/j.jmarsys.2010.10.001
Pham Van, C., Spinewine, B., de Brye, B., Soares-Frazão, S., Deleersnijder, E., Sassi, M. G., & Hoitink, A. J. F. (2011). Multiscale modeling of a tidal estuary with a finite-element shallow-water model: application to salinity intrusion into the Mahakam delta (Indonesia). River, Coastal and Estuarine Morphodynamics: RCEM2011, 1068–1081.
Kärnä, T., Deleersnijder, E., & de Brauwere, A. (2010). Simple test cases for validating a finite element unstructured grid fecal bacteria transport model. Applied Mathematical Modelling, 34(10), 3055–3070. https://doi.org/10.1016/j.apm.2010.01.012
Lambrechts, J., Humphrey, C., McKinna, L., Gourge, O., Fabricius, K. E., Mehta, A. J., Lewis, S., & Wolanski, E. (2010). Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuarine, Coastal and Shelf Science, 89(2), 154–162. https://doi.org/10.1016/j.ecss.2010.06.009
de Brauwere, A., De Ridder, F., Gourgue, O., Lambrechts, J., Comblen, R., Pintelon, R., Passerat, J., Servais, P., Elskens, M., Baeyens, W., Kärnä, T., de Brye, B., & Deleersnijder, E. (2009). Design of a sampling strategy to optimally calibrate a reactive transport model: Exploring the potential for Escherichia coli in the Scheldt Estuary. Environmental Modelling & Software, 24(8), 969–981. https://doi.org/10.1016/j.envsoft.2009.02.004
White, L., Legat, V., & Deleersnijder, E. (2008). Tracer Conservation for Three-Dimensional, Finite-Element, Free-Surface, Ocean Modeling on Moving Prismatic Meshes. Monthly Weather Review, 136(2), 420–442. https://doi.org/10.1175/2007MWR2137.1